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Abstract
To achieve higher utilisation, cloud providers offer VMs

with GPUs as lower-cost transient cloud resources. Transient
VMs can be revoked at short notice and vary in their avail-
ability. This poses challenges to distributed machine learn-
ing (ML) jobs, which perform long-running stateful computa-
tion in which many workers maintain and synchronise model
replicas. With transient VMs, existing systems either require a
fixed number of reserved VMs or degrade performance when
recovering from revoked transient VMs.

We believe that future distributed ML systems must be de-
signed from the ground up for transient cloud resources. This
paper describes SPOTNIK, a system for training ML models
that features a more adaptive design to accommodate transient
VMs: (i) SPOTNIK uses an adaptive implementation of the all-
reduce collective communication operation. As workers on
transient VMs are revoked, SPOTNIK updates its membership
and uses the all-reduce ring to recover; and (ii) SPOTNIK sup-
ports the adaptation of the synchronisation strategy between
workers. This allows a training job to switch between differ-
ent strategies in response to the revocation of transient VMs.
Our experiments show that, after VM revocation, SPOTNIK
recovers training within 300 ms for ResNet/ImageNet.

1 Introduction
Cloud providers offer transient cloud resources, e.g., transient
virtual machines (VMs) with GPUs, which are periodically
auctioned off to the highest bidder and therefore can be re-
voked at short notice. Amazon AWS supports EC2 Spot In-
stances since 2009 [3], which are revoked with a two-minutes
notice; Microsoft announced Azure Spot VMs in 2019 [5],
which have a 30-second revocation warning. From an eco-
nomic point-of-view, the pricing of transient VMs follows the
law of free markets. A free market is supposed to find the
optimal price between the cloud providers and its customers
through supply and demand. Transient VMs therefore allow
providers to increase the utilisation of expensive hardware.

The distributed training of machine learning (ML) mod-
els, in particular through deep learning, is resource-hungry.

In a distributed ML job, workers in a cluster train indepen-
dent model replicas in parallel and synchronise at the end of
each training step. For synchronisation, workers either use
a central parameter server [26] or decentralised collective
communication, e.g., following an all-reduce pattern [43].

In many cloud settings, large-scale ML jobs thus have be-
come a dominant workload [11]. Large models and datasets
yield higher accuracies at the cost of using more cloud re-
sources (e.g., GPUs or TPUs) and having longer training times.
Therefore, there is an economic incentive for distributed train-
ing on transient VMs, which can yield cost reductions of up
to 90% compared to regular reserved VMs [1].

We argue that it should be possible for distributed ML jobs
to run exclusively on transient VMs. Systems, such as Py-
Torch [38] and TensorFlow [49], however, face challenges
when running on a transient cloud cluster: (i) workers may
be added and removed from the cluster when transient VMs
become available and are revoked, respectively. The system
must be designed to support such dynamic changes, and these
changes must not prolong the training process; and (ii) as a
cluster changes based on the available transient VMs, con-
figuration parameters of the ML job are affected. For ex-
ample, a synchronisation strategy that is effective with few
workers, such as synchronous stochastic gradient descent (S-
SGD) [23], may suffer from network bottlenecks with many
workers. Therefore, it is hard to deploy a distributed ML job
in current systems with one configuration that achieves the
best performance irrespective of the available transient VMs.

Existing work that attempts to address the above problems
through a hybrid approach, in which a system utilises both
transient and reserved VMs [17, 36]. Since reserved VMs
cannot be revoked, systems use them e.g., to run parame-
ter servers. This, however, increases the number of reserved
VMs proportionally with more transient VMs, reducing cost
benefits. Alternative approaches rely on expensive recovery
mechanisms when transient VMs are revoked. For example,
workers may periodically checkpoint their state to external
storage, pausing the training during checkpointing [25, 33].
When transient VMs are revoked, the state of the lost worker is



recovered from the checkpoint, which increases job runtime.
In contrast, we want to design a distributed ML system that

runs exclusively and efficiently on dynamic transient VMs.
We want the design to be future-proof: even when revocation
times are reduced from minutes to seconds, a distributed ML
job should achieve fast convergence. In general, the less time
is spent on handling revocations, the more time can be used by
training tasks. This becomes especially important in serverless
cloud environments [2, 4, 19] in which functions are short-
running and there is no concept of revocation notifications.

