
JACKPOT: Online Experimentation of Cloud Microservices

Mert Toslali
Boston University

Srinivasan Parthasarathy
IBM Research

Fabio Oliveira
IBM Research

Ayse K. Coskun
Boston University

Abstract
Online experimentation is an agile software development

practice, which plays a central role in enabling rapid innova-
tion. It helps shorten code delivery cycles, which is critical for
companies to survive in a competitive software-driven market.
Recent advances in cloud computing, including the maturity of
container-based technologies and cloud infrastructure, as well
as the advent of service meshes, have created an opportunity
to broaden the scope of online experimentation and further
increase developers’ agility.

In this paper, we propose a novel formulation for online
experimentation of cloud applications which generalizes
traditional approaches applied to web and mobile applications
by incorporating the unique challenges posed by cloud envi-
ronments. To enable practitioners to apply our formulation,
we develop and present JACKPOT, a system for online cloud
experimentation in the presence of multiple interacting
microservices. We discuss an initial prototype of JACKPOT
along with a preliminary evaluation of this prototype based
on experiments on a public container cloud.

1 Introduction

The ever-increasing need for companies to deliver frequent
code changes to production for fixing problems, satisfying
new requirements, and ultimately surviving in a software-
driven market has fueled the adoption of agile software
development practices, including continuous deployment [39]
and online experimentation. Sophisticated algorithmic
approaches [1, 2, 17, 21, 31] as well as mature systems [14, 36]
are available today for devops engineers who wish to perform
online experiments with Web and mobile applications.

Online experimentation of cloud microservices pose
additional challenges. First, interactions between multiple
cloud microservices that comprise an application can affect
the overall user-perceived performance and correctness of
the application [18–20, 42]. Hence cloud experimentation
systems need to handle the practical complexities of routing

traffic through specific combinations of microservice-versions
(henceforth referred to as paths) during an experiment.
Second, cloud environments are inherently volatile due to
resource contention and infrastructure-related failures, both
of which can have a profound impact on user experience [23],
cause financial losses or damage reputation [4, 12, 13]. Cloud
experimentation systems need to explicitly account for this
by providing the engineer with an expressive framework for
specifying what is the acceptable region of values for the key
performance indicators (KPIs) of both business and system-
wide interest. Third, the experimentation system should
support different types of experiments based on the engineer’s
goals. The engineer might be interested in a) identifying the
optimal combination of microservice-versions (paths) as
quickly as possible, or in b) gradually shifting traffic to the
optimal combination over the course of the experiment, or in
c) passively observing the quality of different combinations
of microservice-versions. While the distinction between these
goals is well understood in the context of web and mobile
experimentation [8, 16, 26, 28, 33, 37, 38], this is not the case
for cloud experimentation. Current systems for cloud microser-
vices experimentation [5, 6, 15, 32, 40, 43] developed prior to
this work, fall short of meeting these challenges in a systematic
manner. In particular, none of them discuss adaptive traffic
shifting strategies in support of goals a) and b) when the cloud
application consists of multiple interacting microservices.

Recent advances in cloud computing, including the maturity
of container-based technologies (e.g., Docker [11]) and
cloud infrastructure (e.g., Kubernetes [29]), as well as the
advent of service meshes (e.g., Istio [24]), have created an
opportunity to broaden the scope of online experimentation
for cloud microservices. Service meshes enable 1) online
experimentation for all microservices (even non-user-facing
ones) and 2) a new breed of online experimentation that
holistically considers multiple microservices and combi-
nations of their versions (multivariate cloud experiments).
The specific mechanism that enables 1) and 2) above is
traffic management, through which the service mesh can
be dynamically configured to control which microservice



versions are exposed and how the traffic is split across all
versions. On the other hand, online experimentation on the
cloud hinges on the ability to assess and compare versions of
an individual microservice and version-combinations across
microservices. To that end, service meshes collect a wealth
of end-to-end KPIs (distributed tracing [35]) for individual
microservices, including latency and inter-service call errors.

