
When is the Cache Warm? Manufacturing a Rule of Thumb

Lei Zhang∗ Juncheng Yang[Anna Blasiak†,‡ Mike McCall†,] Ymir Vigfusson∗
∗Dept. of Computer Science, Emory University

[Computer Science Department, Carnegie Mellon University
‡Indigo Ag †Akamai Inc]Facebook Inc

Abstract
The plethora of parameters and nuanced configuration options
that govern complex, large-scale caching systems restrict their
designers and operators. We analyze cache warmup times
that can arise in failure handling, load balancing, and cache
partitioning of large-scale distributed memory and storage
systems. Through simulation on traces from production CDN
and storage systems, we derive rules of thumb formulas for
designers and operators to use when reasoning about caches.

1 Introduction

Today’s caching systems, including storage systems, dis-
tributed databases, and content-delivery networks (CDN),
are large and abound with configuration options that can be
opaque not only to the engineers operating these systems, but
also to their designers [3, 4, 14, 25]. Two tendencies are to
either ignore the complexity and set parameters from igno-
rance and experience, or to treat the system as such a complex
black box that it requires another black box, such as machine
learning models, to interpret the potential impact of changes.
Between these extremes are simple and intuitive approxi-
mate models, or rules of thumb, that are invaluable in many
engineering fields to create intuitive and sufficiently correct
understanding of the system.

Here, we derive a rule of thumb expression for cache
warmup times, specifically how long caches in storage sys-
tems and CDNs need to be warmed up before their perfor-
mance is deemed to be stable. They are important in several
contexts. In distributed storage systems or CDNs, operators
may wish to discern how quickly after downtime or mainte-
nance the server becomes useful again for serving content.
They may wish to reason about how long to duplicate cache
traffic to a new or recently restarted node before it can serve
real clients at an acceptable hit rate. During recovery or re-
configuration of cache nodes, they may also wish to estimate
how long the back-end storage servers must sustain addi-
tional load. In this manner, warmup time estimation allows

CDN operators to compute the required redundancy and extra
capacity to maintain a level of service in failure scenarios.
In a shared memory or storage system, as another example,
dynamic cache partitioning is often used to allocate storage re-
sources to different processes or tenants. Here, when the parti-
tioning controller decides to allocate more space to a tenant, it
takes a period of time until the steady-state cache performance
catches up. The controller needs to be cognizant of this de-
lay to avoid instability whereby the partition keeps changing
based on incomplete feedback gathered before steady-state
has converged.

We first provide a concrete definition of cache warmup
time, that is, a cache server has warmed up when its cache hit
rate over time is and stays comparable (within ε error) to that
of an identical cache service that processed the same workload
but suffered no downtime. We then analyze dozens of traces
across workloads collected from diverse systems, ranging
from block accesses of virtual machines in storage systems
to cache accesses of large CDN providers. We derive the
following rule of thumb expression for operators to estimate
warmup time of an LRU-style cache:

warmup-time(s,ε) ∝ spse−peε,

where s represents the cache size, and ε > 0 controls how
closely hit rate should match that of a hypothetical cache
server which was continuously running. Our experiments
show that the ps and pe parameters concentrate at specific val-
ues for each type of workload. Our simulation results indicate
that the formula provides an accurate expression for operators
to estimate their cache server warmup time.

2 Motivation and Background

Distributed memory caches are the cornerstone of today’s
content distribution networks (CDNs) and cloud storage sys-
tems for improving web service performance. A common
architecture for a distributed cache is a collection of high-
memory servers which is interposed between client nodes

(sometimes actual end-users), and a storage service that in-
terfaces with slower media, such as a disk-bound key-value
database. When the server memory (or the memory dedicated
to the tenant on a shared cache server) is exhausted, the server
makes space by evicting older data according to a replacement
policy, which in practice is normally a variant of LRU—evict
the least-recently used key-value pair [1]. A central feature
of the distributed cache design is the complete independence
of servers from one another. Independence reduces operation
and implementation complexity, facilitates scalability, and
allows reasoning about each cache server in isolation.
Operational dynamics. Most research on caches assumes
they operate in steady-state. Yet understanding the cache
behavior under exceptional circumstances is often crucial.

