
Trustless IoT: A Logic-Driven Architecture for IoT Hubs
Soumya Basu and Emin Gün Sirer

Department of Computer Science, Cornell University
{soumya, egs}@cs.cornell.edu

Abstract
The proliferation of smart devices has led to a de-facto IoT

architecture where devices are controlled by cloud operators.
This, in turn, leads to a central point of failure where a hacked
hub can lead to the failure of the entire system. In this paper,
we outline OrbanHub1, an alternate IoT architecture which
rules out Byzantine behavior by centralized IoT controllers.
OrbanHub works the same way as most IoT hubs, but instead
of issuing commands to devices to perform their operations,
OrbanHub issues proof-carrying statements that devices verify.
To ensure that the hub cannot reissue valid commands, Orban-
Hub leverages hashchains to prove freshness. We demonstrate
that, through the two techniques, OrbanHub cannot force de-
vices to execute commands that are not authorized by the user’s
control policies and provide a feasibility study of the architec-
ture.

1 Introduction
The Internet of Things (IoT) has been gaining prominence in re-
cent years. Smart devices, ranging from home thermostats [16]
and carbon monoxide detectors [15] to embedded devices
for cars and buildings [14], are becoming commonplace.
This trend has led to intense competition among providers
to become the centralized controller hub for these devices
[12, 13, 17]. This trend, however, is disconcerting because a
de-facto architecture for IoT that’s centrally controlled by a
few large, centralized companies is inherently insecure and
has the potential to place entire nations at risk.

The IoT hubs of today [1, 11] are opaque and typically con-
trolled by a centralized operator. The most popular IoT hubs in
production today, such as Google HomeAssistant, Alexa and
Facebook Portal, are architected in such a way that any vulnera-
bility can compromise a large number of IoT systems. The fun-
damental problem is that hubs are fully trusted by the devices
they control, which makes them lucrative targets for attackers.

1Orban is the man who conquered the last remaining remnants of the
Byzantine empire.

The consequences of such a centralized design are starting
to be felt by users of internet-connected devices. We have
seen IoT devices being remotely compromised by malicious
attackers to horrifying effect. For example, Nest cameras
have been compromised and used to threaten parents about
kidnapping their children [10]. Tesla cars have also been
remotely accessed by a team of security researchers [21].
These kinds of attacks can cause severe economic damage,
such as failed climate control spoiling crops.

This paper presents an alternate architecture, OrbanHub,
where hubs are untrusted by the devices they control. Similar
to other architectures, OrbanHub stores and manages user poli-
cies related to their smart devices. However, in other designs,
when it is time for some device to perform an action, the hub
unilaterally issues commands to the corresponding devices.
OrbanHub requires hubs to first produce a proof-carrying
statement (PCS) where the hub must prove that the command
that it wishes to issue is consistent with policies set by the
user. To verify that the PCS is well formed, each device is
augmented with a minimal proof checker to check the work
from the hub and ensure that the hub is applying the user’s
policies correctly. The proof checker is extremely lightweight
as checking a proof is vastly simpler than generating a proof,
which enables these proof checkers to be implemented with
the resources available on internet-enabled smart devices.
PCSes ensure that the hub can never compromise safety and
issue a directive that conflicts with user policies.

A second class of hub violations are liveness violations,
where the hub fails to take an action dictated by a user policy
and thus violates the user’s intent through inaction. For
instance, failing to turn on a cooling unit can lead to the loss
of perishable products and cause great economic damage. To
prevent this class of misbehavior, OrbanHub uses hashchain
commitments in the PCS so the hub can prove that commands
are issued in a timely manner. One of the benefits of the
OrbanHub architecture is that the user can compensate for a
liveness violation with multiple competing hubs where the
failure of one hub can be compensated with another.

OrbanHub points to a new design for IoT hubs, one

Figure 1: Model of an IoT system. A hub serves as the central
controller and the devices it controls. Devices consist of zero
or more actuators and zero or more sensors.

where users do not need to trust the hub to be correctly
implemented. As a result, OrbanHub simultaneously enables
a new generation of IoT systems that are more resilient and
grants centralized providers the flexibility to implement their
hubs however they want. This allows for innovation by the
centralized hub providers while protecting users against errant
hubs, and limiting the economic impact of hub compromises.

