
Fast and Efficient Container Startup at the Edge via Dependency Scheduling

Silvery Fu
UC Berkeley

Radhika Mittal
UIUC

Lei Zhang
Alibaba Group

Sylvia Ratnasamy
UC Berkeley

Abstract
Containers are becoming the canonical way of deploying
compute tasks at the edge. Unfortunately, container startup
latency and overhead remain high, limiting responsiveness
and resource efficiency of edge deployments. This latency
comes mostly from fetching container dependencies including
system libraries, tools, configuration files, and data files.

To address this, we propose that schedulers in container or-
chestrators take into account a task’s dependencies. Hence, in
dependency scheduling, the scheduler tries to place a task at a
node that has the maximum number of the task’s dependencies
stored locally. We implement dependency scheduling within
Kubernetes and evaluate it through extensive experiments
and measurement-driven simulations. We show that, for typi-
cal scenarios, dependency scheduling improves task startup
latency by 1.4-2.3x relative to current dependency-agnostic
schedulers. Our implementation of dependency scheduling
has been adopted into the mainline Kubernetes codebase.

1 Introduction
Application containers and Kubernetes are emerging as the
canonical way of deploying services at the edge [8, 10, 12, 16,
17]. Unfortunately, container startup latency can significantly
limit the efficiency of short tasks. At the same time, a grow-
ing number of edge computing workloads are characterized
by short task times (e.g., processing periodic updates from
IoT sensors) and/or the need for rapid response times (e.g.,
robot motion, self-driving cars, factory automation [3, 7, 11]).
For these and other applications, reducing container startup
latency is increasingly important to ensure low end-to-end
latency.

In current deployments, high startup latency comes pri-
marily from the time it takes to fetch and install container
dependencies on the host machine at which the task will run.
These dependencies include system libraries, tools, config-
uration files, and data files that must be present on the host
machine before the container is launched.

In this paper, we ask whether scheduling can be leveraged
to reduce this startup latency. We have an extensive liter-

ature on (and practice of) schedulers that are designed to
improve task performance but these have typically focused
on improving the task’s processing time – e.g., scheduling
to avoid contention over shared resources [27], to improve
data locality [37], and so forth. Given the above trends, we
propose extending the traditional view of scheduling to also
improve task launch time. To achieve this, we propose that
task dependencies be treated as another dimension to resource
consumption and that schedulers take into account a task’s
dependencies when placing tasks. Specifically, we propose
that a scheduler should aim to place a task T at the node that
maximizes the amount of T ’s dependencies that are already
present at the node, thereby reducing the task startup time.
We refer to this approach as dependency scheduling.

We propose two designs for dependency scheduling that ex-
plore different trade-offs. Our first design treats the container
image in its entirety as a dependency and hence the scheduler
attempts to place a task T at the node that has the maximum
overlap (in bytes) between the images it has cached locally
and those requested in T . We call this the image-match policy.
Image-match is very simple to implement and dramatically re-
duces startup time when a match is found. However, because
it does not consider the internal composition of an image, it
cannot improve startup latency in situations when two images
only partially overlap in their internal dependencies.

Our second design avoids these missed opportunities by
tracking and matching dependencies at the finer granularity of
the layers that constitute the image. Hence, our layer-match
policy places a task T at the node that has the maximum
overlap with T ’s layers (in bytes). Layer match is driven by
the intuition that container technology, as it simplifies package
reuse, has encouraged non-trivial overlap in the dependencies
of different tasks; layer-match exploits this overlap.

We implement dependency scheduling with both poli-
cies in Kubernetes, modifying the Kubernetes scheduler,
internal APIs, and node agent to support image and layer
awareness. We evaluate our scheduling schemes using ex-
tensive measurement-driven simulation and experiments. We
show that dependency scheduling substantially improves task

startup latency: e.g., dependency awareness leads to a 1.4-2.3x
reduction in startup latency relative to dependency-agnostic
schedulers while introducing as little as 0.3ms in scheduling
overhead. Further, we show that the benefits of dependency
scheduling arise not only because it reduces the latency and
overhead associated with pulling images but also because of
its ability to pack more images into its local image storage.