In this paper, we present JACKPOT, a system for online exper-
iments for microservices which is specifically tailored to meet
the unique challenges posed by cloud environments. JACKPOT
comes with three key features. First, it is holistic in that it en-
ables experimentation of multiple microservices; the winning
variant it identifies in an experiment is a path comprising of mul-
tiple microservice-versions as opposed to an isolated version
of an individual microservice. Second, the engineer can specify
a reward KPI which is a target of maximization as well as con-
strained KPIs with limits imposed on them; the idea behind this
feature is that the experiment may identify a path which maxi-
mizes reward within the subset of feasible paths that satisfy the
constraints. These constraints are useful for capturing service
level agreements (SLAs) on performance and correctness of
the cloud application. Finally, JACKPOT provides a innovative
way to combine the multiple KPIs into a single utility function;
this function can be tuned so that constraints on KPIs can be
interpreted as ‘hard’ (i.e., infeasible paths have zero utility)
or ‘soft’ (i.e., violation of constraints leads to a penalty which
depends on the extent of violation). Taken together, JACKPOT
offers an unparalleled level of usability, expressivity, and flexi-
bility to the devops engineer for online cloud experimentation.

2 Key Design Requirements

We now discuss the key requirements that arise during online
experimentation of cloud microservices.
Multivariate experiments: A microservices application can
exhibit complex, unpredictable emergent behavior due to
interactions between its components [9,30,34]. As an example,
Kaldor et al. [27] describe a scenario on Facebook.com, where
the launch of a new feature in a frontend component led
to the loss of predictive accuracy in a backend component
that preemptively sends client-side resources, ultimately
resulting in a 300ms (or 13%) increase in page load times.
Other studies [18–20, 42] describe how interplay between
services in large-scale applications could lead to not only
sharp performance degradation, but also cascading failures
and wide-spread application outages. Consequently, online
cloud experiments need to identify the optimal combination
of microservice versions (paths) as opposed to exclusively
experimenting with individual services in isolation.
Multi-KPI experiments: The system-related metrics such as
end-to-end latency can have a significant impact on business
metrics. In particular, studies from Google [12], Akamai [4],
Amazon [13] reveal that how an increase in system-related
metric (latency) hurts customer conversion rates and revenue.

The devops engineer must be able to express her preferences us-
ing multiple KPIs. This poses new requirements for modeling,
algorithm design, and also the user interaction aspects. In the
feature launch example, the devops engineer might prefer paths
with tail latency within a given limit; among all such paths, she
might prefer one which maximizes click-through rate (ctr), the
proportion of users who click on a specific link in the front-end.
Experiment goals: Experiments can be classified into three
types based on the engineer’s goal: 1) best-path identification,
where the engineer wishes to identify the optimal path with
a pre-specified level of confidence, while minimizing the time
required to do so, 2) utility maximization, where the engineer
wishes to progressively shift traffic towards the optimal path
during the course of an experiment, and 3) pure estimation,
where the engineer wishes to discover statistically robust esti-
mates of the quality of each path, which can be used to quantify
regressions that might have been introduced by canary releases.
We envision a system which supports all these goals. Note
that experiments where the only variation is due to multiple
versions of a single isolated microservice is a special case of
our setup. Hence, they can also be handled by JACKPOT.

3 The JACKPOT System

We begin with a conceptual overview of JACKPOT which is
illustrated in Figure 1. At the start of an experiment, the devops
engineer declaratively describes an experiment using an
experiment spec object, which includes a list of microservices
and a list of path-level KPIs with associated constraints
(Section 3.1). This user interaction is designed to be simple,
interpretable and accessible to a wide spectrum of engineers
who may not be experts in machine learning. JACKPOT trans-
forms this experiment spec object to an internal representation,
specifically a non-linear multivariate sigmoid (Section 3.2).
This combines all the KPIs and constraints in the experiment
spec into a scalar function which is learnt and optimized
online during the experiment. Throughout the course of the
experiment, JACKPOT maintains belief distributions that
are associated with every (path, KPI) pair. The experiment
is divided into periodic time epochs. By using epochs, we
reduce the stress on the service mesh control plane due to
reconfigurations. Further, we are able to utilize telemetry data
from time series databases [22, 45] where data collection is
not instantaneous but batched over windows of time.

At the start of each epoch, JACKPOT uses its current belief
distributions to compute a probabilistic traffic policy using
its Top-k Sigmoid Thompson Sampling algorithm (Section
3.4) and communicates the policy to the service mesh. At the
end of each epoch, JACKPOT update its belief distributions
(Section 3.3) based on values observed during this epoch for
each (path-KPI) pair. In the rest of this section, we describe
the above elements of JACKPOT in greater detail.



