
Benchmarking in The Dark: On the Absence of Comprehensive Edge Datasets

Oleg Kolosov and Gala Yadgar
Computer Science Department

Technion

Sumit Maheshwari and Emina Soljanin
Department of Electrical and Computer Engineering

Rutgers University

Abstract
Application workloads are used for system analysis, design,

optimization, and evaluation. As systems and their applications
evolve, new workloads are required to reflect their character-
istics and bottlenecks. Edge-computing systems are a new
model with unique characteristics, including heterogeneous
and geodistributed components and complex failure patterns.
Their workload characteristics are also unique, including un-
predictable load and user mobility, combined with stringent
latency and bandwidth requirements. Supporting these work-
loads would require resource management and allocation poli-
cies that take into account a rich set of attributes.

In this paper, we show that currently available datasets in-
clude only partial subsets of these attributes. Moreover, having
been collected on existing systems, they do not reflect the
unique characteristics of edge systems and applications. At the
same time, current edge systems in early deployment stages
are not ready for the collection of representative application
workloads. We show how to bridge the gap between required
and available datasets by workload composition: we combine
attributes from several available datasets to create realistic rep-
resentations of edge systems, their users, and their workloads.

1 Introduction
Application workloads play an important role in systems re-
search, design, and optimization. Characterizing these work-
loads helps define system design objectives, identify optimiza-
tion goals, and make appropriate tradeoffs [45,52,60,67,74,84,
85, 95, 101, 106]. Examples include storage caching and tier-
ing designed according to data access frequencies [100, 108],
scheduling and resource allocations based on job sizes, interde-
pendencies, and latency sensitivity [50, 54, 70, 82, 89, 96], and
consistency mechanisms chosen according to the degree of data
sharing and the ratio between reads and writes [36, 48]. Work-
load traces are further used to evaluate the resulting systems
with respect to alternative designs. Industry-standard bench-
marks, such as YCSB [43], TPC [9], and SPEC [26], are based
on representative workloads and are often used as a synthetic
substitute for real application traces.

New edge computing systems promise to meet the stringent
latency requirements of emerging real-time applications, such
as augmented and virtual reality [55, 56], by bringing compute,
storage and networking resources closer to user devices [46].
Thus, the edge infrastructure is a collection of interoperating

edge nodes, each of limited size and resources, located one or
two network hops away from the end user [38, 41, 71, 88].

Edge systems represent a new, arguably disruptive, system
model. They are inherently different from existing systems,
such as cloud datacenters or geodistributed systems, in two
major aspects [46, 102]. The first is their workloads: clouds
aggregate service for large numbers of users, thus experiencing
mostly predictable traffic volumes. In contrast, edge services
are intrinsically local and are thus subject to significantly larger
workload fluctuations due to correlated events and user mobil-
ity. The second aspect is the way their resources are managed.
Clouds can optimize user-perceived service as well as their
resource utilization via centralized routing and load balancing.
Edge systems, however, are by definition distributed across
multiple edge networks, possibly involving multiple service
providers. They are associated with considerable heterogeneity
in bandwidth and compute resources, for which the centralized
resource management model of datacentesr is not applicable.

Thus, to design, optimize, and evaluate resource allocation
and management policies for edge systems, we need workloads
that (1) reflect the unique characteristics of edge applications
and users, and (2) incorporate the attributes required for op-
timizing their service. These attributes are a superset of the
attributes used in various optimizations today. For example,
within a data center, the optimal allocation of jobs to nodes is
orthogonal to the physical location of their user. Similar alloca-
tion of user jobs to edge nodes will likely attempt to minimize
latency by minimizing the physical distance between the node
and the user. As another example, strategies for call handovers
in a cellular network are based on user mobility and service
level, as well as the available resources in the new cell. A simi-
lar handover of an edge-based session or function might also
depend on the availability of the data or code, and require trans-
ferring non-negligible state and context information. In both
examples, the edge-based policies rely on attributes that are
not used in current policies for datacenters or even networks.