Failure recovery. First, distributed caches can comprise a
vast number of servers [17], where individual server failures
are common. Accurate assessment of recovery time becomes
increasingly important for operators to decide when servers
are ready for serving clients without imposing significant load
on the storage layer or end-user perceived latency. We assume
that the cache memory on the server is empty (cold) after re-
covery because stale cache data can produce application-level
inconsistencies, even with sophisticated application-specific
cache invalidation pipelines [15].

Load balancing. Second, consistent hashing does not ac-
count for key popularity, so some cache servers can become
heavily loaded relative to others [12]. Manual or automatic
adjustment of hash ranges to balance load [10] implies that
some cache servers are responsible for key-value pairs they
have not encountered before, thus impacting cache hit rate.

Cache sharing. Third, large cache installations are often
shared between multiple applications or tenants to improve
efficiency and quality of service, either implicitly [1] or ex-
plicitly [5]. Explicit sharing is implemented via cache space
partitioning mechanisms [8] which means cache space alloca-
tion for tenants may change over time. Operators must esti-
mate how regularly cache space can be re-partitioned, which
in turn depends on how quickly the enlarged cache space for
tenants becomes useful and indicative of the tenant’s cache
hit rate performance under steady-state [6].
Cache dynamics. Operators facing these scenarios would
benefit from a rule of thumb to estimate when partially full
cache memory has reached a “useful” steady-state and when
applications can use the cache without burdening the storage
layer or imposing miss latency on clients. Yet, quantifying
cache warmup time is challenging due to several factors.

Cache hit rate performance is determined by the work-
load. Decades of effort has been spent on characterizing
cache workloads, but historically focused on programmatic
workloads (such as CPU caches) rather than in the con-
text of human-driven behavior (such as web or CDN work-
loads) [11, 20].

Cache workloads are not static. As mentioned earlier, con-
sidering a cache server to be warmed up when a particular

 0%

20%

40%

60%

80%

100% CDN1-a

 0%

20%

40%

60%

80%

100% CDN1-b

 0%

20%

40%

60%

80%

100% Storage1-a

 0%

20%

40%

60%

80%

100%

Virtual Time

Storage1-b

Interval Hit Ratio (IHR) Curve

IH
R

Figure 1: Examples of Interval Hit Ratio (IHR) Curves. Each inter-
val is 1/1000 of the original trace length.

fixed hit rate threshold is reached ignores temporal popular-
ity dynamics [26] and diurnal variability exhibited in CDN
traces [21], among others. Even defining hit rate relative to
the start of a trace embodies the same problems.

Cache performance depends crucially on the cache size.
Recent attention on efficiently computing so-called hit rate
curves – hit rate as a function of cache space – has illuminated
how the relationship tends to be nuanced and volatile in real-
world workloads [7, 19, 27]. Bonfire [33] uses temporal and
spatial behaviors for doing proactive cache warmup, but does
not take cache size into account when defining warmup time.

3 Understanding Cache Warmup

Interval hit ratio. Warmup time must capture the notion of
a cache “being useful”, which in turn is related to its hit rate.
But the classical notion of “hit rate”, defined as the number
of hits received over a number of accesses in a trace, relies on
requests since the beginning of measurement being predictive
of upcoming request—a degree of stability not present when
cache workloads change dynamically.

To address variability in workloads, we measure cache per-
formance by the interval hit ratio (IHR), defined as the ratio
of cache hits in a relatively short past time window divided by
the total number of requests in that window. This focus on the
recent past adapts the metric to measure current performance
with the ongoing dynamics. The IHR can be considered over
subtraces of the full cache trace. The added flexibility allows
us to also consider cache downtime, represented by a specific
interval during the workload. We use IHR(st,et,s) to denote
the hit ratio computed for a short interval between start time
st and end time et at cache size s. Below, each interval spans
1/1000 of the trace length.

