
Rethinking Isolation Mechanisms for Datacenter Multitenancy
Varun Gandhi James Mickens

Harvard University

1 Introduction
Multitenancy is the foundation of modern cloud computing:
a single datacenter machine must run code from multiple cus-
tomers. To safely expose such a machine to untrusted tenants,
datacenters have traditionally leveraged virtualization [4, 9].
In this approach, privileged hypervisor software (provided
by the datacenter operator) mediates tenant access to raw
physical resources like RAM and IO devices.

A hypervisor isolates tenants from each other, and isolates
the hypervisor from tenants. However, tenants are not isolated
from the datacenter operator; the operator’s hypervisor can
arbitrarily manipulate tenant state, and the operator herself
can physically inspect or modify the contents of server RAM.
Intel’s SGX-enabled processors [13] stop these attacks. Using
hardware-enforced memory partitioning, SGX prevents a hy-
pervisor from accessing secure tenant pages. SGX hardware
also transparently encrypts and HMACs cache lines during
eviction to RAM; thus, a datacenter operator with physical
control of a machine cannot see cleartext tenant RAM, or
undetectably tamper with the encrypted RAM that is visible.
SGX is the foundation for a variety of software-level runtimes
that isolate datacenter tenants from privileged management
software [3, 5, 45, 58].

Unfortunately, SGX-based approaches have three important
limitations.

• SGX gives a tenant the illusion of ISA-level isolation.
However, tenants cohabitate at the microarchitectural
level, resulting in side channel vulnerabilities that leak
information from ostensibly secure computations (§2.1).

• SGX can cryptographically vouch for the initialization-
time integrity of a secure computation. However, SGX
has no way to attest a computation’s dynamic (i.e.,
post-load) integrity. Both initial and post-load integrity
are important (§2.2). Clients do not wish to exchange
data with “secure” server-side code that was initialized
correctly, but subsequently corrupted by a network at-
tacker (e.g., via a ROP exploit [7, 43, 49] or type confu-
sion [8, 30, 31, 35]).

• SGX is implemented using a combination of hardwired
circuits and updatable microcode [13]. Unfortunately,
Intel hides many implementation details that are nec-
essary to fully understand SGX’s security properties
(§2.3). In response to high-profile security bugs involv-
ing SGX [10–12, 39, 46, 52], Intel has released a variety
of microcode patches, many of which were incorrect or
incomplete and required subsequent revision [21,23,34].
These episodes demonstrate that security researchers
need more visibility into the silicon and the microcode
that implement hardware-based isolation mechanisms.

Motivated by these problems, we propose a new isolation
approach for datacenter multitenancy. As with SGX, we lever-
age trusted hardware to isolate tenants from each other and
from the datacenter operator. However, our approach differs
from SGX in three crucial ways.

• First, our trusted hardware strongly isolates each tenant’s
ISA-level state at the microarchitectural level, removing
side channels involving other tenants or the hypervisor.

• Second, we allow a tenant to explicitly bind applica-
tion code to monitor code that dynamically enforces
runtime security invariants like control flow integrity.
The monitor code runs in parallel with application code;
however, the monitor runs on a different CPU pipeline
(managed by trusted hardware) that receives a read-only
stream of the register state from the application-level
pipeline. With the exception of this register mirroring,
the two pipelines are isolated at the microarchitectural
level. This design prevents side channel leakages of mon-
itor state to application code that might be under attack.
Microarchitectural partitioning of an application and its
monitor also eliminates more direct attacks that could
occur if monitor state were located in the same address
space as the application to protect.

• Third, our new trusted hardware uses an open microcode
format, and exposes a software-readable description of
microarchitectural-level hardware details. This approach
allows tenants to independently verify the security prop-
erties of a server’s hardware. This design also allows
tenants to customize monitor code to fully exploit the
microarchitectural affordances provided by a particular
datacenter server.