2 Problem Definition
We first describe the high level architecture of an IoT system
and then enumerate the properties the hub needs to satisfy in
OrbanHub.

Model An Internet of Things system has a few key pieces
in its model. It consists of a hub that controls the IoT platform
and orchestrates coordination between components. The
hub’s implementation details are not considered in the model,
including whether or not the hub is controlled by a cloud
service provider. Each component is called a device which
consists of a set of sensors and a set of actuators, where either
of the two sets can be empty. Devices communicate with the
hub in order to accomplish their tasks. Figure 1 shows a high
level overview of this model.

Alternate architectures that are more decentralized and peer
to peer have been suggested by others [3], but the de-facto
emerging architecture is centrally controlled. A fundamental
reason for this is that devices are issued by separate manu-
facturers and have limited input/output mechanisms. This
makes it difficult to maintain many connections, which is a
prerequisite for a peer to peer architecture.

Users specify high level policies that they wish the system
to enforce. An example of such a policy is "the temperature
in the living room should be between 65 and 70 degrees
Fahrenheight between 8 AM and 10 PM every day". The hub
enforces these policies by issuing commands for devices to
execute. In the previous example, if a thermostat read "71
degrees" and the clock said it was 1 PM in the afternoon, then
the air conditioning unit would be issued a command to turn
on by the hub. These commands are issued, ideally, to enforce
the policies that the user has specified.

Properties An IoT platform must provide two kinds of
guarantees: safety and liveness.

Safety. No command shall be executed by a device unless
it is authorized by a corresponding policy. For example, a
Byzantine hub, for whatever reason, must not be able to
allow a heater and air conditioner to work in opposition at the
same time. In particular, a malicious hub must not cause an
unauthorized command to be executed.

Liveness. If the policy calls for an action, then the system
must eventually execute that action. For instance, if a ware-
house must be kept within a certain temperature range, then
the heating and cooling units must kick on when temperature
at the warehouse is outside its specified range.

Device Requirements Devices cannot be expected to have
extensive resources in order to be part of the network. Luckily,
the emerging embedded hardware on systems on chips contain
significant resources. For instance, an ESP-8266 system on a
chip are 32-bits, have 128kB of memory, 4MB of storage, are
Wi-Fi enabled and only cost $6.50 [2]. These new embedded
hardware systems on a chip are powering everything that is
internet-connected including the next generation IoT devices.
This gives designers and architects much more flexibility in
what requirements can be placed on IoT devices for the next
generation IoT architectures.

3 Design
Our design revolves around two core ideas: proof carrying
statements for safety and a hashchain for liveness. We start by
describing proof carrying statements and how the execution
flow works in OrbanHub. Then, we discuss how OrbanHub
can use hashchains in order to prove that no messages have
been dropped.

3.1 Proof-Carrying Statements
The basic unit of communication that OrbanHub uses is a
proof-carrying statement (PCS). Such a statement carries a
logical deduction that given the current policy, the trust as-
sumptions made by the owner, and the current inputs from the
varying devices, the requested action is a logical consequence
of the policy. Devices then check that the PCS is well-formed,
which implies that the requested action is indeed one that
complies with user-defined policy, and for freshness, implying
that the requested action is operating on the latest state. We first

focus on what it means for a PCS to be well-formed and then
describe some strategies to enforce freshness in Section 3.2.

We adopt an authorization logic [24], based loosely on
NexusOS’s authorization logic, for expressing the proofs that
are sent by hubs and checked by devices. This logic system
supports the notion of reasoning within the worldview of a
given principal. In particular, a broken or compromised device
that issues conflicting statements, can only affect logical
deductions that depend on its statements. Put another way, a
device cannot corrupt the logical reasoning infrastructure and
cause consequences beyond that with which it has been trusted.

Each device has its own worldview and the veracity of
any statements are evaluated in its particular worldview. A
device has the ability to state its beliefs about the world, e.g.
a thermostat can say "The temperature at 2 PM is 67 degrees".
This allows a device to update its own worldview based on
its own sensory information.

Devices must additionally be able to update the worldview
of other devices as well in order to communicate sensory
information across the system. To enable this, devices can
sign their own beliefs about the world and then transmit them
to the hub. Once the hub transmits the signed statement to
another device, that device then gets to choose whether or not
to accept this statement based on its trust assumptions. For
example, if the air conditioning unit receives a statement from
the thermostat saying "The temperature at 2 PM is 67 degrees",
then it should update its worldview to include that statement.
However, if the same statement came from a toaster, then
the air conditioning unit should ignore it as it is not a trusted
source on temperature related statements.