Our analysis shows that even within the same workload
type, workloads usually behave differently in terms of smooth-
ness of the IHR curve. Figure 1 depicts the IHR curves of
four workloads, two from Storage1 workloads and the other

 0%

20%

40%

60%

80%

100%

0 0.25 0.5 0.75 1
Virtual Time

Storage1-c

st=0 st=0.25 st=0.5 st=0.75

Cache Warmup Process
In

te
rv

a
l
H

it
 R

a
ti

o

Figure 2: Cache warmup process, showing convergence of IHRs.
Cache size is set to 25% of total unique items for better showing the
convergence. Horizontal axis represents virtual time of the trace as
a sequence of accesses. The relative start time (st) of a curve, say
0.25 means that it begins at 25% of the entire trace.

two from CDN1 (see description in Section 4). We can see
that the IHRs of CDN1-a and Storage1-a workloads remain
high in most intervals, but CDN1-b and Storage1-b workloads
are generally more fluctuated, even considering the periodic
processes as a multi-day trace in the Storage1-b workload.

We note that in our analysis, we internally compute hit
rate curves, or hit rate as a function of cache size, which
can be efficiently generated through spatial sampling of the
cache trace [27,32]. Spatial sampling could be used for online
computation of the warmup time if needed.

Cache warmup time. We are now ready to define cache
“warmup” time using the interval hit ratio. At a high-level, we
declare a particular moment in the trace as when the server
comes up (with an empty cache) after downtime. We then
compare the IHR of that server (a downcache) to that of a
server that did not go down at all (an upcache) while process-
ing the exact same workload. When the IHRs of these two
caches are sufficiently close, they have converged (as shown
in Figure 2). This two-cache comparison overcomes the dy-
namical issues from above: a cache is consider warmed up if
it behaves practically like one that did not go down.

Formally, we measure the difference in performance of a
downcache that resumed operations at time st and an upcache
by measuring the difference |IHR(st, t,s)− IHR(0, t,s)| at
time t. To capture the IHR of the upcache and downcache
staying close, we define a tolerance parameter ε to express
the maximum percentage difference we accept after warmup.

Definition 1. For cache size s and tolerance level ε > 0, a
downcache that recovers at time st is considered warmed up
at time t if for any end time et > t, we have

|IHR(0,et,s)− IHR(st,et,s)|< ε.

Cache warmup time therefore depends on static factors,
including cache size and tolerance levels, and dynamic factors
dependent on the trace-based characteristics.

 0%

20%

40%

60%

80%

100%

0 0.25 0.5 0.75 1

 0%

20%

40%

60%

80%

100%

Virtual Time

Storage1-d

w, st=0.25
w, st=0.5

w, st=0.75

f, st=0
f, st=0.25
f, st=0.5

f, st=0.75

C
o
n
v
e
rg

e
n
ce

 w
it

h
O

ri
g
in

a
l
S
ta

te

C
a
ch

e
 F

ill
 U

p
 P

ro
ce

ss

Warmup vs. Fillup

Figure 3: Caches warm up faster than they fill up. Comparing
warm up and fill up with horizontal axis and four st as per Figure 2.
The f and w curves respectively represent fill up and warm up. The
left vertical axis shows the convergence between each downcache
and the upcache; the right vertical axis shows the rate of cache
capacity filled by the newly started cache.

Comparing cache warmup to fill up times. The definition
further highlights that downcache need not necessarily be
filled for the cache to be considered warmed up: the rate of
requests to items to which only the upcache was privy may
simply be sufficiently limited that the downcache already
contains the current working set and can be considered warm.
An example is shown in Figure 3. Here we define cache is
filled up when the cache capacity is fully occupied after a
restart, whereas warmed up refers to the definition with ε =
1%. Across all our traces, the cache warms up faster than it
fills up, with on average 39.1% and 36.8% for CDN1 and
CDN2 workloads, and 16.6% and 23.8% for Storage1 and
Storage2 workloads. These results underscore the opportunity
for reconsidering cache warmup times in practice.