In Section 2, we provide more background on SGX and re-
lated technologies. We then sketch a preliminary design for
our new isolation hardware (§3). We conclude by describing
some open research challenges (§4).

2 Background
Intel SGX [13] and ARM TrustZone [2] are the most popular
hardware environments for secure execution. We explain their
strengths and weaknesses to motivate our new proposal.

SGX: SGX refers to a secure computation as an “enclave.”
The memory pages for an enclave are stored in a protected
region of physical RAM; however, those pages are embedded
within the virtual address space of an untrusted host process.
To invoke enclave functionality, untrusted code invokes the
special EENTER instruction. The CPU responds by flipping
the CPU’s isEnclave bit to 1, and then jumping to enclave
code. During enclave execution, SGX allows the MMU to
access all pages (both enclave and non-enclave) in the un-



trusted host. Enclave code invokes the EEXIT instruction to
flip isEnclave and return control to the untrusted host pro-
cess. Since isEnclave is now set to 0, SGX will prevent the
CPU from accessing enclave memory.

When cache lines from enclave memory are evicted to
RAM, SGX transparently encrypts and HMACs them. Simi-
larly, when enclave cache lines are pulled from RAM into the
L3 cache, SGX transparently decrypts the lines and checks the
HMACs to detect tampering. The encryption keys and HMAC
keys never leave the SGX hardware; so, even if the datacenter
operator physically probes SGX memory, the operator can
only discover encrypted, integrity-protected data.

Enclave code runs at Ring 3 (i.e., the least privileged level)
and cannot issue system calls. Thus, enclave code relies on the
untrusted host process to issue IOs. Enclave code places IO
requests in a non-enclave part of the untrusted host’s address
space. The untrusted host (hopefully) performs the desired
IO, places the result in a non-enclave page, and then invokes
EENTER. Enclave code and IO endpoints (e.g., a local disk,
a remote network client) can use cryptography to detect if
the untrusted host has tampered with IO. However, denial of
service attacks are outside the scope of SGX.

TrustZone: TrustZone partitions memory into a “normal
world” and a “secure world.” When the CPU executes in
secure mode, both secure memory and normal memory are ac-
cessible; when the CPU is in normal mode, only normal mem-
ory can be accessed. Both worlds support the user/supervisor
privilege distinction. Thus, the normal world runs a privileged
OS and unprivileged user-mode applications, while the secure
world also executes kernel code and user-level code. Privi-
leged code in the secure world determines how physical RAM
is allocated to the two worlds. Privileged secure-world code
also assigns each IO device to a world. So, privileged code in
the secure world can receive device interrupts, use DMA to
exchange data with devices, and expose devices to user-level
secure-world code. This contrasts with SGX, where secure
code is dependent upon untrusted software to perform IO.

In TrustZone, secure code executes in response to the firing
of a secure-device interrupt, or the normal-world invocation of
the smc (“secure monitor call”) instruction. Since smc is simi-
lar to SGX’s EENTER, it can be used to construct a secure ap-
plication whose architecture uses an SGX-style split between
an “untrusted host” and “secure component” [20, 24, 26].

Current TrustZone hardware does not encrypt or HMAC
secure-world RAM. However, the required hardware [25] is
not SGX-specific, and could be ported to TrustZone.

Attesting Secure Computations: Attestation [42, 50, 51]
allows a secure computation to vouch for the integrity of
its initialization-time code and data. Before a remote client
exchanges sensitive data with the computation, the client will
force the computation to attest.

At a high level, attestation leverages a unique public/private
key pair that is possessed by each SGX or TrustZone instance.

The public half is certified by the hardware vendor, and the pri-
vate half is never exposed outside of the trusted hardware. As
a secure computation is initialized with code pages and data
pages, trusted hardware records the identity of those pages.
For example, in SGX, when an untrusted host adds a new
memory page to an enclave, the SGX hardware updates a cu-
mulative hash over all such pages. Once enclave initialization
is complete, the SGX hardware seals the enclave, preventing
further modifications by untrusted code. When a client asks
the enclave to attest, the enclave asks the SGX hardware for
a signed copy of the cumulative hash. The enclave returns
the signed hash to the client, who then verifies that the hash
corresponds to a trusted initial enclave state.