Unfortunately, application workloads that were collected
on existing systems rarely reflect the combination of aspects
required for optimizing the edge infrastructure, nor the low-
latency and high bandwidth requirements of edge applications.
At the same time, collecting edge-based workloads is currently
impossible—there are no large-scale deployed and operational
edge systems, and existing small-scale systems still do not
host user-facing applications. Without relevant and available
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workloads, current studies on the design and optimization of
the edge infrastructure resort to basic synthetic distributions
for important workload attributes [57, 64, 75, 99, 105]. Such
limited evaluation settings inevitably limit the advancement of
research and optimization of the edge infrastructure.

We here turn the light to this (hopefully temporary) gap
between edge-systems research and realistic input from the
field. We characterize the workload attributes required for
informed research into four categories: storage, compute,
user/application, and geolocation, and then describe respective
categories for datasets describing the edge systems themselves:
architecture, availability, and business. We demonstrate that
attributes from these categories are individually included in var-
ious datasets, but no available dataset includes the combination
of attributes required to represent edge application workloads.

Our approach for bridging the current gap is workload com-
position, in which existing datasets are joined to obtain attribute
combinations that are otherwise unavailable. We describe such
composition in detail to show the advantage of this approach
compared to using entirely synthetic workloads: it allows us to
model and evaluate edge systems and designs with workloads
that are more representative of how users move and access
data, and how real applications interact with systems. We are
yet to learn how representative these behaviors are of future
edge applications and users. In the meantime, this approach
can serve as a temporary solution to “bootstrap” research in
edge computing systems. By demonstrating the importance
of real application workloads for the edge, we hope to also
encourage collection and release of such workloads.

2 Dataset Attributes We Need
The first set of attributes refers to the information we are inter-
ested in with respect to the work done by the system. These
attributes would ideally describe each request in the workload.
We characterize them into four categories: storage, compute,
user/application, and geolocation.

Storage-related attributes describe the way data is accessed
by users and applications. Standard attributes are the timestamp,
operation (PUT or GET), object ID, and possibly its size. These
attributes help understand (as in previous studies) object popu-
larities over time, if the system is read-heavy or write-heavy,
the request rate and how it fluctuates according to diurnal or
weekly patterns, etc. Previous studies addressing edge-based
storage services obtained these attributes from various non-
edge resources. In one example, the authors used a peer-to-peer
workload, to which they added synthetic request types [59].
Others used entirely synthetic request distributions [47, 75].

Compute-related workloads describe jobs and their tasks,
and are used to understand how resources should be consoli-
dated, scheduled, and allocated. Their standard attributes in-
clude job submission time, its tasks, dependencies between
them, and their resource requirements, such as cores, GPUs, FP-
GAs, and memory and storage size and bandwidth. Some work-
loads specify task deadlines that are used for setting scheduling

priorities. In the edge, this information could be used to deter-
mine whether a task can be offloaded to a neighboring node or
to the cloud. Another useful attribute is whether a submitted
task is a resubmission (retry) of a previously failed task, in
which case its resource requirements depend on the success
or failure of the original task. The need for compute-related
workloads has become evident in several recent studies. One
used synthetic values for evaluating node placement and re-
source allocation [73], while others used non-edge applications
to evaluate their edge systems [57, 68].

Information linking requests to the user and application
that issued them is important for aggregating requests into log-
ical streams that may access shared data, code, and resources,
while having different (possibly conflicting) objectives, ser-
vice levels, and progress. The relevant attributes are user ID,
application name or ID, and possibly the device type. The
latter is relevant for applications such as web browsing that
require different responses (e.g., image resolution) to requests
originating from different devices. In the context of edge com-
puting, user permissions might imply constraints on request
forwarding and collocation. Many of these attributes were
modeled by synthetic values and distributions in studies ad-
dressing the allocation of resources to users sharing the edge
system [31, 57, 64, 73, 99].

In wide-area networks, geolocation information is used to
map requests to available nearby resources, to identify op-
portunities for load-balancing, and to specify restrictions on
possible routing and forwarding optimizations. The most im-
portant attribute is the location from which a request originated,
which can be absolute (e.g., global coordinates), or relative
(e.g., system-specific zones). The location is particularly valu-
able when it can be correlated to other attribute categories. For
example, when combined with storage attributes, it can help
understand how object popularities vary between locations, and
when combined with compute related attributes it can help iden-
tify areas with high resource requirements. One recent study
used the locations of edge clients to evaluate the benefit from
their collaboration [58], and another relied on their location
for the choice of service provider [104]. The first study used
locations from Twitter, while the second simulated uniformly
distributed clients.

