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Abstract
We presented a novel platform dedicated to stream processing

that improved resource efficiency by sharing resources among

applications. The platform utilized latency-aware schedulers

to handle stream applications with heterogeneous SLAs and

workloads. We implemented the prototype in Spark Struc-

tured Streaming and evaluated the platform with pseudo IoT

services. The result showed that our platform outperformed

default Spark Structured Streaming while reducing the neces-

sary CPU cores by 36%. We further compared the adaptability

of the schedulers and found that one of the schedulers reduced

the SLA violations by 90% compared to the default FAIR

when the platform was overloaded.

1 Introduction

Stream processing has become a major region in big data

analytics, such as the monitoring of IoT services, web-site

anomaly detection, and dynamic pricing in e-commerce.

These services require low-latency and high-throughput pro-

cessing and may have a stringent latency service level agree-

ment (SLA) as a deadline for execution. Moreover, current

business situations demand systems that cover a variety of as-

pects: scalability, durability of 24x7 processing, adaptability

to varying workload pattern, and mitigation of the operation

burden.

Several stream processing platforms have been published

to meet the demand. Apache Storm [6] and Apache Flink

[2] are major stream processing platforms that adopted the

continuous processing model for lower latency processing.

Spark Structured Streaming [11], which is an extension of

Apache Spark, inherited the micro-batch feature from Spark

Streaming [30], which divides infinite data into a group of

records.

Today, it is common to run hundreds of stream applications

in one organization because of business divergence and com-

plexity. In such an environment, improvement of resource

efficiency has become a critical challenge because low re-

source utilization leads directly to an increase in platform

cost. However, resource optimization is quite challenging

since each stream application has different latency require-

ments and different workloads. Traditional resource sched-

ulers do not consider the applications’ latency to observe the

SLAs since these schedulers are designed for batch comput-

ing [4, 7, 23]. As the input data rate often varies unexpectedly,

the resource scheduler must detect resource shortages to re-

allocate resources dynamically in real time. The reallocation

should be completed on the order of milliseconds since stream

applications sometimes have sub-second latency SLAs. An ex-

isting coarse-grained resource sharing mechanism, where the

cluster manager removes JVMs from an application and adds

to another application, is too time consuming to achieve the

real-time reallocation [5]. The scheduler must also determine

the priority that applications use resources if the platform is

overloaded. This is a significantly different perspective from

that of traditional schedulers.

Many studies have been made on inner platform schedulers,

for example, mitigating data skew within workers [20, 29],

reusing the results of prior jobs [13, 18, 22], adapting the

scheduler for a heterogeneous environment [21, 27], model-

ing the platform behavior to mitigate the performance bottle

necks [16, 17], and adaptively rebuilding job graphs based on

the workload [28]. Xu et al. proposed a task level scheduler

that assigns tasks based on the input data rate [26]. Cheng et

al. optimized job parallelism in Spark Streaming [15]. These

studies have proved that pre-embedded schedulers in major

platforms [2, 6, 30] might not work sufficiently since stream

processing has completely different requirements from tra-

ditional batch computing. However, these studies assumed

that a cluster accommodated a single stream application, and

effectiveness was limited in an environment where multiple

applications with different latency requirements exist.

To minimize unused resources, a straightforward approach

is to share resources with other applications in the same clus-

ter. Dynamic resource allocation (DRA) [5] and Mesos fine-

grained scheduler [4] provide mechanisms to adjust resources

in Apache Spark. These mechanisms allow applications to

release resources back to the cluster if they no longer use



them and request them when the applications have urgent

tasks. Spark Job Server [10] is a library for managing Spark

jobs, which allows adding or removing jar files, data, and

contexts via REST APIs. This library also supports running

multiple jobs inside a single context. Yuzhao et al. proposed a

method to interconnect schedulers among different layers [25].

Guolu et al. evaluated a latency-aware scheduler with mul-

tiple applications environment [24]. These studies provided

the frameworks to improve resource efficiency but had no

scheduling algorithms that could optimize resource allocation

in real time while considering the applications’ SLAs.

Earliest deadline first (EDF) is a scheduler in the context

of real-time systems [12]. EDF considers the deadline of each

application and schedules the application with the closed

deadline first. However, the algorithm does not work correctly

in an environment where applications have significantly dif-

ferent SLAs. For instance, there are two tasks with 6 seconds

and 100 seconds in the SLAs. Assuming that when both have

the same deadline and the remaining time is 5 seconds, the

former task can afford to wait for resource assignment since

the remaining time is as much as 83% of the SLA until the

deadline, but the latter task appears to face the deadline.