4 Deriving the Rule of Thumb

We analyze cache warmup time on several workloads to derive
a useful estimation formula. Specifically, we look for a rule
of thumb that embodies the following attributes.

1 Simplicity. Contain only a small number of parameters
and as few as possible to capture the dependencies while
being intuitive and practical to compute.

2 Accuracy. Closely approximate warmup time.

3 Generality. Yield insightful warmup time estimates for
other, similar workloads.

4.1 Methodology
Traces. To derive and evaluate our rule of thumb formula,
we analyze a variety of CDN and storage workloads. CDN1
includes 31 HTTP request traces from Akamai, within a single
geographic region, comprised of 34 servers located in 23 log-
ical data centers. The workload is a mixture of traffic across

 0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1

R2

pe

Approximation Accuracy
C

u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti

o
n

 0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1

R2

ps

Approximation Accuracy
C

u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti

o
n

 0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1

R2

pe + ps

Approximation Accuracy
C

u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti

o
n

 0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1

R2

pr

CDN1 Storage1 Storage2

Approximation Accuracy
C

u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti

o
n

Figure 4: Approximation accuracy, evaluated with R2 cumulative
distribution for pe, ps, combined pe + ps, and pr. We consider 80%
as R2 threshold of a significance (grey dotted vertical line). Results
span all workloads except CDN2 which comprises only one trace.

a wide variety of different content types, including stream-
ing media, file downloads, and typical web content such as
HTML, images, JavaScript, and CSS. CDN2 are traces from
the Wikipedia CDN servers [23]. Storage1 comprises 106
week-long hypervisor-observed disk access traces in produc-
tion storage systems [27]. Storage2 consists of 32 file system
traces released by MSR Cambridge [16].
Implementation. We implement the warmup analysis tool
on top of Mimircache [31], an open source Python cache
profiler that helps to calculate IHRs of traces, making the
simulation process lightweight. We use an Intel Xeon CPU
E5-2670 v3 2.30GHz system for our experiments.

4.2 Step 1: Relaxing Dynamic Factors
Our problem space is still large and unwieldy for operators to
navigate in practice. Rather than capturing the full range of
the workload’s dynamic characteristics, captured by the start
time st parameter, we simplify the definition to compute the
maximum warmup time over all possible start times.

Definition 2. Given cache size s and tolerance degree ε, the
warmup time of a cache server, warmup-time(s,ε), is the
smallest t such that for every start time st and any et > t,

|IHR(0,et,s)− IHR(st,et,s)|< ε.

The above definition is the expression for which we will
derive a rule of thumb. Simplifying is critical to minimize the
number of parameters and create a practical formula.

4.3 Step 2: Approximating Static Factors
Armed with a compact definition, we can now analyze how
cache size and tolerance degree affect cache warmup time on
our traces. In search for a simple representation, we apply log-
linear regression to model the relationship between warmup
time, the cache size and the tolerance degree.

Table 1: Proportion of traces whose cache warmup times passed
80% goodness-of-fit-tests within value range for cache size parame-
ter ps, tolerance degree parameter pe, and resize parameter pr.

Traces with parameter value in rangeParam Value CDN1 CDN2 Storage1 Storage2
ps 0-2 58.1% 100% 49% 84.2%
pe 0.5-1.5 64.5% 100% 64.3% 78.9%
pr 1-1.5 84% 100% 78.3% 66.7%

We observed that the cache warmup time has a piece-wise
linear relationship to size until it reaches a plateau at larger
sizes. There, the cache takes longer to warm up, but only
until the working set of the trace is captured. The relationship
between cache warmup time and tolerance is approximately
log-linear; plotting warm-up time on a log-scale vs. tolerance
on a linear scale produced a straight line. Larger tolerance
degrees produce shorter warmup times as expected.