Tracing 
substrate

Microservices 
application in 

a service mesh

Ingress

Probabilistic 
traffic policy

Belief 
distributions

JACKPOT

End-user 
requests

Devops
Engineer

Experiment 
specification

Multivariate 
sigmoid

Figure 1: JACKPOT Optimized Service Mesh

3.1 Experiment Spec

A sample JACKPOT experiment spec
in YAML format is illustrated on the
right. There are three services in this
experiment: all other services have a sin-
gle fixed version during this experiment.
The ‘KPIs’ section of the spec indicates
that the engineer prefers paths with mean
latency ≤500ms (constrained KPI) and
among all such paths, she prefers the one
which maximizes the mean ctr (reward
KPI). Jackpot does not enforce routing requests to a specific
service. Rather, it configures the Istio service mesh to split
traffic across service versions. The rules are not exercised if
no requests are sent to a particular service.

3.2 Multivariate Sigmoid Function
The experiment spec is internally represented in JACKPOT
as a multivariate sigmoid function. In order to describe
this, we need some basic mathematical notation which we
introduce below. Let X0[p] denote the reward KPI for path
p, let X1[p],...,Xk[p] denote the constrained KPIs for path p,
and let `1,...,`k denote their respective constraint limits. In the
sample from Section 3.1, X0[p] denotes the ctr of path p, k=1,
X1[p] denotes the latency of path p, and `1 =500. The utility
of routing a request over path p is defined as follows.

ha(p)=E[X0[p]]Πk
j=1S

(
a
(

1−
E[X j[p]]

` j

))
(1)

In (1), a denotes the amplification factor, a fixed positive
constant which is a hyperparameter in JACKPOT and S(y) is
the logistic function, which belongs to the family of (S-shaped)
sigmoid functions and defined as S(ax)= 1

1+e−ax .
The intuition behind this transformation is as follows.

Suppose a is sufficiently large (e.g., a≥10). Then S(ax) acts

like an indicator function: for positive and increasing values of
x, S(ax) rapidly approaches 1 and for negative and decreasing
values of x, S(ax) rapidly approaches 0. Hence, if the expected
KPIs of a path p are well within their respective limits, ha(p)
equals the expected reward of p; otherwise, if even one of
p’s expected KPIs significantly violates its limit, then ha(p)
approaches 0. Suppose a is relatively small (e.g., a = 1). In
this scenario, if p violates a constraint, then it suffers a penalty
which depends on the extent of the violation (i.e., ha(p) need
not be close to 0 if the violation is not significant). In other
words, the multivariate sigmoid function enables a high
degree of flexibility in JACKPOT for modeling the engineer’s
preferences through suitable choice of the amplification factor.
Observe that the above behavior of the multivariate sigmoid
function is highly desirable since it directly corresponds to the
preferences expressed by devops engineer in the experiment
spec. Figures 2a and 2b illustrate the shapes of the logistic
function (parameterized by a) and the multivariate sigmoid
function (with a = 1) respectively. In summary, this formu-
lation achieves the following twin objectives: 1) it combines
the multiple KPIs into a single utility function; 2) it enables
constraints on KPIs to be interpreted as ‘hard’ or ‘soft’.

(a) Logistic (b) Multivariate sigmoid

Figure 2: Sigmoid functions

3.3 Belief Updates
Equation (1) defines the utility of a path, but the expected KPIs
E[X j[p]] which are critical ingredients in (1) are unknown to
JACKPOT in the beginning of an experiment and need to be
estimated online in a statistically robust manner. JACKPOT
accomplishes this by maintaining Bayesian belief distributions
for E[X j[p]] for all path-KPI pairs p, j, and updating them at
the end of each epoch based on observations from all the past
epochs. When the KPI pertains to a binary variable such as
click-through, or conversion of an end-user, or occurrence
of an error, JACKPOT uses the Beta-Bernoulli belief update
model [10,41]. When the KPI pertains to a continuous variable
such as latency or revenue, JACKPOT uses Beta updates
when upper and lower bounds on the KPIs are known, and
Gaussian updates when these bounds are unknown [3]. Since
belief updates are standard machinery in Bayesian statistical
inference, we refer the reader to [3, 10, 41] for further details.