Proof-carrying statements are issued based on sensor data. A
hub’s central task is to take the sensor data and figure out which
commands to send to which devices in accordance with user
policy. Current hubs satisfy this requirement, but OrbanHub
must do the above and provide a deduction proof as well. To
illustrate a deduction proof, we first establish some axioms and
then use them to show a deduction proof in Figure 2. In this
proof, the thermostat and clock gives us our basic facts (〈 b,
ρ 〉 and 〈 c, φ 〉). Since the user trusts the thermostat regarding
temperature and the clock regarding time, we see that we can
make the inferences 〈 c, φ 〉−→ 〈 c, σ 〉 and 〈 b, ρ 〉−→ 〈 b, σ 〉
to conclude that 〈 b∧c, σ 〉. And due to the policy, 〈 b∧c, σ

〉−→ 〈 a, σ 〉 so a must be true and the heater should turn on.

3.2 Inter-Device Communication
Proof-carrying statements (PCSes) largely focus on the
safety of the system and do not address liveness. Thus,
even with PCSes, a hub could selectively drop updates and
issue valid-looking commands based on stale state. Such
misbehavior may violate the user policy even though they
contain proofs. In this section, we describe how to augment
proof carrying statements in order to resolve the liveness
problem through the use of hashchains.

Hashchains were used in prior systems [25] for freshness
and we adapt this approach for OrbanHub. A hashchain is
a totally ordered log with a cryptographic digest to commit
to every element in the chain as well their particular order.
Once an element is inserted into a hashchain and the digest
is sent, the commitment can only be updated to include new
elements and no old element can be deleted. Most crucially,
the cryptographic digest of the hashchain can be updated
without keeping the full hashchain in storage.

We use the hashchain in order to detect when the hub is
dropping statements from devices. Each device keeps a local
commitment of the previous hashchain consisting of all of
their old statements. When a device has a new statement to
make, it appends the statement to the end of the hashchain
and transmits it to the hub. When a device is processing a
statement from another device due to the user policy, it checks
to make sure that the new statement is a valid extension of the
hashchain it previously had from the device. Devices can elect
to send hashchain updates periodically to ensure that liveness
failures by the hub will eventually be detected by the devices.

While hashchains provide a powerful abstraction for dealing
with stale updates and guarantee liveness, there are some

〈 b∧c, σ 〉
TempPolicy

〈 a, σ 〉

〈 c, φ 〉
ClockPolicy

〈 c, σ 〉

〈 b, ρ 〉
ThermPolicy

〈 b, σ 〉

〈 b, ρ 〉
ThermPolicy

〈 b, σ 〉
〈 c, φ 〉

ClockPolicy
〈 c, σ 〉

TempPolicy
〈 a, σ 〉

Figure 2: This is a sample deduction proof. Let the user policy
be "If the time is between 10 PM and midnight and tempera-
ture is < 70 degrees, turn on heat". We let a=Turn on heat,
b = It is 68 degrees, and c = It is 11 PM. Addition-
ally, we assign σ to be the worldview of the user, ρ to be the
worldview of the thermostat and φ to be the worldview of the
clock. 〈 a, σ 〉means that statement a is true in worldview σ.
TempPolicy encodes the user policy, where if b∧c are true in
σ, then the heat should turn on, i.e. a is true. ClockPolicy and
ThermPolicy both allow these devices to speak for the user,
but only for specific categories of statements: the clock for time-
related statements and the thermostat for temperature related
statements. The final proof just shows how we get from the raw
device statements and apply the user policy to prove that a is
true in the worldview of the user and the heat should turn on.

unique challenges and opportunities present in OrbanHub. In
our current design, each device is responsible for maintaining
its own hashchain, and the hub simply transmits hashchain
information to all other devices. However, it may be possible
to combine hashchains in more interesting ways. For example,
a user may want a single hashchain for the climate control sub-
system of their house and a different hashchain for the lighting
system. At that point, the question of where the hashchain is
stored and updated becomes a critical one. At another extreme,
a user may simply want a single hashchain for all updates to
the IoT system that is maintained by the hub. Figuring out the
precise tradeoffs here remains an open question.