These observations suggest the following relationship,
where C, pe, and ps are free parameters:

warmup-time(s,ε) =C · e−peε · sps . (1)

4.4 Evaluation

We now consider our proposed rule of thumb and how it
measures up against our desired attributes.

1 Simplicity. The equation above says it all: there are only
three free variables and one term.

2 Accuracy. To determine accuracy of the model fit we
use a standard R2 likelihood test. The R2 distribution is
shown in Figure 4. We consider 80% as R2-threshold of
a significance fit, so passing the test means the formula
is accurate for use. As shown in the result, most of our
CDN traces passed the R2 likelihood test, together with
a branch of storage traces. The accuracy is higher when
considering both parameters together.

3 Generality. Because C is a normalization parameter
driven by time resolution, we investigate the ranges of
parameters pe and ps as shown in Table 1. Note that here
we only consider the traces that passed the test. These
results meet our generality goal for the proposed method.

Applying the rule. A recent set of papers focused on offline
optimal analysis of caches have shown that workload charac-
teristics and object features are helpful for quantifying cache
behaviors and further improving cache algorithms [2, 9, 32].
In line with those ideas, the warmup time of a workload can
be estimated in a two-step process. First, we calculate the
warmup times through an offline simulator on workloads,
or a sampled workloads for efficiency. This step could be
implemented through a simple API like:

offline-results = SIMULATE(workload,params)

Here the parameters s and ε are varied in a wide range. We
then apply regression over the offline results to optimize a
simple model to express warmup time over these parameters,
for instance using the following API:

warmup-time = ANALYZE(offline-results,params)

A key problem is how to make this process efficient. We have
shown that cache warmup time can be successfully estimated
with a lightweight method, and that simple regression can
provide sufficiently accurate results. With a rule of thumb
formula, operators and designers can estimate warmup time
with only a few parameters. We note that warmup time is
calculated for each workload and reflects the internal charac-
teristics and behavior of that workload, so a system operator
may only need to follow this process if the workload behavior
changes drastically. Also, we found that workloads that share
similar behaviors also yield similar parameters for their rule
of thumb formulas. For instance, two CDN workloads for the
same service are likely to share the rule of thumb parameters.

5 Extension: Enlarging a Cache

We have assumed thus far that a downcache starts off empty,
which is reasonable in cases where a failure occurred since
items may be stale, expired or awaiting invalidation. When a
cache is resized, however, such as during cache partitioning,
tenants retain existing content in the cache after it is enlarged.
How would growing the capacity of a cache that already
contains useful data affect the warmup time?

To define warmup time in the context of cache enlargement,
we want to compare a “downcache” (to be resized) with the
state of the “upcache” (fully resized). We augment the interval
hit ratio definition to IHR(st,et,s, rt,m), where rt expresses
the time when the cache is to be resized, and m≥ 1 expresses
a multiple of its current cache size s. Chronologically over a
request stream, a cache of size s begins at time st, its capacity
is grown at time rt to a new size m ·s and ends at time et. Now:

Definition 3. Given cache size s, size multiple m, and toler-
ance degree ε, assume a cache server is initially run at size s
and then resized at time rt to m · s. The resized cache server
is consider to be warmed up at time t if for every resize time
rt and all et > t,

|IHR(0,et,m · s)− IHR(0,et,s,rt,m)|< ε.

Here, the warmup time is driven primarily by the starting
size, multiple, and tolerance level. Focusing on the first two
parameters that relate directly to the cache size change, we
fix tolerance level to 1% in the following experiments.

A primary difference between the recovery and resizing
cases is that a cache that went down will be fully able to
serve content after collecting all s items, whereas (m−1) · s
items are missing in the resized cache. We therefore consider

whether there is a log-linear relationship between warm-up-
time in the resized context and (m−1) · s, and use the above
methodology to obtain (for C, pr as free parameters):

resized-warmup-time(s) =C · ((m−1) · s)pr

Our experiments considered m ∈ {2,3,4} and varied s. The
R2 distribution (Figure 4) shows that most traces passed the
R2 likelihood tests using spatial sampling rate of 1% per trace.
Our results also show that the pr exponent parameter still
concentrates differently for each workload catalog (Table 1).

