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Abstract
RDMA is increasingly popular for low-latency communica-
tion in datacenters, marking a major change in how we build
distributed systems. Unfortunately, as we pursue significant
system re-designs inspired by new technology, we have not
given equal thought to the consequences for system security.
This paper investigates security issues introduced to datacen-
ter systems by switching to RDMA and challenges in building
secure RDMA systems. These challenges include changes
in RPC reliability guarantees and unauditable data-accesses.
We show how RDMA’s design makes it challenging to build
secure storage systems by analyzing recent research systems;
then we outline several directions for solutions and future
research, with the goal of securing RDMA datacenter systems
while they are still in the research and prototype stages.

1 Introduction
Remote Direct Memory Access (RDMA) is a networking
technology that improves performance by making use of the
direct connection between a server’s network card (NIC) and
memory to bypass its CPU. RDMA originates from the High-
Performance Computing (HPC) community, where applica-
tions are homogenous, highly parallel, and require both high
bandwidth and low latency communication between nodes.
Recently, researchers in the systems and networking commu-
nity have proposed the use of RDMA in distributed storage
systems in datacenters, citing the falling costs of RDMA NICs
and rising network bandwidths relative to CPU speeds.

Since RDMA originated in the HPC community, its design
has a security model that differs from that of the datacenter.
For example, HPC clusters often assumed a high degree of
trust between users; when that was not possible (e.g., for
classified jobs) clusters used physical isolation [42]. In con-
trast, the datacenter is a shared environment, with untrusted
users. As a result, many of RDMA’s original security assump-
tions no longer hold, making it important to re-evaluate the
danger of any security concerns. Researchers have been doc-
umenting concerns about the RDMA protocol (e.g., its lack
of encryption) for more than two decades, and continue to
discover more. Once those protocol concerns are addressed,
however, we find CPU-bypassing RDMA still poses chal-
lenges for distributed system designers, and we analyze these
challenges here. RDMA networking is widely deployed in

datacenters [2, 19], and multiple research datacenter storage
systems using RDMA have recently appeared, offering sys-
tems designers an ideal opportunity to rethink RDMA secu-
rity.

In this paper, we explore the security challenges RDMA
introduces by analyzing eight recently proposed distributed
storage systems; we then discuss directions for solutions and
further research. We believe achieving more secure RDMA
communication without sacrificing performance is possible
and the time to investigate this is now, while RDMA-using
datacenter systems are still in research and prototype stages.

2 RDMA in the Datacenter
This section describes deployment of RDMA in datacenters
and reviews security concerns in RDMA’s design and im-
plementation. Section 3 analyzes current proposals that use
RDMA to build distributed systems in the datacenter.

RDMA Operations. RDMA offers two types of API calls:
SEND, RECV. These “two-sided” calls implement a tradi-
tional RPC abstraction of sending and receiving messages.
The recipient enqueues a RECV request to the card from
userspace to give the NIC a buffer in which to write the re-
ceived data. After this happens, the sender enqueues a SEND
request to pass a message descriptor and data buffer to the
NIC. These APIs achieve kernel-bypass but both the sender
and recipient CPUs are involved.
READ, WRITE, ATOMICS. These “one-sided” RDMA calls
bypass the recipient CPU entirely and operate directly on its
memory. The receiver must first register memory regions that
may be accessed remotely via the NIC, and communicate
access information with the sender. Once that is complete, the
sender enqueues a request to its NIC containing a message
descriptor with one-sided opcode and a data buffer. One-sided
RDMA offers a shared memory abstraction.

RDMA Setup. Before running RDMA operations, two
setup steps are required, neither of which are contained in
the RDMA protocol itself [22, 23]. First, a connection must
be established between each sender/receiver pair. A library
called RDMACM (CM for Connection Manager) offers APIs for
this set-up, using unencrypted TCP for communication [30].
Second, host memory regions must be registered with the
NIC. The registration process generates a static 32-bit token



Figure 1: Structure of a RoCEv2 (RDMA over Converged
Ethernet) packet, from the spec [22]. These packets operate
over IP and UDP, so RDMA must provide reliability and
ordering semantics. Nothing is encrypted or authenticated.