To the best of our knowledge, no prior work had been

published that could improve resource efficiency in an en-

vironment where multiple stream applications existed while

keeping the applications’ SLAs. The challenge was to sched-

ule heterogeneous applications with different latency require-

ments and input data rates. Motivated by our observations, we

developed a novel stream processing platform that provided

latency-aware resource sharing mechanisms. We summarize

our contributions as follows:

• We propose a platform that achieves better resource effi-

ciency by accommodating multiple applications in one

cluster. The platform can also handle heterogeneous

SLAs with latency-aware schedulers. We implement the

prototype by extending Structured Streaming.

• We implement three latency-aware task schedulers mo-

tivated by the scheduler of real-time systems [12]. The

schedulers determine the priority of each application

based on the current load, deadline, and the applications’

SLAs. We evaluate these schedulers with pseudo IoT

services.

• The experimental result showed that one of the imple-

mented schedulers outperformed the default Structured

Streaming while reducing the necessary CPU cores by

36%. We compared the latency-aware schedulers with

default scheduling algorithms and found that the sched-

uler reduced the average latency at most by 61% com-

pared to FIFO. Another experiment showed that one of

the schedulers reduced the SLA violation by 90% com-

pared to FAIR when the platform was overloaded.
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Figure 1: Architecture Overview

2 Platform Design

2.1 Architecture
Our platform is designed for an environment where multiple

stream applications coexist. The key features are as follows:

1) accommodate multiple applications in one Spark applica-

tion, 2) schedule at task level granularity with latency-aware

algorithms. We chose the design that accommodating mul-

tiple applications in one cluster since it achieved the finest

granularity of resource scheduling. Moreover, reallocating

processes can be completed with lower latency since the mas-

ter process can monitor every application and manipulate its

scheduling order. This feature is desirable for the situation

that latency-aware applications increase. On the other hand,

since the design does not provide resource isolation, it may oc-

cur interference between applications. The detailed discussion

is conducted in section 5.

Figure 1 shows the architecture overview. Our platform ba-

sically runs as a Spark cluster composed of the Spark Driver

and Executors. Structured Streaming applications in our plat-

form behave as if they run on the default Spark cluster since

we did not make any change on the Structured Streaming APIs.

We assume that every application has its own data source and

sink outside the platform, which means we do not allow ap-

plications to read other applications’ data even though this

is theoretically possible. Otherwise, the scheduler must con-

sider the dependency between applications, which makes the

scheduling algorithms complex. Moreover, the recovery from

failures also becomes slow since the platform needs to trace

the data-lineage in order to re-compute dependent data.

The jobs generated by each application are buffered in

the dedicated scheduling pool. Our latency-aware scheduler

allocates resources to the pools according to the priorities.

The priorities are determined by the latency-aware algorithms

described in the next subsection.

2.2 Latency-aware task scheduler
Background Spark is a distributed computing platform for

general purpose processing. Structured Streaming is an exten-

sion of Spark, which is a high-level API for stream processing.



It optimizes user programs and generates micro batch jobs

that are transferred to the Spark core engine as traditional

batch jobs. Spark has two scheduling layers, i.e., job level and

task level. The job is a unit of execution composed of tasks,

and the task is an atomic unit of execution. The former deter-

mines the scheduling policy for execution and schedules jobs

in the Spark cluster. The latter then assigns tasks individually

to the appropriate executor according to the priority.

The task scheduling mechanism is similar to Mesos

fine-grained resource allocation [4]. Executors transmit

resourceOffer to the master when they have available re-

sources. The master then assigns TaskSet, which is a set

of tasks that can be scheduled concurrently, to the executor

transmitted resourceOffer. There are two scheduling levels

for resource allocation, i.e., inter-pool and intra-pool. The

inter-pool level scheduling prioritizes the scheduling pools,

which behave as queues for TaskSet. The intra-pool level

scheduling determines the priority of the TaskSet inside the

pool.

Overview: The goal of the scheduling is to make the

latency of every application less than each SLA. In this paper,

we treated the job duration as the latency. Ideally, we must

consider the queuing delay occurred in the storage layer (e.g.,

Kafka, HDFS, and DB). The reason we excluded the queuing

delay from the priority calculation is that to obtain the precise

queuing delay makes the system too complex. The detail is

discussed in section 5. We note that we evaluated the platform

and the scheduler by measuring end-to-end latency including

the queuing delay.