The belief distributions serve two distinct purposes in JACK-
POT. When the goal of the experiment is best-path identifi-



cation or utility maximization, the belief distributions allow
JACKPOT to sample expected KPI values which act as surro-
gates for the true values. In all experiments (including those
with pure estimation as the goal), the belief distributions al-
low engineers to derive statistically meaningful answers to
questions such as 1) what is the probability of a specific path p
being the optimal path, and 2) what is the probability of a path p
satisfying all the constraints, and 3) what is the utility of path p.

3.4 Top-k Sigmoid Thompson Sampling

Continuous experimentation presents a fundamental tradeoff
between exploration and exploitation which is best exemplified
by the problem of multi-armed bandit. As an illustration, con-
sider a gambler who enters a casino and faces a slot machine
with multiple arms. When an arm is pulled, it produces a
random payout drawn independently from some distribution.
The objective of the gambler is to maximize the sum of payouts
earned through a sequence of arm pulls. The basic dilemma
confronting the gambler is whether to aggressively exploit
an arm which is known to be the best one according to past
observations (which may be few in number, and hence not sta-
tistically robust), or to aggressively explore the set of available
arms (which implies exploring suboptimal arms and hence
potential loss in utility). Extrapolating this idealized scenario
to our case, the experimenter (gambler) wishes to maximize
utility (payout) among various paths (arms). Thompson
sampling is a heuristic for such explore/exploit problems,
which chooses the arm probabilistically [44]. Our algorithm in
this paper, the Top-k Sigmoid Thompson Sampling algorithm
(k-STS), generalizes the classic Thompson sampling algo-
rithm. We develop k-STS in order to account for multiple KPIs
and various experimentation goals as discussed in Section 2.

JACKPOT uses k-STS to compute traffic splits in an adaptive
manner at the beginning of each epoch based on observations
so far. The intuition behind this algorithm is as follows. k-STS
uses the belief distributions from Section 3.3 as surrogates for
the true values of expected KPIs. Specifically, given a path-KPI
pair (p, j), k-STS samples a value from its corresponding
belief distribution; it plugs in these sampled values into (1)
to estimate the utility of path p. It then picks the top-k paths
in terms of their estimated utility, and chooses one of them
uniformly at random and declares this as the candidate path.
k-STS repeats this selection procedure over multiple trials and
computes the relative frequency with which path p is declared
as the candidate, which is then used as the traffic split for this
epoch. For example, if path p emerged as the top candidate
during 35% of the trials, 0.35 will be the probability with
which JACKPOT routes requests over path p during this epoch.

When we set k=1, we obtain the 1-STS algorithm, which
generalizes the classic Thompson sampling algorithm [44].
When we set k=2, we get the 2-STS algorithm, which gener-
alizes the Top-2 Thompson sampling algorithm [37]. They are
particularly useful in experiments with utility maximization

and best-path identification as the respective goals.

4 Initial Prototype and Evaluation

We have implemented JACKPOT as a standalone Python
service in our initial prototype. The JACKPOT service interacts
with a cloud application consisting of Dockerized microser-
vices running on a Kubernetes cluster. This interaction
happens through the Istio service mesh [24] and the Jaeger
end-to-end tracing framework [25]. At the beginning of each
epoch of the experiment, JACKPOT transforms the traffic
policy into Istio’s virtual service configuration which is used
by Istio’s ingress and envoy proxies to enforce the policy.
This configuration is tailored such that Istio Ingress injects
a special HTTP request header called jackpot-header in each
incoming end-user request. The path in which this request
traverses is explicitly encoded as the value for this header.
This request header, which is forwarded by all application
services to upstream services, has a twin purpose: 1) it enables
requests to be routed in accordance to the traffic split, and 2)
it enables JACKPOT to collect path specific KPI observations
for each request in an epoch using the Jaeger tracing substrate.
JACKPOT currently uses the context provided by Jaeger to
capture KPIs at a per-request level for competing paths.

In our experiments, we used the bookinfo microservices
benchmark application [7] which is illustrated in Figure 3
along with a sample virtual service configuration. This appli-
cation is an open-source microservice-based cloud application
comprising four microservices, widely used by the Kubernetes
and Istio community (22.1k stars and 4k forks on GitHub).

v1

v1

v2

v1

v2 v1

v2v3

productpage

details

reviews ratings

Istio-ingress

Virtual	service

Request

Figure 3: A snapshot of the bookinfo application extended
with new microservice versions. The snapshot also illustrates
inter-service REST API calls in this application. Also shown
on top right is a sample virtual service configuration.