The paper introduces SPOTNIK, a distributed ML system
for transient VMs that explores two ideas:
(1) Adaptive collective communication. SPOTNIK uses a
novel adaptive collective communication layer that handles
dynamic changes to membership of the cluster. The layer
(i) detects worker failure due to revoked transient VMs, (ii) ne-
gotiates a new membership among all running workers; and
(iii) notifies the workers to continue training with the new
membership. To handle revocation, this layer embeds control
messages as part of an all-reduce operation so that workers
can mutually detect revocation and recover the system by
exchanging local states. To reduce performance overheads,
the control messages reuse the scalable all-reduce graph, and
their number sent by each worker is bounded.
(2) Adaptive worker synchronisation. To synchronise work-
ers efficiently irrespective of the cluster size, SPOTNIK adapts
its synchronisation strategy at runtime with low overhead.
It can shift synchronisation among synchronous stochastic
gradient descent (S-SGD) [23], synchronous model averag-
ing (S-MA) [22] and asynchronous decentralised parallel
SGD (AD-PSGD) [28]. For this, SPOTNIK relies on high-
level synchronisation operators that cover both collective op-
erations, such as computing global averaged gradients, and
point-to-point operations, such as pair-wise model averag-
ing. Changing strategies has low overhead because it does
not require the allocation of new system resources. SPOTNIK
makes a decision to change the synchronisation strategy by
monitoring workers.

2 ML training with transient cloud resources

2.1 Distributed ML training in cloud

Distributed ML systems [38, 49] use parallel workers to split
the training workload for large ML models. Each worker
samples a mini-batch of data from the training dataset and
trains its model replica using the mini-batch stochastic gra-
dient descent (SGD) algorithm [42]. As replicas are trained
with different mini-batches, their parameters (i.e., weights)
diverge after each training iteration. The system therefore
must use a synchronisation strategy to control the divergence
of model replicas. A number of such strategies exist, e.g., syn-
chronous SGD (S-SGD) [23] updates model replicas using
averaged gradients; model averaging [22] coordinates model
replicas using a central model. A synchronisation strategy can

be implemented in different ways, and there are two major
approaches used today: all-reduce organises the workers in
a ring topology, which is used to compute aggregated gradi-
ents [43] or a parameter server allows workers to send their
local gradients and responds with aggregated gradients [26].

When users deploy a ML job in the cloud, they can scale it
using a cluster of VMs, which typically includes accelerators
such as GPUs for tensor computation. In practice, users face
a high monetary costs when using dedicated VMs for training.
For example, training a BERT-like model with Megatron-
LM [45] on 512 NVIDIA V100 GPUs on Azure costs $0.56
per second.

2.2 Exploiting transient cloud resources

Transient cloud resources, such as Google Preemptible
VMs [15], Azure low-priority/spot VMs [6], AWS Spot In-
stances [1] and IBM Transient VMs [20] have emerged as
a means to reduce the cost of cloud computing. Transient
VMs offer weak service level agreements (SLAs) and can be
revoked when the provider needs the capacity back. For ex-
ample, AWS and Azure set a dynamic market price for VMs
and revoke VMs if the spot price goes above the price de-
clared by users; Google and Azure also provide preemptible
VMs, which are purchased at fixed discount prices but can be
reclaimed after a 30-second notification.

Cloud providers offer transient VMs because they have ben-
efits for both cloud providers and users. In data centres, cloud
providers must maintain redundant resources for planned
growth, which can be sold as transient VMs before they are
reserved by future customers. Furthermore, data centres show
a diurnal pattern [14]. In off-peak times, they may have sub-
stantial idle resources, which can be monetised as transient
resources to improve utilisation.

Cloud users can significantly reduce their costs of using
cloud GPUs by saving up to 90% compared to reserved in-
stances [1]. Training with transient VMs offers users substan-
tially lower GPU costs: with the same budget, a user can use
10 times more GPUs, reducing training times by 80% [27].
In the future, transient cloud resources are likely to grow in
popularity and thus become the dominant resource type for
distributed ML systems.