6 Related Work

Warmup is an important component of the systems or frame-
works of several recent systems, yet many papers either define
a warmup period arbitrarily, discard the first portion of a work-
load [18,23,28], or apply a warmup mechanism without quan-
tifying or evaluating such methods [22, 24, 29, 30]. Zhang et
al. [33] provided a cache warmup mechanism based on cache
recency and is closest to our work. Their method does not
consider workload dynamics. To the best of our knowledge,
our work is the first to provide a practical method for estimat-
ing cache warmup time, and derive a simple expression for
engineers and scientists to use.

7 Conclusion

There are many scenarios where operators of large distributed
caches must implicitly or explicitly reason about warmup
time of a cache server. Here, we derive a novel rule of thumb
equation based on empirical results on a variety of real-world
traces that demonstrates a power-law relationship between
warmup time and cache size, coupled with an inverse expo-
nential discount based on the desired tolerance level.

We build an offline simulator to fit free parameters of the
formulas, which is shown to be concentrated within each
workload category, to provide a useful expression for back-
of-the-envelope calculations for the expected warmup time
of cache servers without unduly impacting end-user clients
or storage servers with miss penalties. We plan to release the
code as an open-source Python package to aid the operators
and designers of modern large-scale cache systems.

Acknowledgements

We are grateful to our shepherd, Deian Stefan, and the IMC
2018 and HotCloud 2020 reviewers for constructive feedback.
We also thank Irfan Ahmad, Carl Waldspurger, and Avani
Wildani for useful discussions. This work was supported by
NSF CAREER Award #1553579.

Discussion Topics

Our paper sets up a framework to try to understand the process
of warming up a cache. This is a question that, to the best of
our knowledge, has surprisingly small literature. Understand-
ing where and when the question arises in practice, and what
approaches are used would be of interest.

Original cache state. As discussed above, distributed
caches usually contain many storage servers or memory lay-
ers, and may encompass many concurrent tenants or classes
of workloads. Among these scenarios, a tenant’s cache size
can be increased or decreased. How do we reason about the
original state of the adjusted cache partition? If more cache
capacity is allocated during repartitioning, is it more practica-
ble to eagerly clear out the surplus entries (which may belong
to a different application or tenant) or to keep those entries
loaded? If a cache server is down for a while and restarted,
as discussed elsewhere [13], is there a practice of keeping
possibly stale information around? If some cache capacity
is decreased, what content is removed? Is the best choice to
remove the least-recently used items? Tracking detailed data
placement choices is difficult since distributed caches are hard
to trace, but might doing so reveal other factors that could
impact the warmup process?

Cache dynamics. A key idea of this paper is to define In-
terval Hit Ratio (IHR) to represent dynamic cache workload
properties and create opportunities for further analysis. How-
ever, as we discussed, distributed cache behaviors are typically
workload related. For example, for a specific workload, restart-
ing a cache server at different stages of the trace could result
in different warmup times. We observed these patterns in our
Storage workloads, where our accuracy is lower than than of
CDN workloads. Although we do simplify our warmup time
definition to account less for abrupt dynamics and show the
efficiency of the result, a richer analysis of cache dynamics
could produce a deeper understanding of the warmup process
and provide more precise expressions for system developers.
This extension would likely be of most interest to the main-
tainers of specific large-scale distributed cache systems. We
look forward to discussions from experienced operators of
this kind about how warmup time analysis, and more generally
rules of thumb, could be useful in practice.

References

[1] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a large-
scale key-value store. In ACM SIGMETRICS Perfor-
mance Evaluation Review, volume 40, pages 53–64.
ACM, 2012.

[2] Daniel S Berger. Towards lightweight and robust ma-
chine learning for cdn caching. In Proceedings of the

17th ACM Workshop on Hot Topics in Networks (Hot-
Nets 18), pages 134–140, 2018.