4 Implementation
We now present how our two ideas are combined and discuss
various implementation issues. In particular, we discuss how
to initialize our system and some remaining issues in order to
have efficient runtime performance. Then, we describe some
crucial features that our system must be able to provide: ef-
ficient failover during complete hub failures and compile-time
model checking to manage complex user policies.

4.1 Initialization
Initializing a device merely requires setting its owner key so
the device knows the user’s identity. The owner key allows
the user full control over the device and its internal state,
including issuing commands and setting policies involving
the device. Additionally, the device must also start with a set
of base axioms in order to process proof-carrying statements.
These base axioms include things like what data sources the
device trusts as well as any policy axioms. In Figure 2, axioms
for trusted data sources would contain implications like 〈 c,
φ 〉−→ 〈 c, σ 〉, or ClockPolicy, which allows the user to trust
statements made by the clock about the time. Similarly, 〈 b∧c,
σ 〉−→ 〈 a, σ 〉, or TempPolicy, is a policy axiom that told the
heater to turn on when the temperature gets too cold at night.

These base axioms can get fairly long and complicated so
the user may not wish to directly specify very many of them.
In this case, the user can authorize the hub to download them
from a set list of base axioms that are provided by a third party.
This allows the user to obtain a baseline for their desired policy
which they can then modify to suit their particular needs.

4.2 Runtime Operation
OrbanHub consists of a single logical hub and the devices
that connect to it. Devices produce statements about their
beliefs along with a current hashchain commitment, and then
sign them. These signed statements are sent to the hub and
forwarded onto the devices that desire these updates. The hub
then takes these signed statements and makes inferences about
the implications of these statements. While making these
inferences, the hub may deduce that some device needs to be

Figure 3: Control flow of a thermostat and a clock turning
on the air conditioning unit. In (1), the thermostat sends a
temperature update to OrbanHub. Then, in (2), the clock sends
its update to OrbanHub. Finally, in (3), OrbanHub constructs
a proof along with the command to the air conditioning unit.

issued a command. When issuing such a command, the hub
produces a proof-carrying statement to convince the device to
run that command. Upon receiving a proof-carrying statement,
the device verifies the veracity of the proof and if the proof
is correct, the device executes the command.

Figure 3 shows the control flow for the air conditioning unit
to turn on in OrbanHub. First, the thermostat sends its tempera-
ture reading to the hub and the clock sends its time update to the
hub. Then, the hub, internally, computes any and all implica-
tions of these two readings based on the user policies that were
specified. If no implications were found, then the hub sends out
the readings to the air conditioning unit to prove liveness. In
this case, no further action is taken and OrbanHub waits for new
updates from devices. If the hub finds that some actions need
to be taken, the hub computes a proof that the action needs to
happen and sends it on to the relevant devices. In our example,
the hub computes a proof and instructs the air conditioning to
turn on. Finally, the air conditioning unit verifies that the hub’s
proof is correct and then executes the action by turning on.

A naive hub implementation would be too slow to process
updates from even moderate-sized IoT systems as it would
need to check all policies on all devices to see which one
may mandate an action. This is not feasible as updates arrive
constantly and the policy files may grow to become too large.
There are a few ways to implement this operation in order
to make it more tractable. First, a hub can outsource this task
to a cloud provider, which can leverage larger computational
resources. Additionally, if a cloud provider provides this as a
service, then they can leverage economies of scale to perform

this task more cheaply. A second way to do this would be for
the hub to implement it locally and preprocess the policy files.
Each policy can be stated as an if-then statement, where the
preconditions may be triggered by a new statement. Locally,
there might be an efficient way to sort preconditions in order
to match incoming statements very efficiently. However, the
details of such an implementation remain unanswered.

4.3 Fault Tolerance
Fault tolerance is critical to implement as a failed hub can
cause the entire IoT system to cause damage to the physical
world. OrbanHub implements fault tolerance through a policy
and having multiple hubs from potentially different providers.
A user-defined policy can explicitly specify backups and
define a policy to turn on the backup if the primary has not
sent out a heartbeat update in a while. The backup hub can
be from a different provider, which means that if a provider
is compromised or down, the IoT system can still stay alive.
Further, it allows the user to swap out hubs when they desire
and as new hubs provide more powerful functionality.