2.3 Challenges in using transient resources

In practice, performing distributed ML training with transient
cloud resources is challenging:
(1) Workers may lose resources at any time. The revoca-
tion of transient VMs adversely affects distributed training.
Workers maintain large intermediate training state, and revok-
ing a worker requires this state to be either discarded, com-
promising consistency and accuracy of the trained model [7],
or migrated to another worker, adding I/O load and affecting
training performance [26].

In addition, distributed ML systems require global com-
putation barriers across workers for the synchronisation of



model replicas. When a worker is revoked due to the loss
of a transient VM, it may cause the entire computation to
block [32, 35]. In such a case, the system must restarted man-
ually from a checkpoint, losing performance [25].
(2) Resource availability may change substantially. De-
pending on the magnitude of a resource bid and the ratio
of the transient resource price to the on-demand one [44],
the probability of revocation increases. VMs with GPUs in
AWS are among the ones with the highest revocation proba-
bility [47]. As a result, the cluster size may vary substantially
over time if a user’s spending remains fixed.

Such dynamic changes to the cluster size shift the perfor-
mance bottlenecks during the training process. This makes it
hard for users to choose a single ML job configuration that
achieves the best training performance. For example, the over-
head of maintaining a global barrier is smaller with tens of
workers compared to hundreds. In addition, larger clusters
have a higher probability of stragglers [10], and thus require
extra mechanisms for their mitigation.

2.4 Existing approaches and their limitations

We observe several reasons why existing distributed ML train-
ing systems are ill-suited for using transient cloud resources.
(1) Inefficient recovery with transient resources. When
faced with the revocation of transient VMs, existing systems
broadly follow two approaches: MPI-based distributed sys-
tems such as Horovod [43] treat revocations as failures. They
must collect periodic checkpoints and recover from the last
checkpoint when the state of a worker was lost, In practice,
this results in high performance overheads (see §4).

Systems that use parameter servers [17] place them typi-
cally on expensive reserved VMs. In a hybrid model, a user’s
budget is split across transient and reserved VMs for workers
and parameter servers, respectively. The split is workload-
specific, making it hard to find a good compromise [52].

Systems that scale elastically assume that scaling is possi-
ble at any time [41]. When training with transient resources,
however, the environment controls the available resources, and
new resources may be unavailable. Prior work [41] searches
for the optimal cluster configuration for a training job; we
want to do the opposite, i.e., optimise the training job for a
given cloud environment.
(2) No mechanisms to adapt to resource changes. Current
distributed ML systems require users to select parameters
of the training process, such as the synchronisation strategy,
at job deployment time. The choice of S-SGD, the de-facto
standard, is hard-coded as part of most training programs. This
makes it hard for systems to scale when more VMs become
available. Synchronisation strategies for large clusters, such as
AD-PSGD [28], are poor general choices because they exhibit
lower training performance than S-SGD on small clusters.
This puts users in a dilemma: they prefer to use S-SGD for
high training accuracy with few transient VMs, but then they
sacrifice scalability when more VMs become available.
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Figure 1: SPOTNIK design

3 SPOTNIK design
3.1 Architecture overview

The design of SPOTNIK is driven by several goals: (i) we
want a distributed ML job that uses transient VMs to remain
identical to one with reserved VMs. This makes it easy for
developers to adopt SPOTNIK in practice; (ii) we want to
handle the revocation of transient VMs during training with
low overhead. This means that SPOTNIK must support fast
revocation times; and (iii) we want to adapt the training cluster
when the number of transient resource changes. In particular,
SPOTNIK must avoid network performance bottlenecks.

At a high-level, SPOTNIK provides a distributed optimiser
abstraction inspired by the optimiser interface of popular dis-
tributed ML libraries such as Horovod [43], TensorFlow Dis-
tributed Strategy [50] and BytePS [37]. To use SPOTNIK,
users embed a Spotnik distributed optimiser (shown in Fig. 1)
into their TensorFlow programs. This makes the use of tran-
sient VMs transparent: the optimiser allocates/deallocates
resources, and replicates the training programs on workers.