We have shared our scheduler implementations with the Ku-
bernetes developer community: our image-match scheduler
has been incorporated into the mainline Kubernetes codebase
as a default scheduling policy and has been used in produc-
tion [1], while layer-match is currently under review [15],
corroborating the relevance and practical nature of depen-
dency scheduling.

2 Motivation
We give an overview of containers, container dependencies
(§2.1), and Kubernetes (§2.2); we then motivate dependency
scheduling for container orchestration at the edge.

2.1 Containers, Images, and Layers

Containers are based on lightweight OS-level virtualization
technology that isolates and manages an application’s re-
source usage, and optionally provide tools for managing the
application’s dependencies. Containers offer two major bene-
fits: lightweight resource isolation and container images.

The latter allows developers to package and distribute ap-
plications using a standard format. An application’s image
includes all its dependencies, including the code, binaries,
system tools, and configurations files. An image is read-only,
copy-on-write, and can be shared by multiple containers:
when a container wants to apply changes to the image, the
target files or directories will be copied to the container’s own
independent layer, as described later in this section.

To use an image, users specify the image name in the con-
tainer request. The container runtime normalizes the specified
image name – e.g., replacing a default generic image name
with the specific name of the latest version. It then resolves
the image name to get its constituent layers (described below)
and pulls them from the image repository if they are not al-
ready cached. Once the entire image has been retrieved, the
container is installed and booted.

Containers are backed by a layered file-system. Each layer
encapsulates a set of files and directories that are put together
when the image is built and is associated with a collision-
resistant hash digest taken over its content. Every layer can
be uniquely identified using its digest. Tracking layer digests
decouples the image contents from the image name. This
allows users to rename images without invalidating the entire
image cache and is a common practice today.

2.2 Container Orchestration using Kubernetes

While the concept of dependency scheduling is a general one,
we focus on its application to Kubernetes [14] (henceforth
k8s) as the latter is widely used and open-source. Figure 1

Master Node

Scheduler

API Server
CLI

Kubelet

W
or

ke
r N

od
e

Container
Runtime

Local
Image
Store

External Image Store

etcd

Dependency Scheduling

Image/Layer Info

Image/Layer Tracking
Kubelet

W
or

ke
r N

od
e

Container
Runtime

Local
Image
Store

Image/Layer Tracking

Image resolution/normalization

Figure 1: Overview of Kubernetes system architecture with
the dependency scheduling extension (in dotted boxes).

shows a high-level view of the relevant components in k8s.
The k8s master node has two main components: (1) an API
server, which interfaces with the user and is backed by a
distributed key-value store that maintains cluster state, and
(2) the scheduler. Incoming requests for executing a job –
called pod requests – are submitted to the API server. A
pod request consists of one or more tasks, each running in a
separate container. The API server communicates the request
parameters, including required image names, to the scheduler.

Each worker node runs (1) the “kubelet” agent that interacts
with the master node, and (2) a container runtime engine
(such as Docker) that manages the lifecycle of a container:
creation, removal, pausing, and monitoring. The container
runtime interacts with the kubelet via the container runtime
interface. Each worker node has its own local image store
where it can cache images. The required layers that are not
already cached in the local image store are fetched from an
external image store (such as Amazon’s Elastic Container
Registry) by the container runtime.

2.3 The case for dependency scheduling at the edge

We now examine the case for dependency scheduling and
argue that it is well suited to emerging edge workloads/trends
such as connected vehicles [3], smart buildings [6], robotics [7,
26], and IoT [11]. Our discussion in this section provides a
highly simplified model that ignores many details of how
dependency scheduling works; the remainder of the paper
considers the relevant implementation aspects in detail.