Evaluation: We experimentally evaluate the performance of
1-STS, 2-STS , and (UNIF), which splits traffic equally across
all paths. UNIF is a natural point of comparison since it is the
most commonly used strategy in practice.

We consider a setting with 10 paths as depicted in Table
1. We use Istio’s fault injection capabilities to create latency
variations in microservice versions [24]. We specify a



constraint in the experiment which requires mean latency
to be ≤ `1 = 300ms (i.e., E[X1[p]]≤ 300ms). This results in
five feasible paths in the application. Further, we introduce
synthetic rewards for each path (e.g., click-through rate).
The mean reward for each path is sampled from the uniform
distribution (U[0,1]) at the start of each experiment. We set the
amplification factor a = 10 for the experiments so that latency
constraint is interpreted as a hard constraint by JACKPOT
(Section 3.2). Each run of the experiment consists of 100
epochs, and we send end-user requests direct at the product-
page service at a mean rate of 50-per-epoch. We conducted
five runs and report on results averaged from these runs.

Table 1: Path characteristics. Services pp, det, rev and rat
correspond to productpage, details, reviews and ratings in
Figure 3. The optimal path is bolded and colored in red.

path E[X0[p]] E[X1[p]]ms ha(p)
ppv1,detv2,revv2,ratv1 0.21 60 0.20
ppv1,detv1,revv3,ratv1 0.88 470 0.003
ppv1,detv2,revv2,ratv2 0.22 260 0.17
ppv1,detv1,revv1 0.92 456 0.005
ppv1,detv1,revv3,ratv2 0.48 666 0
ppv1,detv1,revv2,ratv2 0.6 450 0.004
ppv1,detv2,revv1 0.77 253 0.64
ppv1,detv2,revv3,ratv2 0.52 460 0.002
ppv1,detv2,revv3,ratv1 0.28 260 0.22
ppv1,detv1,revv2,ratv1 0.20 260 0.16

Best-path identification: Let Pr[p = p∗] denote the
posterior probability of a fixed path p being the optimal path –
this probability (henceforth referred to as posterior of p) can be
estimated from the belief distributions as described in Section
3.4. Figure 4a displays the average number of epochs required
by the different algorithms in order for the posterior of p∗, the
true optimal path, to reach various levels of confidence. 1-STS
seems to reach the 0.9 confidence level as rapidly as 2-STS
and both of them outperform UNIF. However, 1-STS struggles
to reach higher levels of confidence since it shifts much of its
traffic towards the optimal version at the expense of refining its
estimates about the suboptimal versions. Conversely, 2-STS
does not exclusively focus on a single candidate path. Thus,
in order to reach the .99 confidence level, 2-STS requires
49% fewer epochs compared to UNIF, and 63% fewer epochs
compared to 1-STS in our experiment. Figure 4b provides
a more comprehensive view of the observation made in Figure
4a. In this figure, we report the posterior of p∗ at each epoch
of the experiment. 2-STS outperforms both 1-STS and UNIF
in terms of the number of epochs needed to reach reaching
a given level of confidence.

Utility maximization: We report the mean utility and the
ratio of requests routed through the optimal path by each of
our algorithms. The optimal path (ppv1, detv2, revv1) has a
mean utility of 0.64 in our set up (Table 1). From figure 5a,

(a) # of epochs per level (b) Posterior per epoch

Figure 4: Best path identification experiment

we observe that 1-STS maximizes the mean utility during
experimentation and converges towards the optimal value.
Figure 5b depicts the ratio of requests routed through the
optimal path. 1-STS gradually shifts traffic towards the
optimal and outperforms others in terms of reward.

(a) Mean Utility (b) Traffic split

Figure 5: Utility maximization

We conclude this section by recalling that both 1-STS and
2-STS are special cases of k-STS. The fact that our k-STS meta-
algorithm can be effectively applied to both best-path identifi-
cation and utility maximization merely be setting the hyperpa-
rameter k appropriately is one of the clean features of JACKPOT.

5 Research Challenges

The main motivation for cloud-native applications to follow
the microservice architectural style, rather than traditional
monoliths, is to increase overall agility by enabling teams to
develop and operate different (loosely coupled) microservices,
with their own release schedules. Our goal is to empower
these individual teams to deliver code even more frequently to
experiment aggressively. Thus, it is of paramount importance
to dynamically incorporate versions of microservices as they
arrive into ongoing experiments.