The second set of attributes refers to datasets that describe
the infrastructure of the system itself. They can be categorized
into: system architecture, availability, and business.

The edge system architecture is defined by two main com-
ponents: (1) the nodes, characterized by their locations and
resources, and (2) the network, characterized by the proper-
ties of the connections between nodes and their peers, their
users (the edge devices), and their cloud backend. These at-
tributes are important for correlating user requests to nearby
available resources and for optimizing and consolidating these
requests via offloading and peer-to-peer collaboration. For ex-
ample, when evaluating models for allocating resources and
contracting with providers, recent studies generated synthetic
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node locations, resources, and network topologies [73, 99], or
used topologies of non-edge networks [104, 105].

As the availability of the system’s components (nodes and
network connections) may change over time, we are interested
in logs specifying their state at fixed time intervals, or logs of
failure events. Ideally, we wish to distinguish between two main
causes of unavailability: (1) excessive load, which is a result of
the workload and the way the system was managed at the time
of serving it. For example, high load in certain areas, combined
with suboptimal scheduling decisions, may result in nodes
becoming unresponsive. These failures might be avoided by an
alternative resource management policy. (2) External failures
such as power outages, node hardware problems, or network
partitions. Alternative management of the edge infrastructure
cannot avoid such failures, but it should minimize their effect.
For example, recent approaches for ensuring service availability
with nodes whose availability is limited used synthetic datasets
of node availability and failures for their evaluation [35, 109].

Business-related attributes are important for identifying op-
portunities for sharing or consolidating resources, as well as re-
spective constraints on such optimizations. Relevant attributes
include the operator a node or a connection belongs to, and the
business agreements which specify who is entitled to using its
resources and at which service level. These agreements are im-
portant for identifying potential collaborative optimizations. To
the best of our knowledge, these attributes were not considered
in previous edge-related studies.

3 Available Datasets
The systems community has been using a wide range of
datasets, each containing a different set of workload attributes
or system characteristics. We describe representative available
datasets from different domains (summarized in Table 1).

Storage workloads. The SNIA IOTTA [7] repository con-
tains traces collected at various levels of the storage hierarchy.
System-call traces include file-system operations and attributes,
e.g., the inode number, the requested byte range, and whether
the request hit or missed in the page cache [39]. Block-level
traces include the device, byte range, and sometimes the file and
process associated with the I/O request [1, 53, 62, 63, 77, 107].
The traces were collected in university servers, production clus-
ters, and even smartphones. None of them contains location
attributes, and only limited information is available regarding
their users and applications. Datasets of file-system snapshots
include file sizes and their organization into directories and log-
ical volumes [8, 51, 74], but this information is not correlated
to the way files are read and written by users.

Several studies address object popularity and size in large-
scale systems [34, 60]. Although the datasets are not available,
their distributions are used to generate synthetic workloads in
simulations and benchmarks [9, 43]. Popularity can also be
extracted from independent datasets of social networks graphs,
collaborations, citations, links, and web accesses [27, 65].

Mobility datasets. Several available datasets provide lo-
cation and mobility information. We distinguish between
location-centric datasets, such as camera traffic counts [12] or
entrance and exit information from subway stations or parking
lots [16, 23], and user-centric datasets, such as logs of taxi
and bike rides [14, 17, 18, 79], and location-based online social
networks [65]. Most of these datasets include only user and
geolocation attributes [15]. One exception is the Mobile Data
Challenge (MDC) dataset, with smartphone location and ac-
tivity of 182 individuals in the Lake Geneva region, collected
between 2009 and 2011 [61]. This dataset includes most of the
properties we are interested in. However, we are not aware of
a similar, more recent, dataset, most likely due to the unusual
effort involved in its collection.