We start by addressing when dependency scheduling is
needed or useful. We can view a task’s completion time, T ,
as T = S+R where S is the time required to start/launch the
task and R is the application running time required once the
task is launched. We further assume that S is dominated by
the time it takes to download and install the task’s container
image (we validate this latter assumption empirically in §4).

Our observation is:

Dependency scheduling is useful when S is a non-trivial
portion of T (i.e., S ∝ R). As prior works have noted [28, 32,
33], this regime is becoming relevant given there has been a
trend towards shorter tasks. More generally, we expect that the
trend towards short tasks will only increase with the deploy-
ment of IoT applications in which a large number of sensors
periodically report to a backend edge-based service. Further,
we conjecture the reason why dependency locality did not
attract much attention in practice and in literature is because
R was typically large (e.g., long-running services and batch
jobs) and thereby startup time was negligible.

Assuming the above condition holds, we next examine
when dependency scheduling is effective. As mentioned ear-
lier, dependency scheduling aims to reduce S by caching previ-
ously used images at the nodes and scheduling tasks at nodes
that cache either the task’s entire image (our image-match
policy) or a subset of the layers in the image (our layer-match
policy). The main parameters that impact the effectiveness
of this policy are: N, the number of nodes in the cluster; C,
the size of the cache at each node; L, the total size of popular
layers involved for the workload in question. Then, if:
(a) the total size of the popular layers L is less than the
layer cache size of a single node C. Then, at the steady-
state, every node is able to store all popular layers in its cache.
Hence the dependency scheduling policies (image-match and
layer-match alike) should perform similarly as the agnostic
policy, because even if the policy randomly picks a node, the
node would have the layers.
(b) the total size of the popular layers L exceeds the layer
cache size of a single node C; but is less than or close to
the total layer cache size of all nodes combined (N ·C).
Intuitively, dependency scheduling wins in this case because,
although popular layers cannot be cached on every node, they
can be cached on some nodes in the cluster. Dependency
scheduling identifies these nodes to improve startup time S.

For example, consider the Connected Vehicle Platform
(CVP) [3] in which each user/vehicle has a different image
with some unique layers, e.g., a unique machine learning
model customized to each vehicle’s travel and/or application
stacks developed for each car model and make. To get a sense
of N, C, and L: we consider reports published by Ericsson
that cite 4 million connected cars as using their platform [5].

Assuming just 0.1% of these cars are active at any time
and issuing one update every 1 seconds, we’d see a total load
of 4,000 requests per second on a CVP cluster (L = 4000).
Handling this load would require a cluster of N = 40 nodes if
we assume each node can run 100 containers (the latter from
a target provided by the Kubernetes community [13]). Finally,
if we assume each node has 32G of storage (a typical disk
space reserved for rootfs) and each image in the CVP contains
a customized ML model sized 250MB (YOLO v3 [9, 34]);
assuming the image size equals to this size). This gives us
C = 128 images and hence N×C = 5120. In this scenario, no

Algorithm 1 Dependency Scheduling

1: at the cluster scheduler:
2: for each job j queued do
3: /*on nodes meeting resource constraints*/
4: for n in nodes do
5: score[n] = size(|dep(n)∩dep(j)|)
6: end for
7: /*tie-break with other scheduling criteria*/
8: n* = argmaxn score[n]; bind(n*, j)
9: end for

single node can store all 4,000+ layers, but the CVP cluster
in its entirety could do so comfortably, and hence dependency
scheduling can greatly reduce the startup time S associated
with user requests.
(c) the total size of the popular layers L is much larger
than the total layer cache size of all nodes combined (N ·
C). In this scenario, dependency scheduling performs the
same as agnostic policy due to low layer cache-hit ratio.

3 Design and Implementation
We discuss our overall approach (§3.1) and then describe the
detailed design of our image-match (§3.2) and layer-match
(§3.3) scheduling.