Workers in SPOTNIK use an adaptive collective commu-
nication layer (see Fig. 1) to synchronise model replicas. A
unique feature of this layer is that it can transparently recover
from VM revocations, avoiding the need to restart the training
job as in existing collective communication libraries, such as
OpenMPI [35] and NCCL [32]. The layer detects revocations
and recovers training state, as part of the regular synchronisa-
tion communication between workers. This removes the need
for the user to handle revocations explicitly.

In addition, SPOTNIK supports adaptive synchronisation
strategies. It shifts to a different synchronisation strategy in
response to changes in transient VM availability. Instead of
hard-coding a synchronisation strategy in a training job, the
SPOTNIK distributed optimiser contains a set of candidate
synchronisation strategies (see Fig. 1). It then dynamically
selects one according to monitored cluster metrics, such as
the current number of transient VMs.

3.2 Adaptive collective communication

We explore a design for SPOTNIK that allows it to recover
efficiently from the revocation of transient VMs. SPOTNIK
must coordinate potentially hundreds of workers. Each worker
computes model gradients and launches parallel collective
communication operations such as ring all-reduce to aggre-
gate gradients. If a worker is revoked in the middle of this
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Figure 2: Example of repairing a broken all-reduce ring

operation, its downstream workers in the all-reduce topology
cannot proceed, potentially blocking the training job.

To address this issue, SPOTNIK exploits the following idea:
since workers have already constructed a collective commu-
nication topology (all-reduce) and have replicated training
states, they can detect revocation and coordinate among them-
selves to continue training by reusing existing state. Note
that the design of SPOTNIK does not rely on workers receiv-
ing revocation notifications, making this approach applicable
irrespective of the notification interval.

SPOTNIK realises this approach as follows: workers ex-
change control messages to handle revocation in a collective
communication operation. Here, each worker must ensure that
(i) control messages do not incur a performance overhead;
and (ii) worker states, which are asynchronously updated by
collective communication operations, can be reused safely.
SPOTNIK achieves this through an adaptive collective com-
munication layer, which has two parts:
(1) Revocation recovery algorithm. We design an algorithm
that can handle revocations within a ring topology for collec-
tive communication topology, such as all-reduce. It reuses the
existing data connections in the topology to pass control mes-
sages. The number of messages sent by each worker is bound
by O(K), where K is the number of concurrent revocations,
which allows it to scale to many transient VMs.

We explain the algorithm in Fig. 2. This algorithm has
three phases: reconcile, accept and restart. We assume that
workers exchange messages on a ring, a representative collec-
tive communication topology, to synchronise model replicas.
On the ring, each worker monitors the health of its neighbours.
Assuming worker W0 detects that W1 has been revoked, W0
removes W1 (step 1 ) from the membership, and propagates
the new membership through the ring (step 2 ). During this
process, W4 finds that W5 has been revoked (i.e., there are mul-
tiple revocations). It removes W5 from the membership and
continue the propagation process (step 3 ). The process ter-
minates at a worker (i.e., W6 in this example), which receives
a membership list that is equal to the local one, indicating
that all workers have reconciled the new membership. This
worker initiates another propagation to have workers accept
the new membership (accept phase). Finally, it propagates a
message to restart training on all workers (restart phase).
(2) Atomic worker state update. SPOTNIK must ensure
atomicity when modifying worker state. Distributed ML sys-
tems such as TensorFlow launch asynchronous all-reduce op-

Figure 3: Landscape of synchronisation strategies

erations that overlap training and synchronisation. SPOTNIK
must protect the integrity of worker state while it is modified
concurrently, otherwise workers would observe a dirty state
that has been partially updated.

Instead of directly updating parameters, SPOTNIK waits
for all averaged gradients to be ready and applies them in
an atomic fashion. The caching process has non-negligible
performance overheads: SPOTNIK coordinates all-reduce op-
erations in the background without blocking training. This
is achieved through an all-reduce scheduler embedded in the
dataflow graph that asynchronously receives notifications re-
garding events in the communication layer. If any all-reduce
operation fails due to a worker revocation, the scheduler aborts
the remaining all-reduce operations and discards cached re-
sults. The remaining workers then continue with the new
membership state and re-try the failed training iteration.