2.1 Security challenge #1: Weak Isolation
SGX and TrustZone strongly partition the ISA-visible state
belonging to different tenants. However, at the microar-
chitectural level, tenants share resources. For example, in
SGX, a single hyperthreaded physical core may run enclave
code on one logical core, and non-enclave code on another.
This design allows enclaves to execute atop the highly-
optimized pipelines that were designed in the pre-SGX era.
Unfortunately, co-tenancy at the microarchitectural level ex-
poses SGX and TrustZone to a variety of side channel at-
tacks [1,6,10,12,13,19,22,36,47,57]. For example, consider
a hyperthreaded SGX core: if enclave code is co-resident with
malicious code, then the malicious code can measure con-
tention for shared functional units, and infer the instructions
being issued by the enclave [13].

Contention-based side channels also exist in TrustZone.
For example, each cache line in TrustZone is tagged with a bit
that indicates whether the line belongs to the secure world. Us-
ing this bit, the cache controller prevents normal-world code
from accessing secure-world cache lines. However, cache
lines from both worlds share a unified cache. Thus, malicious
code in the normal world can use cache contention as a side
channel, e.g., to steal secure-world encryption keys [36, 57].

The TrustZone model has an additional challenge: the se-
cure world can access state in both worlds. Thus, the normal
world cannot protect itself from secure-world code that is
curious or malicious. Datacenters need the ability to enforce
“all-pairs” distrust, such that tenants and privileged manage-
ment software are all isolated from each other.

2.2 Security challenge #2: Post-load Integrity
The goal of trusted hardware in the cloud is to expose a secure
service to remote clients. However, some clients may be evil;
network-based attacks are endemic to the modern Internet.
What happens if a malicious client successfully corrupts a
“trusted” datacenter service? Remote attestation unfortunately
provides no guarantees about the dynamic, post-load integrity
of a secure computation. Thus, clients have no way to deter-
mine whether remote code has control flow integrity [7,43,49],
type safety [8, 30, 31, 35], or other runtime invariants.



A secure computation can obviously try to enforce those
properties itself. For example, a computation might use the
HexType runtime [31] to dynamically check C++ casts for
type safety. To thwart control-flow hijacks, a secure compu-
tation might use Shuffler [54] to dynamically rerandomize
code locations. The computation might also use compile-time
frameworks for information flow control [40] or page fault
masking [48] to eliminate vectors for data leakage. How-
ever, in all of these cases, the code and data which enforce
security reside within the address space to protect. This is
troubling, since memory disclosure vulnerabilities (which are
the foundation of many attacks [15, 38, 44]) allow process-
local, security-sensitive state to be discovered and subverted.
For example, managed languages like Go and JavaScript rely
on strong types and no-execute page protections to prevent
attacker-induced code injection. However, the type system re-
lies on hiding low-level, type-enforcing information from the
attacker. If attackers can use a read vulnerability to discover
this pointers and vtables, attackers can escape the type
system using carefully-crafted managed code which artfully
manipulates low-level type information [16, 44, 49].

Ideally, a trusted service’s post-load integrity would be
verified by an external monitor. Such a monitor would live
outside of the service’s address space, to provide isolation
from the potentially-exploited service. The monitor would
also require isolation from the datacenter operator; otherwise,
a malicious operator could corrupt the monitor, and then cor-
rupt the trusted service without detection.