3.1 Design Rationale

Our approach aims to avoid pulling dependencies altogether
by modifying the scheduler to place tasks at nodes where
some or all of a task’s dependencies are already present. The
benefit of this scheduler-based approach is that it requires no
change to the infrastructure hardware (servers or networks),
nor to containerized applications, restricting all changes to
the container orchestrator (e.g., k8s).

This dependency scheduling policy is presented in Algo-
rithm 1, where dep() extracts the dependency information
(i.e., as image or layer) from a node or a job. We rank nodes
based on how much their locally-stored dependencies overlap
with those of the request. The degree of overlap depends on
the granularity of the dependencies we consider.

We propose images and layers as two candidate definitions
of dependencies since these are common concepts already
present in applications and container frameworks (though not
used by the framework’s schedulers) and hence they simulta-
neously capture the trade-off between coarse vs. fine-grained
dependencies and are practical for implementation.

3.2 Image-match

Container image is the package that includes all application
dependencies (see §2.1). The changes for supporting image-
match are as follows.
Kubelets. The container runtime in the worker nodes already
tracks the image state (names and sizes of the cached images).
We simply extend the kubelet to retrieve this state from the

container runtime and peoriodically communicate it to the
API server as described next.
API-server. Currently, the interface between the API-server
and the kubelet lacks image-awareness. We extend the RPCs
between the kubelet and the API-server to communicate the
image state. Likewise, we also extend the global cluster state
that backs the API-server to store this per-node image state.
Scheduler. We extend the scheduler to implement image-
match using the per-node image information stored in the
global cluster state. This involves an additional key change:
Image Name Normalization. To implement the image match
policy, we must compare the name of each image in a new
pod request with the names of the images cached at each node.
Recall that the latter is obtained from the container runtime
at each node, and can be different from the name specified
by the user in a pod request even for the same image. We
therefore normalize the image names following canonical
image naming rules before image matching.

3.3 Layer-match

Layer is a (sub-)group of dependencies insides a container
image (see §2.1). We now describe the additional changes
required for supporting layer-match.
Kubelets. Since the container-runtime only tracks cached
images, we extend the kubelet to track cached layers as well.
We add a layer tracking subroutine to the kubelet to collect
and parse layer metadata from the node-local layer filesystem.
The collected layer state (its digests and sizes) are periodically
communicated to the API-server.
API-server. Similar to adding image-awareness, we extend
the RPCs between the kubelet and API-server to communicate
per-node layer state, along with adding this information in the
global cluster state.
Scheduler. Extending the scheduler to support layer-match
involves the following key change.
Image Resolution. We use this term to describe the process
of mapping an image name to its corresponding layer digests.
Dependency scheduling needs a container’s layer information
in order to assign it to a node and hence resolution must hap-
pen earlier so that the scheduler knows the mapping between
the image of an incoming pod request and its layer digests.

We thereby implement the image resolver in the sched-
uler. Whenever a pod request with a new image comes in,
the resolver obtains the image to layers mapping by querying
the external image repository and caches them. This takes
about 200ms. However, this is just a one-time penalty paid
for new image requests, with the local image resolution from
the cached mapping being the common-case occurrence. We
implement this external image resolution outside of the sched-
uler’s critical path to avoid any head-of-the-line blocking.

4 Evaluation
We evaluate dependency scheduling using a combination of
measurement-driven simulations and experiments on a k8s

Total no. of images 56,218
Total no. of layers 383,326

Sum of all image sizes 33.15TB
Sum of unique layer sizes 20.95TB

Average image pull latency 19.2s
Average layer pull latency 1.75s

Average no. of layers per image 11.95

Table 1: Summary of the trace collected for simulations

cluster. The reason for simulation is two-fold: first, we found
the real k8s cluster has overhead due to head-of-line blocking
issues at the container runtime when pulling images and this
overhead can mask the benefits of dependency scheduling.
Second, using simulation allows us to do a comprehensive
sweep of the parameter space.

We compare the following scheduling policies: (i) image-
match, (ii) layer-match, and (iii) an agnostic scheduling policy
that places a task on one of the available nodes at random. We
first describe our simulation methodology and experimental
setup (§4.1) and then present the results (§4.2).