3.3 Adapting synchronisation strategies

Past work has proposed a wide spectrum of synchronisation
strategies for clusters of different sizes, which vary in terms
of network efficiency and model accuracy. Fig. 3 compares
several synchronisation strategies: on one end, synchronous
strategies such as S-SGD [23] and SMA [22] incorporate
model updates from all workers for improved model accu-
racy; while HogWild! [40], AD-PSGD [28] and EA-SGD [54]
remove expensive barriers to avoid network bottlenecks, as-
suming that training can reach a targeted accuracy sooner.

Since the number of transient VMs, and thus the net-
work load, can change substantially during training, SPOTNIK
adapts the choice of synchronisation strategy. This is chal-
lenging to achieve in existing synchronisation libraries such
as Horovod [43], which hide low-level communication primi-
tives and expose only an S-SGD implementation.

To address this, SPOTNIK provides high-level synchronisa-
tion primitives implemented on top of the SPOTNIK communi-
cation layer. Users can combine these primitives to implement
various synchronisation strategies. Since these strategies are
implemented as part of a unified communication layer, we
can thus efficiently switch between strategies during training.

SPOTNIK supports a range of synchronisation primitives,
which can be broadly classified into two groups: (i) col-
lective synchronisation operators (e.g., global gradient sum
and model averaging), and (ii) point-to-point synchronisa-
tion operators (e.g., pair-wise model averaging and model
caching). These operators are general enough to implement
many synchronisation strategies, including S-SGD, SMA and



1 2 3
Number of revocations

0

100

200

300

M
illi

se
co

nd
s

Recovery with 16 workers

1 2 3
Number of revocations

0

100

200

300
Recovery with 32 workers

Figure 4: Recovery latency with concurrent revocations

AD-PSGD. We are currently implementing more sophisti-
cated strategies, such as the recent Lookahead strategy [53].

4 Evaluation
Our evaluation asks: (i) what is the recovery latency after a
VM revocation? (ii) what is the overhead of supporting VM
revocations during all-reduce? (iii) what are the benefits of
adaptive synchronisation in a real-world training scenario?

We run experiments on Azure with 32 NC-6 VMs. Each
VM has 6 vCPUs, 56 GB of memory and a NVIDIA K80
GPU. Additional experiments use the Huawei ModelArts
Cloud [31] with two nodes that have 8 V100 GPUs each,
linked via 100 Gbps InfiniBand. We implement SPOTNIK on
top of KungFu, a distributed training library [24, 30], which
scales out TensorFlow programs and achieves performance
similar to Horovod. We use KungFu because of its ability to
add and remove workers during training. We run SPOTNIK
with KungFu 0.2.1 and TensorFlow 1.15.0. As models, we
use ResNet-50 [18], VGG-16 [46], and Inception-V3 [48], de-
signed for the ImageNet task, and BERT-base [12], designed
for the SQuAD question-and-answering task [39].
Recovery latency. First we explore the latency after revoca-
tion. There are two factors that affect latency: the total number
of workers, which determines the number of control messages,
and the number of concurrently revoked VMs, which impacts
the cost of the recovery operation. We therefore consider dif-
ferent numbers of workers (16 and 32) training a ResNet-50
model for ImageNet. During training, we revoke 1–3 workers
concurrently and measure the recovery latency.

Fig. 4 shows the recovery latency of workers, as we in-
crease the number of concurrent revocations. The whisker
plot indicates the 25th, median and 75th latency percentiles,
respectively; the markers show maxima. For both 16 and 32
workers, the maximum latency remains below 300 ms due
to SPOTNIK’s fast adaptation. This allows SPOTNIK to work
effectively even in highly dynamic transient clusters.
Performance overhead. Next we measure the performance
overhead when enabling revocation recovery during all-
reduce operations. We compare four representative deep learn-
ing models (VGG-16, ResNet-50, Inception-V3, BERT-base),
which cover a large spectrum of model sizes used in practice
and have different all-reduce workloads. BERT-base runs on
ModelArts; the others run on Azure.