To satisfy the SLAs of applications, we had two design

choices: estimating the necessary resources to achieve the

SLAs for each application and scheduling them according to

the calculated plans, or treating applications as black boxes

and scheduling them according to the urgency. The former is

suited for batch computing because the scheduler can know

the input data size in advance. However, as for stream process-

ing where the data rate varies in time, this kind of estimation

is difficult to apply, especially for our platform that accommo-

dates multiple applications. Inaccurate estimation can lead to

inappropriate resource allocation and result in SLA violations.

We chose the latter design, which leverages the existing Spark

scheduler features. We utilized the Spark task scheduler for

allocating resources to each application. As we described in

section 2.1, we assumed that the applications belonged to the

scheduling pools separately. Unlike the default schedulers that

statically determine the priority of the scheduling pools, our

scheduler calculates priority for each resourceOffer that

comes in, and then allocates resources dynamically based on

the priority. We limited the intra-pool scheduling method to

FIFO since applications may have inter-dependent jobs. We

designed three scheduling algorithms to calculate the priority

based on the SLAs.

Earliest Deadline First (EDF): The EDF is a traditional

scheduling algorithm that schedules the task first that has

the closest deadline [12]. When we denote the active job of

application s as Jobs, then the submission time of Jobs as Ts
and the current time as Tc, Tc −Ts defines the spent time of

Jobs. In this paper, we assumed that every job that belonged

to the same application had the same latency SLA, so we

defined the SLA of application s as Ls (equal to the maximum

process time allowed for each job). Under this condition,

when we denote the priority of Jobs as Ps, Ps is defined as

−1∗ (Ls − (Tc −Ts)) = Tc −Ts −Ls. The scheduler calculates

the priority for each group of tasks and finds the biggest

value in each pool as the representative value. Resources are

allocated in order of the pool with the largest representative

value.

Priority based EDF: Because the EDF simply considers

the deadline, it does not reflect the potential priority of each

application. For example, when there are two applications,

one is anomaly detection and another is aggregation for visu-

alization, thus the former should have higher priority than the

latter. Reflecting the potential priority, we modified the orig-

inal EDF formula as follows: Ps =
Tc−Ts

Ls
∗ ps (Let ps be the

potential priority of the application s). Different from Guolu’s

work [24], we moved the Ls to the denominator to align the

weight of the remaining time among the applications. Stream

applications sometimes have more than ten times the SLAs

that differ due to the variety of the roles (e.g., aggregation

is prone to have a longer SLA than anomaly detection and

the machine learning inference). To treat every application

in the proper manner and priority, one common criterion is

necessary.

Process time estimation: The former two algorithms do

not consider how busy the application is. The data rate of

the stream applications naturally varies, and some trends can

be predicted (daily trend) but other peaks are not (sudden

increase of events). To adapt such a trend, we define the esti-

mated job execution time as F(I(s,Ts)) where I(s,Ts) denotes

the amount of input data the job should process. In the end,

we define a new priority as: Ps =
Tc−Ts+F(I(s,Ts))

Ls
.

2.3 Limitations
Our platform is strongly motivated the observation that stream

applications have the variety of the latency requirements and

traffic patterns. When one application is at peak time, other

applications are not, so resources can be accommodated. If

every application refers the same source, the performance of

our platform and schedulers is limited, but we believe it still

improves resource efficiency.

The latency-aware task scheduler just determines which

tasks use executors’ cores so it cannot take other resources

(e.g., memory, network, and storage) into consideration. We

understand the necessity of the more general resource sched-

uler for treating the variety demands of applications and plan

to investigate the benefit in the future. We note that today’s

version of our platform is still useful since stream applications



are naturally CPU-bound [31].

3 Evaluation

Testbed Environment: We deployed our platform on a

Hadoop cluster consisting of five bare metal nodes. Each

node had 16 CPU cores, 128 GB of memory, 128 GB of SSD

storage, and 15 TB of HDD storage. We used Hadoop 2.9.2

for the shared storage and Kafka 2.2.0 as the data source and

sink. We also used YARN to adjust the resources to compare

our platform with a default Spark cluster.

To evaluate the performance of schedulers, we referred to

the white paper published by the 5G automotive association

(5GAA) [1] and developed pseudo-connected car applications.

The applications were written in the Structured Streaming

API, and the details were as follows: Parsing it parsed the

binary input data for conversion into the DataFrame format.

The result was used by the latter two applications. Searching
it searched targets to report road warnings by calculating the

distance between a specific landmark and each car. Window-
ing it counted the number of cars in the target areas with

the sliding window for statistics, visualization, and traffic

congestion detection. We called these three applications the

application set.