4.1 Trace-driven Simulation

Our simulation process comprises of four steps: (i) Image
Mirroring: We select the latest versions of the 5K most fre-
quently used images from DockerHub [4], forking them to
the Amazon Elastic Container Registry (ECR). This saturates
our repository limit on Amazon ECR (which was increased
from the default of 1K images on request).
(ii) Latency Profiling: We deploy a Docker engine on an
m4.xlarge dedicated Amazon EC2 instance, and pull the im-
ages from ECR. We instrument the Docker engine to log the
size of each layer in the image, and the time taken to pull the
layer (its pull latency)1.
(iii) Extrapolating Latency Profile: We extrapolate the results
from the latency profile of the above 5K images to create a
latency profile for approximately 56K of the most frequently
used DockerHub images. We use K-nearest neighbours for
this extrapolation. Table 1 gives a high-level summary of this
trace and the profiling results.
(iv) Cluster-level simulation: We wrote a simulator2 that mod-
els a k8s cluster and implements the image- and layer-match
policies, as well as the dependency agnostic policy.
Experiment Setup: We use the following parameters
throughout the simulations: 200 nodes in the cluster, with
at most 16 running containers and 32GB image cache size
per node. Pod requests arrive with Poisson inter-arrival times;
load is selected such that the cluster utilization is ∼ 80% for
the agnostic policy. This setup falls into the regime (b) in §2.

The execution time for each task is uniformly sampled from
1-10 seconds. Our workload uses a realistic Zipf distribution
(with an exponent value of 0.75) when picking the container
image for each pod request, since it is the common access

1https://depsched.s3.amazonaws.com/layer_stats.csv
2https://github.com/depsched/sim

https://depsched.s3.amazonaws.com/layer_stats.csv
https://github.com/depsched/sim

 0.2

 0.4

 0.6

 0.8

 1
C

D
F

0 10 20 30 40 50 60 70 80 90
Startup Latency (s)

agnostic
image
layer

Figure 2: Latency cumulative distribution function (CDF)
under different policies.

pattern observed in a wide range of scenarios [19, 20].

4.2 Key Results

We first present the results from our default setup.
Startup Latency: Figure 2 shows the CDF of the startup la-
tency for our default simulation setting. These results confirm
the design rationale discussed in §3: dependency schedul-
ing (both image-match and layer-match) result in smaller
startup latencies when compared to the agnostic policy, with
layer-match generally performing better than image-match.
On average, the image-match and layer-match policies result
in 1.44x and 2.33x smaller startup latency than the agnostic
policy respectively, with layer-match performing 1.6x better
than image-match.
Resource Usage: In addition to reducing startup latency, de-
pendency scheduling makes more efficient use of cluster re-
sources, both compute and storage. Compute: The second
column of Table 2 describes compute usage with the three
policies for the same input load, measured as the sum of the
total time each core is occupied divided by the product of the
total number of cores in the cluster and the simulation dura-
tion. As shown, reduced provisioning time directly translates
to smaller usage of compute resources in the cluster. Layer-
match is most efficient, followed by image-match, with the
agnostic policy being the least efficient.
Storage: In Table 2, we report the number of cached images
per node and the amount of unused space in the per-node
image store, computed as an average across all nodes and all
scheduling rounds from the second half of the simulation (the
latter to avoid startup effects). Dependency scheduling allows
better packing of images in each node by co-locating images
with larger numbers of shared dependencies. This results in
more images stored per node as well as slightly higher unused
(or free) space in the local image store.

We also used the simulator to conduct sensitivity analysis
over key setup parameters including the number of nodes in
the cluster, the per-node image cache size, and the image pop-
ularity distributions. We validated the trends of improvements
under change of setups. Due to space limit, we include the
results in the technical report [18].