2.3 Security challenge #3: Opaqueness
SGX adds a minimal amount of new hardware to a stock x86
chip. The biggest change is the addition of the memory en-
cryption engine which sits between the L3 cache and RAM.
However, the bulk of SGX’s functionality is implemented
via microcode [13]. Microcode instructions are the instruc-
tions that are actually executed by the guts of an x86 pipeline.
When an ISA-level instruction hits the decode stage, the de-
coder uses a translation table to map the ISA-level instruction
to a corresponding sequence of microcode instructions; the
microcode sequence is then released into the downstream
pipeline. A processor also uses microcode to automate low-
level behaviors like the pushing of registers onto a kernel
stack when an exception occurs [33].

Microcode enables two nice features. First, for a given
chip design, support for a new instruction like EENTER can
mostly or fully be added merely by updating the microcode
translation table in ROM. Second, by augmenting the transla-
tion table ROM with some updatable memory, the behavior
of ISA-level instructions can be changed after a chip has al-
ready left the factory; this ability is helpful if an instruction’s
factory-preset microcode translation is later found to contain
bugs. Indeed, Intel has issued microcode patches in response
to recent processor vulnerabilities like Spectre [32] and Melt-
down [37].

Unfortunately, Intel’s microcode is encrypted, which pre-
vents outside security experts from vetting patches. The mi-
croarchitecture that is controlled by microcode is also par-
tially opaque; Intel-published optimization manuals [28] are
selective in revealing low-level details. As a result, datacen-
ter tenants have a difficult time reasoning about the security
properties of SGX. Tenants also lack deep insights into the
behavior of patches for SGX microcode. Thus, tenants must
rely on Intel to properly implement the SGX specification.

Doing so is hard, given that Intel has been forced to revise
incorrect security patches. A particular patch has sometimes
been revised multiple times. For example, in 2018, various
security researchers discovered a family of attacks which Intel
calls “microarchitectural data sampling” [29]. The attacks
target store buffers (which hold queued memory writes), fill
buffers (which are used to manage L1 cache misses), and
load ports (which are functional units that fetch data from
memory). At a high level, the attacks exploit (1) out-of-order
execution and (2) microarchitectural co-tenancy of code from
different trust domains. For example, if kernel code pulls
a kernel cache line into a fill buffer, then malicious code
from a co-resident, unprivileged tenant can try to read the
line. Due to out-of-order execution, there is a race condition
between the access check on the malicious memory load, and
the execution of other malicious instructions which update
a microarchitectural side channel based on the value that
was loaded. The processor will squash any architectural side
effects of the malicious instruction stream, but, depending
on the outcome of the race condition, data may have already
leaked through the microarchitectural side channel.

In response to this family of problems, Intel released a mi-
crocode patch in May 2019. However, the patch still allowed
some known attacks in the family. Security researchers ag-
itated, and Intel released a new version in November 2019.
Alas, some attacks were still possible, and Intel released yet
another revision of the patch in January 2020 [23].

At the time of this paper’s writing, security researchers
were still determining whether the latest patch is sufficient.
However, the history of the patch is a troubling one for da-
tacenter tenants who cannot inspect the cleartext contents of
Intel-provided patches, and do not have full visibility into
the microarchitecture that patches modify. In fairness to In-
tel, we believe that Intel wants to make their chips secure.
However, recent hardware exploits suggest that vetting a mi-
croarchitecture is too complex for a single company to do
well. This implies that microarchitectures (and microcode
patches) should be opened up for vetting by external parties.

3 Our Proposal: Isolated Monitor Execution
Figure 1 illustrates our high-level proposal. A developer
writes application code to deploy on a remote machine; con-
currently (and perhaps with assistance from automated tool-
ing), the developer creates a dynamic integrity checker for the
application. The integrity checker examines the instruction



App0 binary 
(monitored)

Top-half RAM
App1 binary 
(monitored)

App2 binary 
(unmonitored)