4.4 Compile-Time Model Checking
Policy files are large and can often contain policies whose
combinations may result in unintended and undesirable
consequences. For example, if the user policy requires adjacent
rooms to be maintained at vastly different temperatures, then
the air conditioning and heater may have to be turned on
simultaneously. This is undesirable as the air conditioning unit
and heater would be working against each other, but such an
event may become possible due to complex policy files. At
compile time, the user, in addition to the policy, can enunciate
some invariants that the compiler can ensure are held by the
user policy. In the above example, the compiler can make sure
that the heater and the closest air conditioning unit are never
turned on at the same time. Most importantly, this optimization
would not affect runtime performance, though model-checking
would have to occur every time user policies are updated.

5 Related Work
IoT Hub Architectures. Various proposals for IoT hub
architectures have been explored for a while now [17]. Newer
architectures have been proposed with new programming
abstractions [13] or for application specific purposes [22], but
they tend to avoid the question of what happens if the hub is
compromised. Architectures that can tolerate compromised
hubs are decentralized [26], but the de-facto standard for IoT
hubs is a more centralized design. In contrast, OrbanHub can
tolerate compromised hubs without fully decentralizing them
which fits the emerging standard while preserving most of the
benefits a peer to peer architecture would bring.

Untrusted storage. Hashchains have been used in un-
trusted storage system in order to prevent tampering of a log of

operations [7–9, 18, 20, 25]. The IoT problem domain is vastly
different, however, so OrbanHub requires a more subtle use
of hashchains. OrbanHub cannot require all devices to store
the full log of operations as there are many operations and not
enough memory on each device. Additionally, IoT devices
do not need a consistent ordering of all operations in order to
serve users appropriately. Taking this into account, OrbanHub
uses proof carrying statements in order to provide a weaker
consistency guarantee than untrusted storage systems. Orban-
Hub only uses hashchains to guarantee liveness, which is only
a subset of the problem solved by untrusted storage systems.

Authorization. The core technique for determining safety
in OrbanHub is authorization, where devices make statements
that, in turn, authorize another device to take some action
according to a user-defined policy. The general area of
authorization has been widely studied in the past, but most
works are not applicable to the IoT domain where devices need
to know whether they are authorized to take an action. Many
works focus on delegation of access [4–6, 19, 23] to an object
as well as some actions on that object. Wave [3] is a delegated
authorization mechanism for IoT devices, but it is decentral-
ized which goes against the dominating IoT architecture. In
OrbanHub, it is not enough to allow a hub or device to unilat-
erally start executing some function since user policies specify
the precise conditions under which they can be executed.

6 Conclusion

We have seen an enormous explosion of IoT devices that use
a centralized hub for communication and coordination. With
only a few centralized hub operators, a compromised hub
can have disastrous consequences for a large number of IoT
systems. A well resourced attacker can, by compromising a
single hub, cause widespread damage to a nation by taking
down the electric grid or ruining the climate control on the
food supply. Thus, it is critical for IoT systems to be designed
so that a compromised hub cannot cause widespread damage
to the system it controls.

This paper presented the first architecture for IoT where
the hubs cannot take actions unless explicitly authorized by
the users they serve. Even a Byzantine hub compromised
by an attacker or an insider cannot take action without being
programmed by the user. We implement this using two ideas:
proof-carrying statements and hashchains. Proof-carrying
statements make it impossible for the hub to convince a device
to execute some function that it was authorized to do so.
Hashchains make it impossible for the hub to hide pertinent
updates from devices so as to ensure that they actuate on fresh
data. With these two techniques, OrbanHub can ensure that
even if the hub is compromised, the range of misbehaviors is
strictly confined to an envelope specified by the user.

7 Acknowledgements

We would like to thank the anonymous reviewers for their
feedback on our paper. This work was supported by IC3, the
Initiative for Cryptocurrencies and Smart Contracts. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

8 Discussion Topics

In accordance with the workshop format, we now present
some topics for discussion.

Feedback We are looking to receive feedback on the design
choices we made around fault tolerance and how, specifically,
the hashchains should be implemented for liveness.