Cluster workloads. Several large companies have released
traces of jobs and VMs on their clusters. These traces in-
clude information about jobs and their tasks, the dependen-
cies between them, their resource utilization, the machine they
were running on, and sometimes also the user that deployed
them [44,91,98]. Available HPC cluster traces are less detailed,
presenting only aggregate job statistics [32]. These datasets
do not include any geolocation information, and their storage-
related attributes, such as I/O bandwidth and memory size, are
insufficient for correlating jobs with their datasets.

System architecture. Some cluster traces also include in-
formation about the cluster nodes and their resources [44, 98].
This information can be correlated with the jobs scheduled to
run on them, but these allocations are location independent, as
they take place within the datacenter. Various datasets describe
different aspects of network architectures, such as graphs of
autonomous systems and P2P networks [65], as well as offi-
cial datasets of hotspots and cellular towers [19, 61]. Some of
these datasets include information about the nodes’ resources
or ownership, but additional business or availability attributes
are unavailable.

Node availability. There are two major sources of informa-
tion regarding node availability in large-scale networks. The
first is the Internet, whose connections are constantly moni-
tored for latency, round-trip, and connectivity. Detailed as well
as aggregate information is available in several public reposi-
tories [11, 25]. The second source is datacenters that maintain
detailed information about their storage devices. For example,
the Backblaze dataset includes detailed SMART statistics and
failure information of hard drive [30]. Similar information was
used to analyze drive failures at EMC [69] and Google [86,87],
but their datasets have not been made public.

Edge-related datasets. Smart cities are one of the “killer
apps” of edge computing. Cities around the world are preparing
or have already started to collect data and make it available
through various platforms [12, 13, 16–21, 23, 29, 33, 79, 93].
Available datasets include some of the mobility and system
architecture datasets described above, as well as datasets related
to transportation infrastructure, air quality, small businesses,
and many others. We describe how these datasets can be used
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Datasets Storage Compute User/App. Location Arch. Avail.
Storage workloads: FIU [39] UMass [1] MSR [77] V X • X X X
FIUC [62] Nexus [107] Systor17 [63] Slacker [53]
FS snapshots: ECMWF [51] UBC [74] FSL [8] • X X X • X
Object popularity: Facebook [34] SNAP [65] V X X X X X
Alexa [27] YCSB [43] TPC [9]
Mobility: Austin [12, 23] NYC [16–19] SFO [79] X X • V V X
Cluster: BORG [98] Azure [44] Alibaba [91] LANL [32] X V • X V X
Network architecture: RIPE [25] CAIDA [11] X X X V V V
Device failures: Backblaze [30] X X X X X V

Table 1: Available datasets and their attributes. V – available, X – not available, • – partially available.

for edge-systems research in the next section.
Edge-related compute and storage attributes are more dif-

ficult to obtain. E.g, data collected by autonomous-vehicle
sensors is available [28], but primarily intended to improve
machine learning applications. The interesting attributes in
the context of the infrastructure are the storage and compute
requests such applications will eventually forward to the edge.
Similarly, a recently introduced benchmark for autonomous ve-
hicles [97] models the workload the devices on the vehicle have
to serve, and cannot be directly applied to the infrastructure.

Deployed edge systems. Current commercial systems are
deployed as an orchestration layer on top of existing cellular
and network infrastructure [2–6]. Data from these systems
is not publicly available. Several academic initiatives are de-
ploying large-scale edge testbeds to facilitate related research
and evaluation. Some are extensions of systems originally de-
ployed for global-scale network and cloud-based research, such
as PlanetLab [42] and CloudLab [83]. Others are designed with
the edge as their primary research objective, either by deploying
dedicated physical infrastructure [72, 78, 80, 81], by creating
a virtual edge-layer on top of existing wireless and mobile
infrastructure [24, 37, 40, 90], or both [10].

Current research and development efforts related to those
prototypes focus on porting applications to the edge and on ex-
porting edge resources to applications [22]. In the future, these
testbeds could be used for collecting the workloads of edge
applications. At the same time, workloads collected on com-
mercial deployments would be valuable input for evaluations
executed on these testbeds.