Cloud applications and environments can vary in terms of
their path-level traffic splitting and telemetry functionality.
We use distributed tracing in our prototype, which explicitly
records per-path KPIs; this functionality may not always
be enabled within an application. The ability to handle
heterogeneous cloud environments is a major challenge from
an algorithm design and systems perspective.



6 Discussion for HotCloud 2020

Underlying this preliminary work is an ambitious goal.
We hope to unleash the power of online experimentation
to an unprecedented level through the novel, statistically
robust algorithms suitable for developers of cloud-native
microservice-based applications. We are aware of the fact
that many assumptions and aspects of our work can be
perceived as controversial. We list some of them below and
enthusiastically invite reviewer feedback. They also present
excellent opportunities for lively discussions at HotCloud.
Online experimentation formulation. Perhaps, the most
controversial aspect of the multivariate cloud experimentation
approach in JACKPOT is the consolidation of multiple KPIs of
interest into a single multivariate sigmoid function. There are
alternative approaches, with advantages and disadvantages,
that could be considered. We expect this topic to be a source
of discussion.
Scalability. Multivariate experimentation is inherently limited
by the fact that, as the number of variants (competing paths)
increases, the sample complexity, or equivalently, the amount
of time required by the experiment to reach statistically robust
conclusions can also increase significantly. This would not
prevent JACKPOT from working; however, it would result in
longer experiments. If there is a need for shorter experiments,
one of the suggested practices for experimenters would be to
limit competing variants to a subset of paths. This can be done
by performing API based experimentation. An individual
API generally comprises fewer microservices as opposed
to the whole system, and thus gives rise to fewer possible
competing variants. Devops engineers can perform various
API experiments in parallel using JACKPOT.
Absence of datasets. Unlike supervised and machine learning
problems, open and publicly available datasets for researchers
interested in continuous experimentation systems do not
exist. A broader community discussion on this topic could
be the catalyst for joint efforts to make such data available
and to create proper benchmarks for service meshes and
microservice-based cloud applications.

References

[1] Deepak Agarwal. Computational advertising: The
linkedin way. In Proceedings of the 22nd ACM Inter-
national Conference on Information and Knowledge
Management, CIKM ’13, page 1585–1586, New York,
NY, USA, 2013. Association for Computing Machinery.

[2] Deepak Agarwal, Bo Long, Jonathan Traupman, Doris
Xin, and Liang Zhang. Laser: A scalable response pre-
diction platform for online advertising. In Proceedings
of the 7th ACM International Conference on Web Search
and Data Mining, WSDM ’14, page 173–182, New York,
NY, USA, 2014. Association for Computing Machinery.

[3] Shipra Agrawal and Navin Goyal. Near-optimal
regret bounds for thompson sampling. J. ACM, 64(5),
September 2017.

[4] Akamai. Akamai online retail performance report: Mil-
liseconds are critical. https://www.akamai.com/uk/
en/about/news/press/2017-press/akamai-
releases-spring-2017-state-of-online-
retail-performance-report.jsp, Apr 2017.

[5] Dan Ardelean, Amer Diwan, and Chandra Erdman.
Performance analysis of cloud applications. In 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 405–417, Renton, WA,
April 2018. USENIX Association.

[6] Argo Rollouts. https://argoproj.github.io/argo-
rollouts/, 2019.

[7] Bookinfo. https://istio.io/docs/examples/
bookinfo/, 2020.

[8] Hyeong Soo Chang. An asymptotically optimal strategy
for constrained multi-armed bandit problems. Mathe-
matical Methods of Operations Research, Jan 2020.

[9] Carlos E. Cuesta, Elena Navarro, and Uwe Zdun.
Synergies of system-of-systems and microservices
architectures. In Proceedings of the International
Colloquium on Software-Intensive Systems-of-Systems
at 10th European Conference on Software Architec-
ture, SiSoS@ECSA ’16, New York, NY, USA, 2016.
Association for Computing Machinery.

[10] Morris H. DeGroot and Mark J. Schervish. Probability
and Statistics. Addison-Wesley, 3 edition, 2002.

[11] Docker. https://www.docker.com/, 2020.