(called an R_Key) that senders must include in one-sided re-
quests to demonstrate authorization to access that memory
region. Since there is no mechanism to exchange these tokens
in the RDMA protocols, the RDMACM library is often used for
this exchange, again using unencrypted TCP [30].

RDMA replaces the standard datacenter networking pro-
tocols with an RDMA protocol such as iWarp or RoCEv2
(RDMA over Converged Ethernet) [22]. Figure 1 shows a
RoCEv2 packet. The RoCE metadata and contents sit inside
Ethernet, IP, and UDP frames.

Security Gaps in RDMA. Researchers have identified se-
curity gaps in the RDMA protocol design since its original
use in the HPC community and continue to uncover new vul-
nerabilities. We summarize their findings before exploring
the consequences of these flaws on modern RDMA systems.

• Lack of Confidentiality. RDMA NICs do not encrypt
RDMA packets by default. Both metadata (such as
memory addresses and R_Keys) and contents (applica-
tion data) are visible on the wire [29], and can be seen
by machines on the network, such as switches or mid-
dleboxes, as well as an adversary who has, via some
compromise, obtained root access on the client’s virtual
machine 1. This lack of confidentiality is not in line with
modern best practices where packet transport is usually
encrypted [18], either using a standard protocol such as
TLS or a custom protocol such as Google’s ALTS [16].
Neither of these protocols, which are based on a TCP
transport layer, would be easy to use with RoCEv2 [40].

• No Integrity Checks or Authentication. By relying on
the unencrypted and unauthenticated packet data, RDMA
NICs make it impossible to enforce meaningful access
controls [11]. For example, the R_Key in the READ and
WRITE APIs is supposed to be a capability, passed from
the server to the client during memory region registration,
and used to prove authorization on the datapath. In
practice, several weaknesses may allow adversaries to
read and spoof RDMA packets, including the lack of
transport encryption, the small (32-bit) size of the R_Key,
and unrobust implementations (e.g. NICs often assign
R_Keys sequentially [45]).

1We confirmed this using tcpdump and Wireshark [48] on Mellanox NICs.
This requires the Mellanox OFED RDMA drivers, available on their website,
and root access to set the ethtool flags that enable capture.

• Availability Challenges. Guo et al. point out several
availability dangers in their 2016 paper, including dead-
lock, livelock, and the colorfully named “PFC Pause
Frame Storms” [19]. RoCE (both v1 and v2) require
“lossless” link layers; to achieve this, RDMA NICs and
switches employ Priority Flow Control (PFC), a mecha-
nism that issues “Pause” commands to senders when a
recipient’s buffer becomes full [22]. In a tree-like net-
work structure with hosts at the leaves, if a switch gets a
“Pause” from a host and then receives more traffic bound
for that host, the switch’s buffer will fill, causing it to
propagate the “Pause” commands up the tree. This can
lead to Denial of Service for unrelated hosts. Guo et al.
saw these storms “multiple times” in production [19].
Recent RoCE and iWarp NICs do not require PFC to be
enabled, but they are not necessarily interoperable with
the existing installed base of RoCE NICs PFC [34].

• Side Channels. Tsai and Zhang in 2019 explored side-
channels in RDMA NICs, inspired by recent security
problems found with CPU speculative execution [43].
As the more glaring vulnerabilities in RDMA are fixed,
we expect future research to uncover more attacks.

We have optimism that hardware vendors are considering
these problems (e.g. [33]), but, as we discuss in the next sec-
tion, there is additional complexity to building secure systems
atop RDMA. Just as satisfying basic compliance concerns
does not prevent vulnerabilities and compromises [41], ad-
dressing RDMA security fundamentals will not eliminate the
security challenges of designing an RDMA-based distributed
storage system. Particularly, our analysis found that the use of
RDMA exacerbates the harm done by a compromised storage
client, which threatens the attempt to preserve security parity
with current datacenter systems.

3 Challenges for Distributed Storage Systems
In this section we present an analysis of recent research sys-
tems that use RDMA and identify further security challenges.