4 What We Can Do
To bridge the gap between available datasets and the edge work-
loads we need, we can join attributes from several available
datasets. We refer to this method as workload composition. The
resulting composite workload represents edge workloads better
than any of its individual components. Workload composition
is inevitably ad-hoc—the original workloads, their attributes,
and the way they are composed are chosen according to the
purpose for which the workload is created. Similar techniques
were used in previous studies, but to a much smaller extent:
those examples that we are aware of augment one available
dataset with a synthetic distribution for an additional attribute.
For example, [47] used a Zipf distribution for accesses to an

available image dataset, while [58] accelerated a Twitter feed
trace to simulate real world behavior. To demonstrate the need
for more complex compositions, we describe a representative
use case of workload requirements and generation.

Consider the design of an edge-based container store or
caching service [47,76], and the evaluation of object-placement
and eviction policies for such a service. Ideally, we would
use a trace of client requests that includes storage as well
as geolocation attributes, with some dataset describing the
physical architecture of the edge system. In the absence of
such a workload, we generate a composite workload from the
following available datasets:
• NYC taxi zones [18]: 263 polygons partitioning the city into

neighborhood-sized zones.
• NYC yellow taxi [17]: 112M records of taxi rides, including

their start and end times and pick-up and drop-off zones.
• NYC hotspots [19]: detailed coordinates of 3319 hotspots

throughout the city.
• Wikipedia [66]: 28.5M graph edges representing links from

one Wikipedia page to another for 1.8M pages.
Workload generation. In our composite workload, the

hotspots represent edge-node locations, passenger drop-off
zones represent the location of the passengers when they issue
their requests, and the Wikipedia links represent page popu-
larity. We first join the taxi-zones and hotspots workloads, to
attribute each hotspot to the taxi zone it is located in. We list
the Wikipedia pages in descending order of the number of
links pointing to them, thus ranking them by their popularity.
We then generate a trace of object GET requests of the form
〈time,node,page〉 as follows.

Each taxi ride represents a ‘browsing session’ that starts
at the drop-off time and takes place at the drop-off zone. We
choose a random hotspot from the drop-off zone as the node
receiving the request, nodeh. The first page of the session,
page0, is chosen at random with a probability proportional to
its static page rank. With some probability pexit (exit rate), the
session ends. With probability 1− pexit the session continues,
and the next page is chosen from the pages pointed to by
the current page, with a probability proportional to its rank.
The session further continues with probability 1− pexit , with
additional pages chosen in the same manner. For a session with
n pages starting at time drop-off T , our trace will include n
requests of the form 〈T + i× ε,nodeh, pagei〉, for 0≤ i < n. ε
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Figure 1: Taxi zones in Manhattan, ordered by their number of
hotspots. Trend lines show correlation between drop-offs and hotspots.
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Figure 2: Wikipedia pages ordered by their static page ranks, and the
number of accesses in our composite workload. Different exit rates
result in visibly different distributions.

is a parameter representing the request rate within a session.
Workload properties. In addition to its use for evaluation

purposes, our composite workload can also help characterize
the system and its users. For example, Figure 1 shows the taxi
zones in Manhattan, ordered by the number of hotspots in them
(zones without hotspots were removed), and the number of
rides that ended in them in the course of three months (May–
July 2018), separated into daytime and nighttime. The trend
lines, depicting linear regression, show the different mobility
patterns throughout the day and indicate that the number of
drop-offs is lightly correlated with the number of hotspots in
the zone.

To understand the difference between static page ranks and
dynamic access frequencies, we generated the composite work-
load with four different exit rates. Figure 2 shows the accesses
to the 300 highest ranking pages in the first 4M requests in the
composite trace. When the exit rate is 100%, the requests are
distributed exactly according to the page ranks. With smaller
rates, the request popularities differ from the static ones. We
can distinctly notice that some high-ranking pages are accessed
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Figure 3: Rides between zones around Central Park, according to
pick-up (‘from’) and drop-off (‘to’) zones. The distribution is non-
uniform and mostly asymmetric.

very infrequently—these pages belong to a small category with
few links from outside pages. To best represent user behavior,
the exit rate should be chosen according to the application
whose accesses are simulated.