Fig. 5 shows the difference between the atomic (SPOTNIK)
and non-atomic (pipelined all-reduce operations) updates of
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Figure 6: Effect of adaptive synchronisation

gradients. The atomic updates have only a small impact on
throughput. This reflects the benefits of using control mes-
sages for handling revocation inside all-reduce operations.
The difference becomes negligible for the BERT-base model
due to the higher bandwidth network on ModelArts.

Adaptive synchronisation. Now we investigate how SPOT-
NIK handles dynamic cluster changes. We activate the
(accuracy-friendly) S-SGD and (network-friendly) AD-PSGD
strategies in SPOTNIK’s optimiser. We begin with one worker
training ResNet-50, adding a new worker every 2 mins.

Fig. 6 shows how the per-worker throughput changes with
more workers. For S-SGD, it decreases because the communi-
cation overhead of an all-reduce grows substantially with the
number of workers; for AD-PSGD, it roughly stays constant
because communication is asynchronous and it occurs only
between pairs of workers. SPOTNIK switches from S-SGD to
AD-PSGD after 26 mins of training time when the through-
put falls below 40%. It therefore removes the communication
bottleneck and maintains high throughput. We speculate that
SPOTNIK is faster than AD-PSGD due to the performance
variability of cloud resources.

5 Conclusions

SPOTNIK enables efficient distributed machine learning on
transient cloud resources through adaptive collective commu-
nication and synchronisation. Its adaptive collective communi-
cation recovers from VM revocations by reusing the existing
communication as part of the all-reduce ring. It also updates
worker state atomically to ensure that gradient updates remain
consistent during recovery. To account for the dynamic nature
of transient clusters, SPOTNIK switches among different syn-
chronisation strategies during training depending on network
bottlenecks due to different cluster sizes.



6 Discussion

We consider SPOTNIK an initial design for a distributed ML
system specifically created to work effectively in cloud en-
vironments with transient VMs. Beyond adaptive collective
communication and synchronisation, there are, however, other
system aspects that are affected by transient resources. For
example, hyper-parameter tuning [29], which is important for
current ML models to achieve high accuracy and performance,
must be rethought when the cloud execution environment it-
self is highly dynamic. Here, the systems community would
benefit from feedback by ML practitioners on other aspects
of ML systems that are affected by transient resources.

In addition, there are interesting design questions for cloud
applications when finer-grained resources, beyond individ-
ual VMs, become transient. In the future, cloud providers
may decide to auction off memory and network bandwidth
as transient resources. In such fully disaggregated cloud en-
vironments [13], we could imagine that the mix of available
transient resources changes over time. Future distributed ML
systems must therefore be designed to work in such dynamic
disaggregated cloud environments, e.g., by being able to shift
quickly between different resource types and accounting for
the associated trade-offs. As part of the discussion, we would
ask for input by cloud providers whether the above is how
they believe future cloud environments will evolve.

With the highly-disaggregated dynamic clouds of the fu-
ture, the execution model may resemble today’s serverless
offerings, such as AWS Lambda [2] and Azure Cloud Func-
tions [4]. Early work exists that explores how distributed ML
jobs can be supported effectively in serverless clouds [8]. The
techniques to split the ML training computation into many
short-running, potentially stateless, functions is applicable to
transient resources. Especially when transient resources are
allocated and revoked at a fine granularity, with short revoca-
tions times on the order of seconds, the models of transient
cloud resources and serverless computing begin to unify.

All of this will require cloud pricing models that are intu-
itive and predictable for users. Users are often charged for
resources in fixed-sized allocation blocks. We believe that
future clouds will support more fine-grained resource account-
ing, e.g., at the level of CPU cycles [9]. With the rise of ML
accelerators such as GPUs [34], TPUs [51], Intel NNP [21]
and IPUs [16], simple pricing models that clearly capture
trade-offs between cost and performance of technologies will
be necessary for adoption by the ML community. We are
interested in hearing about innovative cloud pricing models
that will impact the design of next-generation ML systems.

Nore that SPOTNIK can only handle revocations of a part
of the cluster. Since no node is left when the whole cluster is
revoked, SPOTNIK cannot entirely avoid checkpointing. We
want to consider options for supporting this scenario better.
To decrease the probability of losing all transient VMs, users
may adopt bidding schemes such as heterogenous bids [55].
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