System and Threat Model. We expect RDMA-based dis-
tributed systems to be entirely deployed in the datacenter
setting. We assume datacenter servers are connected through
a standard datacenter Ethernet network running RoCEv2 [22],
as in [19]. Each server runs one or more RDMA processes
that serve as either clients or servers in the distributed RDMA
system. Figure 2 illustrates this system model. Although the
nodes can be virtualized (e.g., virtualizing the RDMA NIC
through SR-IOV), the RDMA systems we analyzed do not
mention using virtualization.

We assume the datacenter is safe from physical breaches
and that the datacenter provider is trusted; however, the cus-
tomer deploying the RDMA system might not be the provider
and may have different goals (unlike in RDMA’s original
HPC setting where provider and user goals aligned).



Figure 2: RDMA-based distributed systems operate entirely
inside the datacenter and are connected via Ethernet. Many
recent RDMA systems have been storage systems; thus the
client is likely also an application server for some internet-
based application and is especially vulnerable to compromise.
System designers must consider the security consequences of
such a compromise when designing RDMA systems.

We assume that any datacenter storage system, including
one using RDMA, has security goals including: (1) preventing
unauthorized exfiltration of data from the system, (2) main-
taining the integrity of data and (3) preserving availability in
the face of an attempted denial of service attack. Systems that
provide transactional storage and consistency guarantees will
be especially concerned about the integrity of metadata (e.g.
locks), as well as the storage contents.

We are primarily concerned with violations of the security
goals if a server or client is compromised. While distributed
systems typically do not worry about a compromised node, we
argue that RDMA systems must consider them more closely.
Traditional distributed systems have well-defined interfaces
between client and server, limiting the damage of a compro-
mised node. For example, while a malicious key-value store
client could perform arbitrary reads and writes, these opera-
tions would be logged server-side, and in production systems,
the server would perform permissions checking [37].

RDMA servers, however, expose a broader API to other
nodes, often giving clients the ability to read or write large
regions of memory. A malicious client could release locks,
abort transactions, or re-write portions of the log. In many
RDMA systems today, a single malicious client could leak
the entire database with no trace.

VLANs are Insufficient. Datacenters employ network vir-
tualization techniques (e.g., VLANs) to isolate each cus-
tomer’s traffic. However, an adversary who has compromised
a client machine (or the customer’s VM on the client ma-
chine) needs only to see that customer’s RDMA traffic to
glean the necessary details for accessing the storage server,
such as memory addresses and R_Keys. No other machine or
VM traffic is necessary. The adversary can then use the same
compromised client to modify, or undetectably exfiltrate data.

A Sample of Recent RDMA Research Storage Systems.
Recently, a number of research systems have used RDMA as
a high-performance communication mechanism. Table 1 lists
8 recent systems and the RDMA features that they use. In

general, systems leverage one-sided RDMA operations when
possible, as these operations are faster and reduce remote
CPU usage. This section analyzes the security challenges
introduced by RDMA for each system design (the right side
of Table 1).

Unauditable reads. After a compromise, investigators at-
tempt to determine what data has been accessed by the ad-
versary; adversaries may seek to hide what data they have
breached in attempts to avoid detection or attribution, or to
increase the time they have to exploit their stolen data. Sys-
tem designers have a well-established tool to help audit data
accesses: server-side logging. The server logs read requests
received, even those from compromised clients. Unfortu-
nately, since RDMA READ commands from client to server
do not involve the server’s CPU, suddenly these data accesses
cannot be logged. We call these unauditable reads and believe
they are untenable for systems that contain user data.

Concurrency and protocol problems. Unauditable writes
are less sneaky than reads since the written data leaves a
trace. However, they can still cause chaos. For example, if
transactions execute without the server CPU, it becomes the
responsibility of the client to correctly acquire and release
locks (for example, in DrTM [47]). An adversary may disrupt
consistency by releasing a lock, or by simply ignoring locks
and/or “abort” messages during a distributed transaction. Ad-
ditionally, traditionally immutable objects such as transaction
history could be overwritten after they are “committed”.