Registers Pipeline

Monitor0

Registers Pipeline

Bottom-half RAMB
o

tt
o

m
-h

al
f 

p
ip

el
in

e
To

p
-h

al
f 

p
ip

el
in

e

CoreX

Registers Pipeline

Registers Pipeline

Bottom-half RAM

CoreY

App0 source code

Compiler

Datacenter machine

TLB
entries

TLB
entries

TLB blacklist
entries

TLB blacklist
entries

App0 binary Monitor0

Developer
machine

TLB entries TLB entries

Software-readable 
microarchitectural description

Monitor1
Saved App1

registers

Figure 1: High-level overview of our proposed IME system.
We extend each core on a datacenter machine to include
a “bottom-half” pipeline. This pipeline, managed by IME’s
trusted hardware, runs monitor code on behalf of the secure
application that runs on the traditional “top-half” pipeline.
Monitor code runs integrity checks over a read-only stream of
instructions, operands, and results from the top-half pipeline;
otherwise, the bottom-half pipeline is microarchitecturally
isolated from all top-half software (including management
software run by the datacenter operator). SGX-style TLB
blacklisting and memory encryption protect top-half pages
belonging to secure applications.

stream and register state of a running application to ensure
that the application has not been compromised. In the rest of
this paper, we refer to the integrity checker as the “monitor.”

The developer uploads the application and its monitor to a
datacenter machine. The machine has our new trusted hard-
ware, which we call Isolated Monitor Execution (IME). The
application runs on the machine’s normal CPU pipeline. How-
ever, the monitor runs on a separate pipeline managed by IME.
This “bottom-half” pipeline executes the monitor in parallel
with the monitored application. However, the bottom half
shares almost no microarchitectural state with the top half,
eliminating most side channels that would expose monitor
state to untrusted code running on the normal pipeline. The

bottom-half pipeline is limited to accessing a read-only stream
of the executed top-half instructions; the stream includes the
register values and memory values that are read and written
by each instruction. Monitor code defines security invariants
with respect to this input stream. If a monitor detects that a
retiring top-half instruction would break a security invariant,
the monitor asks IME to kill the top-half application. IME
will then flush the top-half microarchitectural state belonging
to the application. IME will also zero-fill the top-half, ISA-
visible state associated with the application, e.g., resetting
registers and memory pages.

To create a monitored application, untrusted management
software uses IME instructions to inform IME about the initial
state in the application and its monitor. Initial application
state is added to top-half RAM, and initial monitor state is
added to bottom-half RAM. Once initialization is complete,
the application+monitor pair (which we call a dyad) can be
executed using an instruction akin to SGX’s EENTER.

To isolate the application’s top-half memory from other
top-half software, IME uses TLB blacklists and strict cache
partitioning. TLB blacklists prevent a core from accessing
any top-half RAM that belongs to a monitored application.
Importantly, blacklists are managed by IME hardware, not by
untrusted top-half management software. When a core explic-
itly asks IME to context switch to dyad di, IME temporarily
removes the blacklist entries for di’s top-half memory pages;
those entries are restored if the application code willingly
yields, or is forced off the CPU due to a hardware interrupt.
Upon either type of yield event, IME stores the top-half regis-
ter state in protected bottom-half memory before vectoring
control to untrusted system software. Upon resuming a dyad,
IME pushes the application’s saved register context onto the
top-half pipeline, and restarts that pipeline.

Monitor code is event-driven. The only event type is the
incrementing of the top-half program counter. A monitor asso-
ciates top-half PC values of interest with bottom-half monitor
routines. A single routine can be mapped to multiple top-half
instructions. For example, a naïve CFI monitor would map
each indirect jump to a monitor routine that checks whether
the attempted control transfer is a valid one. We discuss other
potential monitors in Section 4.

The bottom-half RAM for a core may contain state for
multiple monitors, each one bound to a different dyad. When
dyad di runs, IME uses bottom-half TLB banks to ensure
that di’s monitor can only access di’s bottom-half RAM. IME
flushes bottom-half microarchitectural state when context-
switching away from a dyad. Since at most one monitor is
active on a core at any given time, flushing is sufficient to
eliminate side channels in the bottom-half microarchitecture.