[3] Zhen Cao, Geoff Kuenning, and Erez Zadok. Carver:
Finding important parameters for storage system tun-
ing. In Proceedings of the 18th USENIX Conference on
File and Storage Technologies (FAST 20), pages 43–57,
2020.

[4] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez
Zadok. Towards better understanding of black-box auto-
tuning: A comparative analysis for storage systems. In
2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 893–907, 2018.

[5] Gregory Chockler, Guy Laden, and Ymir Vigfusson.
Data caching as a cloud service. In Proceedings of
the 4th International Workshop on Large Scale Dis-
tributed Systems and Middleware (LADIS 10), pages
18–21. ACM, 2010.

[6] Gregory Chockler, Guy Laden, and Ymir Vigfusson. De-
sign and implementation of caching services in the cloud.
IBM Journal of Research and Development, 55(6):9–1,
2011.

[7] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Cliffhanger: Scaling performance cliffs in
web memory caches. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
16), pages 379–392, Santa Clara, CA, 2016. USENIX
Association.

[8] Asaf Cidon, Daniel Rushton, Stephen M Rumble, and
Ryan Stutsman. Memshare: a dynamic multi-tenant
key-value cache. In Proceedings of the 2017 USENIX
Annual Technical Conference (USENIX ATC 17), 2017.

[9] Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a hybrid key-value cache
that controls flash write amplification. In Proceedings
of the 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), pages 65–78,
2019.

[10] Yu-Ju Hong and Mithuna Thottethodi. Understanding
and mitigating the impact of load imbalance in the mem-
ory caching tier. In Proceedings of the 4th annual Sym-
posium on Cloud Computing (SOCC 13), page 13. ACM,
2013.

[11] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt
Lloyd, Sanjeev Kumar, and Harry C Li. An analy-
sis of Facebook photo caching. In Proceedings of the
24th ACM Symposium on Operating Systems Principles
(SOSP 13), pages 167–181. ACM, 2013.

[12] Qi Huang, Helga Gudmundsdottir, Ymir Vigfusson,
Daniel A Freedman, Ken Birman, and Robbert van Re-
nesse. Characterizing load imbalance in real-world net-
worked caches. In Proceedings of the 13th ACM Work-
shop on Hot Topics in Networks (HotNets 14). ACM,
2014.

[13] Harshad Kasture and Daniel Sanchez. Ubik: efficient
cache sharing with strict QoS for latency-critical work-
loads. ACM SIGPLAN Notices, 49(4):729–742, 2014.

[14] Zhao Lucis Li, Chieh-Jan Mike Liang, Wenjia He, Lian-
jie Zhu, Wenjun Dai, Jin Jiang, and Guangzhong Sun.
Metis: Robustly tuning tail latencies of cloud systems. In
2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 981–992, 2018.

[15] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux,
Jim Hunt, Yee Jiun Song, Wendy Tobagus, Sanjeev Ku-
mar, and Wyatt Lloyd. Existential consistency: mea-
suring and understanding consistency at Facebook. In
Proceedings of the 25th Symposium on Operating Sys-
tems Principles (SOSP 15), pages 295–310. ACM, 2015.

[16] Dushyanth Narayanan, Austin Donnelly, and Antony
Rowstron. Write off-loading: Practical power manage-
ment for enterprise storage. ACM Transactions on Stor-
age (TOS), 4(3):10, 2008.

[17] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
Memcache at Facebook. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
13), volume 13, pages 385–398, 2013.

[18] Dai Qin, Angela Demke Brown, and Ashvin Goel. Reli-
able writeback for client-side flash caches. In Proceed-
ings of the 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 451–462, 2014.

[19] Trausti Saemundsson, Hjortur Bjornsson, Gregory
Chockler, and Ymir Vigfusson. Dynamic performance
profiling of cloud caches. In Proceedings of the ACM
Symposium on Cloud Computing (SOCC 14), pages 1–
14. ACM, 2014.