Breaking the RPC abstraction. RDMA’s wider interface
breaks some of the layered abstractions distributed systems
traditionally assume. For instance, a non-RDMA application
might use a library such as gRPC [17] for communication.
gRPC uses HTTP/2 as a transport layer with TLS encryption,
carried by TCP, IP, and Ethernet. Transport reliability would
be provided by TCP, authentication might be provided by TLS,
and actual modification of user data would be provided by
RPC handlers running on the remote end. Each of these layers
has a narrow interface that behaves according to a simple
contract. RDMA disrupts these abstractions, particularly with
the one-sided READ and WRITE operations that bypass the
remote CPU entirely.

Some RDMA systems, such as FaRM [12], attempt to
replicate the RPC task-queuing abstraction by using RDMA
WRITE operations to a shared buffer and keeping shared
state about the head and tail of the buffer. Unfortunately, this
requires all clients to correctly and non-maliciously write to
the appropriate point in the buffer; otherwise a client could
overwrite an RPC or even modify another client’s RPC before
it is read by the server.

Whole-Network denial of service. Denial of service by
spoofed packets was a concern in the Lee et al. 2005 paper on
InfiniBand security [29] and denial of service situations were
observed in practice in an early RoCEv2 deployment [19].



Table 1: The security consequences of using RDMA for distributed systems depend on how the system is designed to use the RDMA APIs.
The left half of the table summarizes recent systems and their use of RDMA operations (to show directionality of SEND and RECV, we indicate
APIs used by the client). The right half summarizes the security implications of each system’s design, which we discuss in Section 3. An empty
cell means a certain danger is not applicable to that system. The security issues we explore make the compromise of a node in an RDMA
system more damaging than typical distributed system compromises due to use of RDMA rather than a narrower API.

System
Client to server

RDMA verbs operations
System Design Dangers (Section 3)

Unaudit.
Reads

Concurr.
Problems

Broken
RPC

Large
DoS

Param.
Manip.SEND RECV READ WRITE

Pilaf (2013) [35] x x x
FaRM (2014) [12] x x x x
HERD (2014) [24] x x x x
DrTM (2016) [47] x x x x
FaSST (2016) [25] x x x
Octopus (2017) [31] x x x x x x
Hyperloop (2018) [28] x x x x x x
DrTM+H (2018) [46] x x x x x x x

The combination of these two factors is, however, unstud-
ied and potentially quite dangerous: since RoCEv2 (unlike
InfiniBand) requires a lossless network and Priority Flow Con-
trol [22], spoofed packets could contribute to problems such
as the “PFC Pause Frame Storms” [19], potentially slowing
down the entire network. For example, if an adversary spoofs
traffic that causes servers to produce a SEND to a specific
client that is not expecting to RECV anything (as for data
reads in HERD and FaSST [24, 25]), the adversary may be
able to overwhelm buffers at the targeted client or one of the
switches en-route. Depending on the application design, an
unexpected SEND might instead push the connection into a
corrupted state where no future RDMA commands will suc-
ceed, a situation difficult to recover from without recreating
the connection and another form of Denial of Service.

Execution Parameter Manipulation. Hyperloop [28] is a
unique system which registers portions of the server NIC’s
work queue (the buffers containing the commands and ar-
guments for the NIC to execute in the future) as remotely
writable memory so that arbitrary data can be replicated from
the client to a third party without any involvement of the inter-
mediate server CPU. This strategy leads to vulnerabilities not
seen in other systems, specifically parameter manipulation
in the remote execution. A malicious client could perform
an unauditable write to the work queue, causing the server
NIC to write data to a third-party that the client itself may not
have access to! This is another example of how the use of the
RDMA APIs rather than more narrowly scoped APIs from
traditional distributed systems can lead to more downstream
harms from a single compromised client.

We define this vulnerability as parameter manipulation be-
cause the authors of Hyperloop noted (in response to a query
about APIs they use) that the APIs allowed them to separate
the arguments that needed to be remotely writable from the
specification of which RDMA operation to use [21]. With-

out this separation, the vulnerability would be even more
serious since the client would be able to specify code to re-
motely execute on the server NIC. Given the existing security
problems with RDMA and increased difficulty in reasoning
about system security, we consider remote execution to be
exceptionally dangerous in an RDMA environment.