4.3 System Evaluation

We evaluated dependency scheduling on a 60-node k8s clus-
ter with the same setup as the simulation (except we are run-

Policy Cluster compute
usage

Avg. no. of cached
images per node

Avg. unused space
in local store

Agnostic 77.42% 34.68 5.11GB
Image-match 60.51% 40.24 5.64GB
Layer-match 39.12% 60.10 7.98GB

Table 2: Cluster compute usage and the per-node image cache
utilization for the three policies.
ning containers on real nodes). We measured the container
startup latency (1.83x and 2.34x speedup from image- and
layer-match respectively at mean latency), the scheduling la-
tency (8% and 13% higher than the agnostic policy, which has
≈0.6ms mean latency), and the container boot latency (≈1s
mean latency). Note the scheduling latency is an order of
magnitude lower than the boot and the overall startup latency;
thereby it is not a major latency contributor.

Further, the difference in startup latency between the
agnostic- and dependency-aware policies are much higher
at higher-load (i.e., having larger number of pod submitted
to the k8s). This is caused by the queuing and consequential
head-of-line blocking at the container runtime: there weren’t
enough resources (e.g., network, CPU) to pull the image. We
plan on investigating this fully in future works. More details
on system evaluation can be found in our technical report [18].

5 Discussion and Related Work
Storage Optimization: Slacker [24] uses a proprietary NFS
implementation to lazily pull the contents of the container
image, and thus improve startup latency. Such strategies in-
crease the complexity of the storage backend (e.g., to maintain
many active client connections) and non-trivial infrastructure
changes (e.g. modifications to the linux kernel and the use
of a proprietary NFS server). Dependency scheduling is an
orthogonal technique that is simpler to implement, and that
can complement such storage optimization techniques to get
even smaller startup latencies.
Dependency Trimming: Trimming dependencies is an or-
thogonal approach to reduce startup time that has been stud-
ied in the context of unikernels [30, 31]. These use an offline
process for trimming dependencies and report lower startup
latency than untrimmed unikernels and containers. Depen-
dency scheduling is, again, orthogonal and complementary to
dependency trimming, and offers benefits without requiring
that users change their submitted container images.
Container Reuse: An edge provider can cache a popular
pool of running containers such that they can immediately
accommodate new function requests without incurring the
time to provision and boot containers, similar to the way
FaaS is implemented in the cloud [2, 11, 28, 36]. In edge
environment, however, such hot-caching can be prohibitive
due to the excessive use of limited resources such as memory.
Cluster Scheduling: There is a large body of work on cluster
scheduling that focuses on reducing contention over shared
resources, achieving better data locality and so on [21–23,
25, 29, 32, 33, 35]; these schemes do not optimize for startup
times which is our focus.

6 Discussion Topics
Feedback and discussion points: Data locality has been a
fundamental problem that repeatedly manifests itself in new
contexts. A goal of this paper is to bring the discussion about
data locality, especially dependency locality, to the fore in the
context of edge computing. To this end, we are looking for
feedback on (i) whether and how the real-world production
systems and workloads on edge would fit into the application
regimes we outline in §2.3; (ii) besides dependency locality,
what are the other forms of data locality related issues that
are pronounced for edge workloads; (iii) in the edge context,
how valuable are the improvements that scheduling based op-
timization enables in terms of both performance and resource
efficiency?

We are exploring other scheduling and system techniques
to further improve the container startup latency and overhead.
During the workshop, we would like feedback on these on-
going efforts and/or would welcome a discussion of future
extensions and alternate approaches.
Open issues: There are open issues the paper does not ad-
dress: (i) how dependency scheduling interacts with other
scheduling policies such as load balancing and bin-packing.
For example, dependency scheduling may lead to over-
utilization of nodes having large set of popular dependen-
cies. (ii) how much overhead does dependency scheduling
introduce to k8s such as the API Server and KV store? (iii)
container runtime bottleneck (mentioned in the end of §4). (iv)
How much smarter caching would help improve the startup
latency, e.g., caching top-k popular layers per node (§2 in-
cludes some initial discussions)? We hope to learn additional
issues from the workshop.
Controversial points and when does our work fail: We as-
sumed short tasks are common for edge workloads (i.e., much
like serverless/Function-as-a-Service types of workloads). In
such contexts, startup latency emerges as a potential bottle-
neck to low-latency processing. This characterization of edge
workloads is up for debate! In fact, it would be great to discuss
whether/how one might corroborate this assumption.