Implementation: We implemented schedulers in Spark

2.4.5 by modifying the scheduling and metrics classes.

The priority calculation was implemented mainly in the

SchedulingAlgorithm class that determined the priorities

of the Pool and the TaskSet. We modified DAGScheduler
and TaskScheduler to acquire input data history. We could

not obtain real time metrics from the data source since

Spark executed the tasks in a lazy manner. Instead of the

live data, we then utilized the statistics of the data rate

for I(s,Ts). In this paper, we measured the actual latency

of our connected car applications to determine the estima-

tion function F(I(s,Ts)) and finally defined the following:

F(I(s,Ts)) = C1 ∗ I(s,Ts) +C2, where (C1,Parsing, C2,Parsing)

= (1.48, 271), (C1,Searching, C2,Searching) = (0.0008, 509) and

(C1,Windowing, C2,Windowing) = (0.009, 6570). F(I(s,Ts)) and

I(s,Ts) are in milliseconds and records, respectively.

Our platform also supported a fault tolerance mechanism

using Spark Checkpoint. Checkpoint is a function to peri-

odically save progress information in order to resume the

processes if the platform is in failure status. Our platform

allowed each application to use the Checkpoint mechanism

separately and we confirmed that all applications could be

resumed through a simple experiment.

Workload: We created test data using the traffic simulator

Vissim [8]. Vissim simulates how cars and humans behave

on a virtual map, and we customized it to simulate connected

cars (e.g., cars share their location, velocity, and health data).

In the experiments, we ran three copies of the application set

(i.e., three copies of Parsing, Searching, and Windowing) and

replayed the traffic with different scenarios for each applica-

tion set.

Latency: We measured the end-to-end latency in Parsing

and Searching by the timestamp appended by Kafka brokers

[3] and employed the batch duration as the Windowing latency.

The reason we used two measurement methods was that the

aggregation functions must wait for the watermark in order to

trigger the execution [11]. In other words, if the data stamped

with a sufficiently new timestamp did not come in, Windowing

would never start processing records. Including this queuing

time in the latency was clearly incorrect. Thus, we used the

batch duration as the latency criterion that purely measured

processing time.

Table 1: Minimum number of CPU cores required to keep the

SLAs
Platform Application Type Total Cores

Parsing 24

Separating Searching 12

Windowing 3

Proposal
Parsing, Searching,

Windowing
25

3.1 Resource Efficiency

We first evaluated the benefits of co-locating applications in

one cluster. For the experiment, we adjusted the amount of

resources and investigated the minimum resources needed

to maintain the latency under the SLAs. We allocated suf-

ficient memory statically and only changed the number of

CPU cores in the experiment. We compared the case that

running applications in different Spark clusters separately

(Separating) and the case that co-locating applications in our

platform (Proposal). In the experiment, we used the Priority-

based EDF algorithm for the scheduler in our platform. Table

1 shows that each application type (i.e., Parsing, Searching,

and Windowing) has heterogeneous resource demands, and

when running applications separately, a total of 39 cores is

needed. Compared to that, our proposed platform consumed

only 25 cores to maintain the same performance for all appli-

cations. This was because our platform allowed applications

to share resources dynamically and fewer CPU cores were in

the idle state. This fact was also evident in CPU utilization.

Figure 2 shows the total CPU time per core during the work-

load performed by Separating, Earliest Deadline First (EDF),

Priority-based EDF (PT), task time estimation (EST), FIFO,

and FAIR. Except for Separating, the platform co-located ap-

plications in one cluster and used a corresponding scheduling

algorithm. The graph shows that by co-locating applications,

the platform achieved approximately twice as much CPU

utilization than Separating. That means, in Separating, CPU

spent more underutilized time due to input data rate variations.
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3.2 Scheduler Performance

Figure 3 shows the latency performed by EDF, PT, EST, FIFO,

and FAIR. The latency is averaged in the same application

type and normalized by the Separating’s latency. Allocated

cores (including Separating) are as shown in table 1. The fig-

ure shows that EDF, PT, and EST reduced the average latency

of Parsing by approximately 61%, 59%, and 52% compared to

FIFO. These scheduling algorithms also reduced the average

latency of Searching by approximately 54%, 54%, and 44%

compared to FIFO. By contrast, FIFO achieved the small-

est latency for both mean and max in Windowing. This was

because FIFO did not consider any other parameters except

the job order and allocated surplus resources to Window-

ing even though the latency of Windowing fully satisfied the

SLA. Compared to FAIR, EDF and PT reduced maximum

latency in Searching by 11% and 16%; however, the latency

of Windowing increased. The reason was that EDF and PT

preceded urgent tasks to avoid SLA violations even if that

resulted in interrupting other running jobs. The policy eventu-

ally obtained the feature that reduced maximum latency by

slightly sacrificing average latency. EST was inferior to FAIR

in the maximum latency of Parsing and Searching. This was

a surprising result because the intuition was that the most

sophisticated algorithm should achieve better performance.