[20] M Zubair Shafiq, Amir R Khakpour, and Alex X Liu.
Characterizing caching workload of a large commercial
content delivery network. In Proceedings of the 35th
Annual IEEE International Conference on Computer
Communications (INFOCOMM 16), pages 1–9. IEEE,
2016.

[21] Muhammad Zubair Shafiq, Alex X Liu, and Amir R
Khakpour. Revisiting caching in content delivery net-
works. In ACM SIGMETRICS Performance Evaluation
Review, volume 42, pages 567–568. ACM, 2014.

[22] Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao.
Didacache: an integration of device and application for
flash-based key-value caching. ACM Transactions on
Storage (TOS), 14(3):1–32, 2018.

[23] Zhenyu Song, Daniel S Berger, Kai Li, and Wyatt Lloyd.
Learning relaxed belady for content distribution network
caching. In Proceedings of the 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 529–544, 2020.

[24] Jianzhe Tai, Deng Liu, Zhengyu Yang, Xiaoyun Zhu,
Jack Lo, and Ningfang Mi. Improving flash resource
utilization at minimal management cost in virtualized
flash-based storage systems. IEEE Transactions on
Cloud Computing, 5(3):537–549, 2015.

[25] Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing
Zheng, Ping Zhang, Honglin Qiao, Yue Shi, Wei Cao,
and Rui Zhang. ibtune: individualized buffer tuning for
large-scale cloud databases. Proceedings of the VLDB
Endowment, 12(10):1221–1234, 2019.

[26] Linpeng Tang, Qi Huang, Amit Puntambekar, Ymir Vig-
fusson, Wyatt Lloyd, and Kai Li. Popularity predic-
tion of Facebook videos for higher quality streaming.
In Proceedings of the 2017 USENIX Annual Technical
Conference (USENIX ATC 17), 2017.

[27] Carl A Waldspurger, Nohhyun Park, Alexander T Garth-
waite, and Irfan Ahmad. Efficient MRC Construction
with SHARDS. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST
15), pages 95–110, 2015.

[28] Kefei Wang and Feng Chen. Cascade mapping: Op-
timizing memory efficiency for flash-based key-value
caching. In Proceedings of the ACM Symposium on
Cloud Computing (SOCC 18), pages 464–476, 2018.

[29] Xingbo Wu, Fan Ni, Li Zhang, Yandong Wang, Yufei
Ren, Michel Hack, Zili Shao, and Song Jiang. Nvm-
cached: An nvm-based key-value cache. In Proceedings
of the 7th ACM SIGOPS Asia-Pacific Workshop on Sys-
tems (ApSys 16), pages 1–7, 2016.

[30] Ji Xue, Feng Yan, Alma Riska, and Evgenia Smirni.
Storage workload isolation via tier warming: How mod-
els can help. In Proeedings of the 11th International
Conference on Autonomic Computing (ICAC 14), pages
1–11, 2014.

[31] Juncheng Yang. Mimircache. http://mimircache.
info/, May 2018. (Accessed May 11, 2020).

[32] Lei Zhang, Reza Karimi, Irfan Ahmad, and Ymir Vig-
fusson. Optimal data placement for heterogeneous
cache, memory, and storage systems. Proceedings of

http://mimircache.info/
http://mimircache.info/

the ACM Measurement Analysis of Computer Systems
(POMACS/SIGMETRICS), 4(1):6:1–6:27, 2020.

[33] Yiying Zhang, Gokul Soundararajan, Mark W Storer,
Lakshmi N Bairavasundaram, Sethuraman Subbiah, An-

drea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
Warming up storage-level caches with Bonfire. In Pro-
ceedings of the 11th USENIX Conference on File and
Storage Technologies (FAST 13), pages 59–72, 2013.

	Introduction
	Motivation and Background
	Understanding Cache Warmup
	Deriving the Rule of Thumb
	Methodology
	Step 1: Relaxing Dynamic Factors
	Step 2: Approximating Static Factors
	Evaluation

	Extension: Enlarging a Cache
	Related Work
	Conclusion