[12] Yoav Evinav. Marissa mayer at web 2.0.
http://glinden.blogspot.com/2006/11/marissa-
mayer-at-web-20.html/, Nov 2006.

https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://argoproj.github.io/argo-rollouts/
https://argoproj.github.io/argo-rollouts/
https://istio.io/docs/examples/bookinfo/
https://istio.io/docs/examples/bookinfo/
https://www.docker.com/
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html/
http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html/


[13] Yoav Evinav. Amazon found every 100ms of latency
cost them 1 https://www.gigaspaces.com/blog/
amazon-found-every-100ms-of-latency-cost-
them-1-in-sales/, Jan 2019.

[14] Firebase. https://firebase.google.com, 2020.

[15] Flagger. https://docs.flagger.app, 2019.

[16] Aditya Gopalan, Shie Mannor, and Yishay Mansour.
Thompson sampling for complex online problems. In
Eric P. Xing and Tony Jebara, editors, Proceedings of the
31st International Conference on Machine Learning, vol-
ume 32 of Proceedings of Machine Learning Research,
pages 100–108, Bejing, China, 22–24 Jun 2014. PMLR.

[17] Thore Graepel, Joaquin Quiñonero Candela, Thomas
Borchert, and Ralf Herbrich. Web-scale bayesian click-
through rate prediction for sponsored search advertising
in microsoft’s bing search engine. In Proceedings of
the 27th International Conference on International
Conference on Machine Learning, ICML’10, page
13–20, Madison, WI, USA, 2010. Omnipress.

[18] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesat-
apornwongsa, Tiratat Patana-anake, Thanh Do, Jeffry
Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F.
Lukman, Vincentius Martin, and et al. What bugs live
in the cloud? a study of 3000+ issues in cloud systems.
In Proceedings of the ACM Symposium on Cloud
Computing, SOCC ’14, page 1–14, New York, NY, USA,
2014. Association for Computing Machinery.

[19] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto,
Agung Laksono, Anang D. Satria, Jeffry Adityatama,
and Kurnia J. Eliazar. Why does the cloud stop
computing? lessons from hundreds of service outages. In
Proceedings of the Seventh ACM Symposium on Cloud
Computing, SoCC ’16, page 1–16, New York, NY, USA,
2016. Association for Computing Machinery.

[20] Zhenyu Guo, Sean McDirmid, Mao Yang, Li Zhuang,
Pu Zhang, Yingwei Luo, Tom Bergan, Madan Musuvathi,
Zheng Zhang, and Lidong Zhou. Failure recovery: When
the cure is worse than the disease. In Presented as part of
the 14th Workshop on Hot Topics in Operating Systems,
Santa Ana Pueblo, NM, 2013. USENIX.

[21] Daniel N. Hill, Houssam Nassif, Yi Liu, Anand Iyer, and
S.V.N. Vishwanathan. An efficient bandit algorithm for
realtime multivariate optimization. In Proceedings of
the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17, page
1813–1821, New York, NY, USA, 2017. Association for
Computing Machinery.

[22] InfluxDB. https://www.influxdata.com/products/
influxdb-overview/, 2013.

[23] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema.
On the performance variability of production cloud
services. In Proceedings of the 2011 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing, CCGRID ’11, pages 104–113, Washington,
DC, USA, 2011. IEEE Computer Society.

[24] Istio. https://istio.io/docs/concepts/what-is-
istio/, 2020.

[25] Jaeger. https://www.jaegertracing.io, 2020.

[26] Ramesh Johari, Pete Koomen, Leonid Pekelis, and David
Walsh. Peeking at a/b tests: Why it matters, and what
to do about it. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’17, page 1517–1525, New York,
NY, USA, 2017. Association for Computing Machinery.

[27] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison
Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win Ong,
Bill Schaller, Pingjia Shan, Brendan Viscomi, and
et al. Canopy: An end-to-end performance tracing and
analysis system. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, page 34–50,
New York, NY, USA, 2017. Association for Computing
Machinery.

[28] Ron Kohavi and Roger Longbotham. Online Controlled
Experiments and A/B Testing, pages 922–929. 01 2017.

[29] Kubernetes. https://kubernetes.io/, 2020.

[30] Tobias Kunze. Complex emergent behav-
iors in organic microservice architectures.
https://glasnostic.com/blog/complex-
emergent-behaviors-organic-microservice-
architectures, Jul 2019.