Discussion The premise that the hub should be untrusted
is the most interesting discussion point raised in this paper.
An untrusted hub raises critical issues about security and
privacy in the IoT hub model. Right now, the industry has
largely focused on improving functionality, but as IoT devices
become more ubiquitous, privacy and security becomes more
important. While this work does not solve all privacy and
security issues, as far as we know, this is the first architecture
that starts with the assumption that the hub is untrusted.

Controversial Points The most controversial point in this
paper is our untrusted hub design. While we believe that
having a trusted hub for IoT devices is a drawback, the industry
providers may choose not to prioritize making untrusted hubs.
The untrusted, but centralized, hub is the right problem to
solve and that our techniques would solve liveness violations
effectively.

Open Issues The major open issue not addressed in the
paper is confidentiality about the data. We assume that the
hub cannot be trusted for safety and liveness and consequently
cannot take unauthorized actions, but the hub can see and
process all updates and operations done by the devices. This
enables large scale data collection of potentially sensitive data.
Our current design is only to ensure that safety and liveness are
guaranteed even if the hub is misbehaving. We view our current
design as a first step in this larger vision, as there are many
different ways to implement confidentiality and the best option
is heavily dependent on the underlying hub implementation.

Weaknesses of the Idea The biggest weakness of our idea
is if the security measures we implement are not lightweight
enough. Whether this weakness can be mitigated or not
depends heavily on the use cases for IoT systems as well
as what our concrete design decisions will be. However, the
complexity of current system on a chip designs, such as the
ESP 8266, indicates that the complexity of a proof checker,
which pales in comparison to the typical WiFi stack, should
not be a large barrier for OrbanHub.

References

[1] Amazon. https://developer.amazon.com/en-US/
alexa.

[2] Amazon. https://www.amazon.com/ESP8266-\
microcontroller-NodeMCU-WiFi-CH340G/dp/
B071RNQPHV.

[3] Michael P. Andersen, Sam Kumar, Moustafa AbdelBaky,
Gabe Fierro, John Kolb, Hyung-Sin Kim, David E.
Culler, and Raluca Ada Popa. WAVE: A Decentralized
Authorization Framework with Transitive Delegation.
USENIX Security Symposium, pages 1375-1392, Santa
Clara, California, August 2019.

[4] Moritz Y Becker, Cédric Fournet, and Andrew D Gordon.
SecPAL: Design and semantics of a decentralized
authorization language. Journal of Computer Security,
18(4):619–665, 2010.

[5] Arnar Birgisson, Joe Gibbs Politz, Úlfar Erlingsson,
Ankur Taly, Michael Vrable, and Mark Lentczner. Mac-
aroons: Cookies with Contextual Caveats for Decentral-
ized Authorization in the Cloud. Network and Distributed
System Security, San Diego, California, February 2014.

[6] Matt Blaze, Joan Feigenbaum, and Angelos D Keromytis.
KeyNote: Trust management for public-key infrastruc-
tures. International Workshop on Security Protocols,
pages 59–63, 1998.

[7] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren,
Srinath T. V. Setty, Andrew J. Blumberg, and Michael
Walfish. Verifying computations with state. Symposium
on Operating Systems Principles, pages 341-357,
Farmington, Pennsylvania, November 2013.

[8] Christian Cachin, Idit Keidar, and Alexander Shraer.
Fail-aware untrusted storage. SIAM Journal on
Computing, 40(2):493–533, 2011.

[9] Ariel J. Feldman, William P. Zeller, Michael J. Freedman,
and Edward W. Felten. SPORC: Group Collaboration
using Untrusted Cloud Resources. Symposium on
Operating System Design and Implementation, pages
337-350, Vancouver, Canada, October 2010.

[10] Elisha Fieldstadt. https:
//www.nbcnews.com/
news/us-news/nest-camera-hacker-threatens-kidnap-baby-spooks-parents-n949251.

[11] Google. https://www.home-assistant.io/
integrations/google_assistant/.