Lessons from System Analysis. There is more complexity
to building secure RDMA systems than just fixing transport
encryption and the other missing components from Section 2.
We consider unauditable reads to be particularly dangerous for
cloud systems due to recent regulations (such as GDPR [14]
and CCPA [5]) that expect details of which data was adver-
sarially accessed in a data breach. Now is the time to secure
RDMA in the datacenter: we must address both fundamentals
and the system design challenges while these systems are still
in research and prototype stages.

4 Solutions and Future Directions
Two hopeful trends for addressing RDMA’s security prob-
lems are the prevalence of centralized configuration services
in datacenter environments and the continued increase in pro-
cessing capabilities of RDMA network hardware. Below, we
outline how these trends might combine to address the chal-
lenges of unencrypted packets and unauditable reads while
minimally impacting RDMA performance.

Encrypting and signing RDMA packets. With the dan-
gers of unencrypted RDMA traffic, particularly RDMA
header information such as memory addresses and R_Keys,
repeated for more than two decades [11, 29, 40, 43], it is im-
portant to consider what components of the solution are dif-
ficult. One common challenge in setting up encryption over
the network is key distribution: each pair of communicat-
ing servers must derive shared secrets that can be used to
encrypt and integrity-check (MAC or sign) packets. The



position of RDMA systems inside a datacenter offers an op-
portunity: in datacenters, centralized configuration services
such as Chubby [4] or Zookeeper [20] abound. Using one of
these services to distribute shared keys between clients and
servers seems tractable, since these services are already used
to distribute per-machine information such as IP addresses. In
their 2005 work identifying problems with InfiniBand secu-
rity, Lee et al. suggested that hosts could use provided keys to
“sign” their messages, preventing undetectable modifications
and preserving message integrity [29]. One aspect of this
challenge that needs further investigation is how to transfer
keys from a host CPU to its NIC.

With modern, widely-used, cryptographic protocols, we
can preserve both confidentiality and integrity of packets. One
possibility for RoCEv2 would be the DTLS (Datagram TLS)
scheme that creates the functionality of TLS for UDP pack-
ets [39]. NICs are starting to offer accelerated encryption
(though not for RDMA): there are NICs that offer DTLS
(for standard UDP traffic) via an onboard ASIC [8, 9, 33] and
programmable “SmartNICs” advertise high-performance en-
cryption with their own hardware acceleration [6,32]. A 2016
press release from a NIC vendor announced “Low Latency
100Gbps line-rate” for DTLS [7]. Moving beyond NICs,
on-the-wire solutions such as Catapult could also provide en-
cryption at line rate [15,38]. A standardized secure version of
RoCE (using DTLS) or iWarp (using TLS) would ensure that
implementers on all platforms achieve the same guarantees.
The ingredients for high-performance packet encryption and
integrity-checking are in place: researchers, cloud providers
and hardware vendors need to standardize the needed features
and ensure that they are available.

Regaining auditability. Preventing unauditable RDMA
READ operations during a data breach requires logging that
the adversary cannot circumvent. Although SmartNICs might
offer the programmability necessary to log one-sided opera-
tions at the receiver side, there would be a significant perfor-
mance cost. Instead, could a programmable switch, designed
for much higher throughput than a NIC, sample RDMA pack-
ets that transverse it and duplicate them out to a logging
server? Does adversarial RDMA use have distinct statistical
patterns from typical system behavior, detectable even via
encrypted packets? Could some control-plane RDMA traf-
fic be redirected to a centralized system that will log it (in
plaintext), while subsequent dataplane traffic proceeds on the
existing, high-performance route? This may require a move
away from the “register memory once, use forever” design
choice made by the systems we analyzed, instead having the
logged packets give more specific information about which
memory regions are currently being accessed. We strongly
encourage researchers to investigate these approaches.