We found that this result was caused by the failure of the

task time estimation due to the unexpected traffic patterns.
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Figure 4: The number of records violated SLA

We assumed that cars were generated randomly in the sim-

ulated area so that the data rate was too elusive to estimate

with statistics. This indicated that EST had a natural limita-

tion on the applicable services. Overall, PT achieved smaller

latency for every application type compared to Separating,

which meant our platform and the scheduler could handle the

same workload with only 25/39 = 64% of the resources of the

default platform.

We overloaded the cluster and evaluated the elasticity of

schedulers. Figure 4 illustrates the number of records violat-

ing the SLA. The figure shows EDF and PT reduced the SLA

violated records by more than one thousandth compared to

FIFO. Even though FAIR achieved almost the same latency

as PT and EDF, the number of SLA violated records was ten

times greater. Compared to the default FIFO and FAIR, PT

and EDF outperformed for elasticity of the workload.

4 Conclusion

We proposed a novel stream processing platform that im-

proved resource efficiency by co-locating applications in one

cluster. The main contributions of this work were designing

an architecture that co-located multiple applications and eval-

uating the scheduling algorithms that handled the applications

with heterogeneous SLAs and workloads. We implemented a

platform prototype with three latency-aware schedulers and

evaluated them with a realistic workload. The result shows

that our platform reduced the necessary resources by 36%.

The latency-aware schedulers outperformed the default sched-

ulers FIFO and FAIR. We plan to develop a more sophisti-

cated scheduling algorithm that fully treats the heterogeneous

requirements of applications (e.g., task localization, heteroge-

neous data source, and memory allocation) in the future. We

also plan to investigate the architecture in terms of security,

fault tolerance, and operation.

5 Discussion

SLA Measurement: As we mentioned in section 2.2, we

treated the task duration as the deadline criterion for each



application. However, task duration does not reflect the ac-

tual latency imposed on records. In the real world, there are

various elements that increase end-to-end latency, for exam-

ple, waiting fetch in a messaging system and loading time

of storage. Actually, in our environment, about 40% of the

end-to-end latency was the queuing delay that occurred in the

Kafka topic. The fact indicated that the measurement of task

duration was not enough to determine the true deadline. One

of the concrete solutions was to receive latency information

from external systems. However, it was not realistic since

the combinations of data source and sink were numerous,

and the interface of the system was too complex. Although

some prior studies have been proposed for estimating inside

latency [14, 19], it is still challenging to estimate the real

deadline with limited information.

Isolation: Isolation is a major tradeoff with resource effi-

ciency. Our platform did not provide an isolated environment

for each application; therefore, if an application fell into infi-

nite loops, it caused non-negligible effects on the performance

of other applications. This situation could be avoided by re-

stricting the maximum amount of resources per application

and the maximum duration of occupying resources. However,

we need to carefully consider elaboration of the scheduler

because a complicated algorithm causes an additional opera-

tional burden. An operational burden is one of the reasons that

Mesos fine-grained mode is removed from Apache Spark [9].

(The main reason is that a fine-grained scheduler is not neces-

sary for batch computing.) We plan to investigate the tradeoff

of resource efficiency in the future.

Another problem caused by the absence of isolation is

security risk. Because applications are executed on the same

process, one application can refer other applications’ data.

That may cause security concerns, so we recommend to limit

the applications run in the platform that belongs to the same

team or department.

In spite of the disadvantage, we believe that the design still

useful for the situation the same team will operate dozens of

applications for one service and will want to save the plat-

form cost. One example is the IoT service, it consists of many

functions and the data sources, for example, parsing the mul-

tiple sensor data, then aggregating them, and finally detecting

anomaly events. The platform must handle the bunch of sen-

sor data, on the other hand, the requirement for the system

durability is often not as severe as the other services (e.g.,

monitoring the security events of web servers requires sev-

erer durability than monitoring animals in a forest). In such

a condition, to improve resource efficiency with sacrificing

isolation is reasonable.
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