Refinements and additional compositions. More detailed
workloads could be used to generate comprehensive and possi-
bly more accurate compositions. For example, if the pick-up
and drop-off locations were given in finer granularity, we could
assign sessions directly to the nearest hotspot rather than to
a random hotspot in the zone. A detailed trace of the rides’
path, as in the SFO taxi dataset [15], could be used to gen-
erate sessions during the actual ride. At the same time, we
note that even the aggregate information in the yellow taxi
dataset can be used to represent user mobility. For example,
Figure 3 depicts the most crowded zones bordering Central
Park, and for each two zones 〈Z f rom,Zto〉, the probability that a
ride starting at Z f rom will end in Zto. Similar characterization is
often used for resource allocation and reservation in networked
environments [92, 94, 103].

The composition we described can easily be done with alter-
native datasets. For example, user presence around a hotspot
can be represented by the number of exits from nearby sub-
way stations [16]. Similarly, object requests can be generated
from any object distribution, or taken directly from a trace of
requests. Datasets from location-dependent recommendation
platforms, such as TripAdvisor, could be used to generate re-
quests according to the user’s location. Finally, the number of
sessions for each user and the inter-arrival times of requests
within a session could be derived from a representative distri-
bution or a separate workload, rather than a static parameter.

5 Conclusions
We described seven categories of attributes that are important
for edge-system analysis, design, and optimization. We showed
how, in the absence of up-to-date datasets with all, or even most
of these attributes, partial datasets can be used to compose
a workload with the required set of attributes. While these
composite workloads provide an approximate representation
of edge systems, applications, and user behaviors, they can
help this field move forward by facilitating informed research,
design, and management of the edge infrastructure.
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6 Discussion topics

Is the absence of datasets really temporary? Looking for-
ward, it is not clear how easy it would be to obtain edge work-
loads with all the relevant attributes, even when edge systems
are fully deployed and widely used. Storage, Internet, and con-
tent providers are already reluctant to share their datasets, and
the research community relies on a small variety of datasets in
each domain. How realistic is it to expect more comprehensive
workloads to be available in the future?

On the positive side, many datasets related to the edge infras-
tructure, such as locations of cellular towers and traffic surveil-
lance cameras, are already public. Many mobility datasets orig-
inate from municipal repositories committed to open data, and
this trend is likely to continue [93]. On the other hand, one of
the most challenging aspects of workload collection is ensuring
that they do not leak private information about the platform
users, a challenge that is increased in edge-related workloads,
where user and locality are major attributes.

Collecting detailed user and locality information requires
either explicit user opt-in, aggregation, or both. In either case,
this might become a critical issue preventing commercial oper-
ators from making their data public. In this case, the following
questions arise: how important is detailed user information,
compared to aggregate attributes? And, what is the best way to
protect personal data while making the most detailed informa-
tion available in the dataset?

Will workload composition become standard practice?
Datasets that include less attributes might be easier to
anonymize, and thus easier to make public. Thus, it is possible
that, while full and detailed edge workloads will remain propri-
etary and unavailable to the public, partial datasets will become
increasingly available. In this scenario, workload composition
might be the best way of incorporating the available datasets
into the process of system reserach, design, and optimization.

How relevant are the basic workloads? Workload traces
are inevitably limited in their ability to represent future demand
for system resources. This limitation is bigger when the system
itself changes, as in our case. In the absence of real edge work-
loads, how can we verify that our composite workloads are
representative of future edge systems and applications? Which
of the basic workloads described in this paper are most likely to
represent future edge workloads? Are other relevant workloads
available? Finally, can some predictable access patterns be gen-
erated synthetically for the purposes we described? Synthetic
distributions of specific aspects can facilitate a more systematic
coverage of a large parameter space, including its extremities.
They can also be adapted as observed characteristics of edge
systems change over time. Which aspects are better modelled
by synthetic distributions?

How to generate realistic and useful compositions? By
composing existing workloads into new ones we are making
assumptions about correlations between workload attributes.
For example, in our composite workload, we are assuming that

drop-off locations are correlated with user presence in an area.
What type of analysis can we perform, and on which workloads,
to determine which attributes are indeed independent of other
attributes, which are correlated to others, and what is the nature
of these correlations? These questions are part of the general
challenge of establishing validity, reliability, and replicability of
evaluations, which are addressed in the context of experimental
design [49].
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