Additional directions. Future security research is also nec-
essary in other aspects of these increasingly advanced NICs.
For example, do the NIC design and its driver successfully

protect process isolation on the local machine? Between VMs
that share the hardware? Are there any additional security
considerations when using RDMA over a wide-area network
(such as between datacenters)? Can adding additional com-
putation or memory to advanced NICs help mitigate any of
the security problems? We encourage other researchers to
consider these and related questions.

5 Related Work
While a number of systems have incorporated RDMA for per-
formance benefits [10, 12, 13, 24, 25, 31, 35, 46, 47] and others
have attempted to improve the interface [1, 44], relatively few
have attempted to improve the security of such systems. We
briefly review those here.

In a 2005 RFC about RDMA over IP, Romanow et al.
identify security as a crucial component to the success of
their proposal [40]. Unfortunately, their proposed solution,
IPSec [3, 26, 27], never received wide adoption.

Also in 2005, Lee et al. wrote about security flaws in the
InfiniBand Architecture, including pointing out the critical
weakness that is plaintext R_Keys for remote memory region
access [29]. It appears that some of their mitigations for denial
of service were incorporated into the InfiniBand spec [23].

Noronha et al. discuss some security considerations when
layering NFS on top of RDMA: instead of opening the server
memory up for READ and WRITE operations by the client,
they have the client register its memory for remote access,
contact the server via two-sided operations, and then let the
server deposit or retrieve data from the client’s registered
memory [36]. This reduces the security risk of a compromised
client, at the cost of much more effort by the server’s CPU.
This goes against the trend of recent RDMA research systems,
which seek to reduce the server’s computational workload.

Tsai and Zhang propose a number of improvements to
RDMA in LITE [44], including doing a secure key exchange
between servers involved in remote memory operations. Their
system design relies on the kernel to provide this functionality
and does not consider an on-the-wire attacker. Additionally,
their implementation registers a single RDMA region for each
machine due to limitations in NIC memory; this exacerbates
the danger of a compromised machine.

In more recent work, Tsai and Zhang demonstrate a number
of security threats, implementation issues, and side channel
vulnerabilities in RDMA NICs [43, 45].

6 Conclusion
RDMA is increasingly being used to build critical distributed
datacenter systems. Unfortunately, we find that the security
weaknesses of RDMA mean that a compromised node can do
more damage when employing a RDMA-based implementa-
tion of these systems, such as exfiltrating data without leaving
a trace or breaking concurrency contracts. We believe it is
crucial to close this security gap now, while these systems are
still at the prototype stage in the datacenter.



7 Discussion
1. Once hardware vendors offer hardware to facilitate build-

ing more secure RDMA systems, systems software de-
velopers must start using these new security features.
What would be useful ways to communicate the nec-
essary changes to RDMA programming to systems
builders around the world? The standards process? Blog
posts? Example systems?

2. A key enabler of secure software is writing libraries
with secure and reasonable defaults. For example, cryp-
tographic libraries whose default (no argument) con-
figurations are secure are less likely to be misused
by developers. The existing RDMA libraries such as
libibverbs and librdmacm can already be challeng-
ing for new RDMA developers to learn. How can we
redesign these (and other kernel bypass networking li-
braries) to simplify the use of good security practices?
Besides adding documentation for any new APIs, what
would help systems developers understand secure use of
RDMA libraries?

3. Unauditable RDMA READ operations – performed by
an adversary who has compromised a storage client in
the datacenter and is exfiltrating data - are a particularly
concerning attack in the cloud scenario. In “Regaining
auditability”, we presented a few ideas for ways to log
data such that reads are still auditable. We are eager to
hear feedback on feasibility of these and any other ideas!

4. If you have experience with other forms of modern
kernel-bypass or CPU-bypass networking, are there se-
curity lessons we can learn from those systems? Do any
of the security concerns we identified for RDMA apply
to other systems you are familiar with? Are the risks and
threat models similar?

5. As other aspects of cloud processing are offloaded from
the CPU on to specialized hardware, are there any con-
fidentiality, integrity, or availability properties that are
being lost in the transition? If an adversary is another
tenant on the cloud system, what might they be able to
exfiltrate or manipulate? How can their harm be limited?
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