More generally, we anticipate debate surrounding our as-
sumption that containers and Kubernetes are emerging as the
de-facto technologies at the edge, and look forward to discus-
sion on what compute abstractions and frameworks are best
suited to edge workloads.

Our work will fail (or rather, will be less relevant to this
venue) if the trend in edge workloads does not match our
workload assumptions, i.e., for long-running workloads, the
overhead of pulling dependencies are substantially amortized
by the task compute time and hence the benefits that depen-
dency scheduling offers in terms of lower startup latency and
improved resource efficiency are less valuable.

Acknowledgement
We thank our shepherd, Istemi Ekin Akkus, and the anony-
mous reviewers for their helpful suggestions and insights.

References
[1] Enable ImageLocalityPriority as a default schedul-

ing policy. https://github.com/kubernetes/
kubernetes/pull/68081.

[2] Understanding container reuse in aws lambda.
https://aws.amazon.com/blogs/compute/
container-reuse-in-lambda/, 2014.

[3] Connected vehicle platform. https:
//cloud.google.com/solutions/
designing-connected-vehicle-platform/,
2019.

[4] Docker official images. https://github.com/
docker-library/official-images, 2019.

[5] Ericsson: Connected vehicle cloud. https:
//www.ericsson.com/en/internet-of-things/
automotive/connected-vehicle-cloud, 2019.

[6] The extensible building operating system. https:
//github.com/SoftwareDefinedBuildings/XBOS,
2019.

[7] irobot ready to unlock the next generation of smart
homes using the aws cloud. https://aws.amazon.
com/solutions/case-studies/irobot/, 2019.

[8] Open container initiative. https://www.
opencontainers.org/, 2019.

[9] Yolo v3 (coco). https://supervise.ly/explore/
models/yolo-v-3-coco-1849/overview/, 2019.

[10] Akraino edge stack. https://www.lfedge.org/
projects/akraino/, 2020.

[11] Aws iot greengrass. https://aws.amazon.com/
greengrass/, 2020.

[12] Kubeedge: A kubernetes native edge computing frame-
work. https://kubeedge.io/, 2020.

[13] Kubernetes: Building large clusters. https:
//kubernetes.io/docs/setup/best-practices/
cluster-large/, 2020.

[14] Kubernetes: Production-grade container orchestration.
https://kubernetes.io/, 2020.

[15] LayerLocalityPriority proposal. https://shorturl.
at/biuJ1., 2020.

[16] Lightweight kubernetes: The certified kubernetes distri-
bution built for iot & edge computing. https://k3s.
io/, 2020.

[17] Onf cord. https://www.opennetworking.org/
cord/, 2020.

https://github.com/kubernetes/kubernetes/pull/68081
https://github.com/kubernetes/kubernetes/pull/68081
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://cloud.google.com/solutions/designing-connected-vehicle-platform/
https://cloud.google.com/solutions/designing-connected-vehicle-platform/
https://cloud.google.com/solutions/designing-connected-vehicle-platform/
https://github.com/docker-library/official-images
https://github.com/docker-library/official-images
https://www.ericsson.com/en/internet-of-things/automotive/connected-vehicle-cloud
https://www.ericsson.com/en/internet-of-things/automotive/connected-vehicle-cloud
https://www.ericsson.com/en/internet-of-things/automotive/connected-vehicle-cloud
https://github.com/SoftwareDefinedBuildings/XBOS
https://github.com/SoftwareDefinedBuildings/XBOS
https://aws.amazon.com/solutions/case-studies/irobot/
https://aws.amazon.com/solutions/case-studies/irobot/
https://www.opencontainers.org/
https://www.opencontainers.org/
https://supervise.ly/explore/models/yolo-v-3-coco-1849/overview/
https://supervise.ly/explore/models/yolo-v-3-coco-1849/overview/
https://www.lfedge.org/projects/akraino/
https://www.lfedge.org/projects/akraino/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/
https://kubeedge.io/
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/
https://shorturl.at/biuJ1
https://shorturl.at/biuJ1
https://k3s.io/
https://k3s.io/
https://www.opennetworking.org/cord/
https://www.opennetworking.org/cord/