[12] IFTTT. https://ifttt.com/.

https://developer.amazon.com/en-US/alexa.
https://developer.amazon.com/en-US/alexa.
https://www.amazon.com/ESP8266-\microcontroller-NodeMCU-WiFi-CH340G/dp/B071RNQPHV.
https://www.amazon.com/ESP8266-\microcontroller-NodeMCU-WiFi-CH340G/dp/B071RNQPHV.
https://www.amazon.com/ESP8266-\microcontroller-NodeMCU-WiFi-CH340G/dp/B071RNQPHV.
https://www.nbcnews.com/news/us-news/nest-camera-hacker-threatens-kidnap-baby-spooks-parents-n949251.
https://www.nbcnews.com/news/us-news/nest-camera-hacker-threatens-kidnap-baby-spooks-parents-n949251.
https://www.nbcnews.com/news/us-news/nest-camera-hacker-threatens-kidnap-baby-spooks-parents-n949251.
https://www.home-assistant.io/integrations/google_assistant/.
https://www.home-assistant.io/integrations/google_assistant/.
https://ifttt.com/.

[13] Kumseok Jung, Julien Gascon-Samson, and Karthik
Pattabiraman. OneOS: IoT Platform based on POSIX
and Actors. Hot Topics in Edge Computing, Renton, July
2019.

[14] Andrew Krioukov, Gabe Fierro, Nikita Kitaev, and David
Culler. Building Application Stack (BAS). Embedded
Sensing Systems for Energy-Efficiency in Buildings,
pages 72-79, Toronto, Canada, November 2012.

[15] Nest Labs. https://store.google.com/us/
product/nest_protect_2nd_gen.

[16] Nest Labs. https://nest.com/.

[17] Philip Levis, Samuel Madden, David Gay, Joseph
Polastre, Robert Szewczyk, Alec Woo, Eric A. Brewer,
and David E. Culler. The Emergence of Networking
Abstractions and Techniques in TinyOS. Symposium on
Networked System Design and Implementation, pages
1-14, San Francisco, California, March 2004.

[18] Jinyuan Li, Maxwell N. Krohn, David Mazières, and
Dennis E. Shasha. Secure Untrusted Data Repository
(SUNDR). Symposium on Operating System Design
and Implementation, pages 121-136, San Francisco,
California, December 2004.

[19] Ninghui Li, John C. Mitchell, and William H. Wins-
borough. Design of a Role-Based Trust-Management
Framework. IEEE Symposium on Security and Privacy,
pages 114-130, Berkeley, California, May 2002.

[20] Prince Mahajan, Srinath T. V. Setty, Sangmin Lee, Allen
Clement, Lorenzo Alvisi, Michael Dahlin, and Michael

Walfish. Depot: Cloud Storage with Minimal Trust. ACM
Transactions on Computer Systems, 29(4):12-1, 2011.

[21] Sen Nie, Ling Liu, and Yuefeng Du. Free-fall: Hacking
tesla from wireless to can bus. 2017 blackhat USA, 2017.

[22] Thomas Rausch, Waldemar Hummer, Vinod Muthusamy,
Alexander Rashed, and Schahram Dustdar. Towards a
Serverless Platform for Edge {AI}. Hot Topics in Edge
Computing, Renton, July 2019.

[23] Ronald L Rivest and Butler Lampson. SDSI-a simple
distributed security infrastructure. Annual International
Cryptology Conference, Santa Barbara, California,
August 1996.

[24] Emin Gün Sirer, Willem de Bruijn, Patrick Reynolds,
Alan Shieh, Kevin Walsh, Dan Williams, and Fred
B. Schneider. Logical attestation: an authorization
architecture for trustworthy computing. Symposium on
Operating Systems Principles, pages 249-264, Cascais,
Portugal, October 2011.

[25] Setty Srinath, Basu Soumya, Zhou Lidong, Stephenson
Lilith, and Venkatesan Ramarathnam. Enabling
secure and resource-efficient blockchain networks
with VOLT. Microsoft Research, Technical Report
MSR-TR-2017-38, 2017.

[26] Aleksandr Zavodovski, Nitinder Mohan, Walter Wong,
and Jussi Kangasharju. Open infrastructure for edge:
A distributed ledger outlook. Hot Topics in Edge

Computing, Renton, July 2019.

https://store.google.com/us/product/nest_protect_2nd_gen.
https://store.google.com/us/product/nest_protect_2nd_gen.
https://nest.com/.

	Introduction
	Problem Definition
	Design
	Proof-Carrying Statements
	Inter-Device Communication

	Implementation
	Initialization
	Runtime Operation
	Fault Tolerance
	Compile-Time Model Checking

	Related Work
	Conclusion
	Acknowledgements
	Discussion Topics