[31] Lihong Li, Wei Chu, John Langford, and Robert E.
Schapire. A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the
19th International Conference on World Wide Web,
WWW ’10, page 661–670, New York, NY, USA, 2010.
Association for Computing Machinery.

[32] Hongqiang Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao,
Sri Tallapragada, Nuno Lopes, Andrey Rybalchenko,
Guohan Lu, and Lihua Yuan. CrystalNet: Faithfully
emulating large production networks. In SOSP ’17 Pro-
ceedings of the 26th Symposium on Operating Systems
Principles, pages 599–613. ACM, October 2017.

[33] Benedict C. May, Nathan Korda, Anthony Lee, and
David S. Leslie. Optimistic bayesian sampling in
contextual-bandit problems. J. Mach. Learn. Res.,
13:2069–2106, June 2012.

https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
https://firebase.google.com
https://docs.flagger.app
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/products/influxdb-overview/
https://istio.io/docs/concepts/what-is-istio/
https://istio.io/docs/concepts/what-is-istio/
https://www.jaegertracing.io
https://kubernetes.io/
https://glasnostic.com/blog/complex-emergent-behaviors-organic-microservice-architectures
https://glasnostic.com/blog/complex-emergent-behaviors-organic-microservice-architectures
https://glasnostic.com/blog/complex-emergent-behaviors-organic-microservice-architectures


[34] Sam Newman. Building Microservices. O’Reilly Media,
Inc., 1st edition, 2015.

[35] Opentracing. https://opentracing.io/, 2020.

[36] Optimizely. https://www.optimizely.com, 2020.

[37] Daniel Russo. Simple bayesian algorithms for best arm
identification. In Vitaly Feldman, Alexander Rakhlin,
and Ohad Shamir, editors, 29th Annual Conference on
Learning Theory, volume 49 of Proceedings of Machine
Learning Research, pages 1417–1418, Columbia Univer-
sity, New York, New York, USA, 23–26 Jun 2016. PMLR.

[38] Daniel Russo and Benjamin Van Roy. An information-
theoretic analysis of thompson sampling. J. Mach.
Learn. Res., 17(1):2442–2471, January 2016.

[39] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie
Williams, Kent Beck, and Michael Stumm. Continuous
Deployment at Facebook and OANDA. In Proceedings
of the 38th International Conference on Software
Engineering Companion, ICSE ’16, pages 21–30, New
York, NY, USA, 2016. ACM.

[40] Gerald Schermann, Dominik Schöni, Philipp Leitner,
and Harald C. Gall. Bifrost: Supporting continuous
deployment with automated enactment of multi-phase
live testing strategies. In Proceedings of the 17th

International Middleware Conference, Middleware ’16,
pages 12:1–12:14, New York, NY, USA, 2016. ACM.

[41] Mark J. Schervish. Theory of Statistics. Springer-Verlag,
1995.

[42] Riza Oktavian Nugraha Suminto. Mitigating Cas-
cading Performance Failures and Outages in Cloud
Systems. PhD thesis, The University of Chicago, https:
//knowledge.uchicago.edu/record/2095?ln=en,
12 2019.

[43] Alexander Tarvo, Peter F. Sweeney, Nick Mitchell, V.T.
Rajan, Matthew Arnold, and Ioana Baldini. Canaryad-
visor: A statistical-based tool for canary testing (demo).
In Proceedings of the 2015 International Symposium
on Software Testing and Analysis, ISSTA 2015, page
418–422, New York, NY, USA, 2015. Association for
Computing Machinery.

[44] William R. Thompson. On the likelihood that one
unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3-4):285–294,
12 1933.

[45] What is Prometheus? https://prometheus.io/docs/
introduction/overview//, 2012.

https://opentracing.io/
https://www.optimizely.com
https://knowledge.uchicago.edu/record/2095?ln=en
https://knowledge.uchicago.edu/record/2095?ln=en
https://prometheus.io/docs/introduction/overview//
https://prometheus.io/docs/introduction/overview//

	Introduction
	Key Design Requirements
	The Jackpot System
	Experiment Spec
	Multivariate Sigmoid Function
	Belief Updates
	Top-k Sigmoid Thompson Sampling

	Initial Prototype and Evaluation
	Research Challenges
	Discussion for HotCloud 2020