[18] Technical report. https://depsched.s3.amazonaws.
com/report.pdf., 2020.

[19] Lada A Adamic and Bernardo A Huberman. Zipf’s law
and the internet. Glottometrics, 2002.

[20] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott
Shenker. Web caching and zipf-like distributions: Ev-
idence and implications. In Proc. IEEE INFOCOM,
1999.

[21] Brendan Burns, Brian Grant, David Oppenheimer, Eric
Brewer, and John Wilkes. Borg, omega, and kubernetes.
Communications of the ACM, 2016.

[22] Ionel Gog, Malte Schwarzkopf, Adam Gleave,
Robert Nicholas Watson, and Steven Hand. Firmament:
Fast, centralized cluster scheduling at scale. In Proc.
USENIX OSDI, 2016.

[23] Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella. Multi-
resource packing for cluster schedulers. In Proc. ACM
SIGCOMM, 2014.

[24] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Slacker:
Fast distribution with lazy docker containers. In Proc.
USENIX FAST, 2016.

[25] Benjamin Hindman et al. Mesos: A platform for fine-
grained resource sharing in the data center. In Proc.
USENIX NSDI, 2011.

[26] Guoqiang Hu, Wee Peng Tay, and Yonggang Wen. Cloud
robotics: architecture, challenges and applications. IEEE
network, 2012.

[27] Michael Isard et al. Quincy: fair scheduling for dis-
tributed computing clusters. In Proc. ACM SOSP, 2009.

[28] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Sto-
ica, and Benjamin Recht. Occupy the cloud: Distributed
computing for the 99. In Proc. ACM SoCC, 2017.

[29] Andrew Leung, Andrew Spyker, and Tim Bozarth. Titus:
introducing containers to the netflix cloud. Communica-
tions of the ACM, 2018.

[30] Anil Madhavapeddy et al. Jitsu: Just-in-time summon-
ing of unikernels. In Proc. USENIX NSDI, 2015.

[31] Filipe Manco et al. My vm is lighter (and safer) than
your container. In Proc. ACM SOSP, 2017.

[32] Kay Ousterhout et al. The case for tiny tasks in compute
clusters. In Proc. USENIX HotOS, 2013.

[33] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and
Ion Stoica. Sparrow: distributed, low latency scheduling.
In Proc. ACM SOSP, 2013.

[34] Joseph Redmon and Ali Farhadi. Yolov3: An incre-
mental improvement. arXiv preprint arXiv:1804.02767,
2018.

[35] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at google with borg. In Proc.
ACM EuroSys, 2015.

[36] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ris-
tenpart, and Michael Swift. Peeking behind the curtains
of serverless platforms. In Proc. USENIX ATC, 2018.

[37] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay
scheduling: A simple technique for achieving locality
and fairness in cluster scheduling. In Proc. ACM Eu-
roSys, 2010.

https://depsched.s3.amazonaws.com/report.pdf
https://depsched.s3.amazonaws.com/report.pdf

	Introduction
	Motivation
	Containers, Images, and Layers
	Container Orchestration using Kubernetes
	The case for dependency scheduling at the edge

	Design and Implementation
	Design Rationale
	Image-match
	Layer-match

	Evaluation
	Trace-driven Simulation
	Key Results
	System Evaluation

	Discussion and Related Work
	Discussion Topics