Note that there is no privileged software that runs on
bottom-half hardware. Trusted IME hardware manages the
context switches between monitors, and the enforcement of
monitor isolation via TLBs. So, unlike the top-half pipeline,
the bottom half pipeline does not require hardware-managed



TLB blacklists, because there is no bottom-half OS that might
try to install inappropriate memory mappings.

An IME-compatible processor uses an open microcode
format. As shown in Figure 1, an IME-compatible proces-
sor also exports a software-readable description of its mi-
croarchitectural details. These two features enable detailed
offline vetting of IME’s security properties by independent
researchers. These features also make attestation more use-
ful. When IME generates an attestation message for a dyad,
the signed hash covers the microcode ROM, any microcode
patches, the processor’s microarchitectural description, and
the memory pages in the dyad’s initial state. This extended
attestation message provides additional context for a client’s
evaluation of server-side dyad security.

Compared to Sanctum-based RISC-V processors [14], IME
provides more radical features at the cost of additional die area.
For example, Sanctum implements enclave isolation via open-
source monitor code that runs at RISC-V’s machine level [53];
however, Sanctum does not provide software-readable descrip-
tions of the underlying microarchitecture. Like IME, Sanctum
uses cache partitioning to eliminate cache-based side channels
involving secure code; however, Sanctum does not eliminate
side channels via other shared microarchitectural resources
like hyperthreaded functional units. Most importantly, Sanc-
tum provides no way to run integrity checks in an environment
that is isolated from the application to be checked.

4 Open Challenges
A variety of research challenges must be solved to make IME
practical. The challenges span topics in systems, hardware,
and programming languages.

High-performance networking: An SGX enclave relies
on the untrusted OS to perform IO. This approach adds la-
tency and enables denial-of-service attacks. In TrustZone,
secure-world code can directly handle interrupts and other-
wise service devices; however, since the secure world is all-
powerful, applications in the normal world are not protected
from misbehaving secure-world code. Ideally, IME could vir-
tualize network cards, e.g., by extending SR-IOV [27]; the
goal would be to provide each dyad with an isolated virtual
NIC that could be accessed directly. Enabling DMA between
a monitored top-half application and an SR-IOV-style NIC
would require careful synchronization between top-half TLB
blacklists and the IOMMU settings of the NIC. A commod-
ity SR-IOV NIC may also have side channels (e.g., via the
internal L2 switch) that must be eliminated.

Useful, implementable policies: Co-tenancy in memory
hardware is a common source of side channels (§2.1). Thus,
IME isolates the memory hierarchies in the top half and the
bottom half.1 An important consequence is that monitor code

1To enable monitor initialization, IME provides a dedicated, page-sized
hardware buffer that untrusted top-half code can use to initialize a bottom-half
monitor page.

in the bottom half cannot independently read or write top-
half memory. Monitor code does receive a read-only stream
of top-half instructions (and the inputs and outputs of those
instructions). So, an important research question is “what
useful security policies can be enforced solely with a trace of
a program’s instruction stream, register values, memory loads,
and memory stores?” Control flow integrity, software fault
isolation [55], and seccomp-style system call filtering [17] are
easily supported by IME, because these policies are naturally
expressed in terms of instruction stream values at certain
moments in program execution. Taint tracking [18] is possible,
since a monitor can store shadow bytes in bottom-half monitor
pages; however, bottom-half RAM will likely be much smaller
than top-half RAM, preventing large shadow maps.

Multi-threaded applications: Suppose that a single appli-
cation process has multiple kernel-visible threads. What is the
best way to monitor such a process? In the tentative design
from Section 3, bottom-half pipelines do not share a memory
hierarchy. This design eliminates cross-monitor side channels,
but forces each thread in a multithreaded process to receive an
isolated monitor instance—the monitor instance cannot share
data with other monitors belonging to sibling application
threads. Thus, IME could not enforce cross-thread security
invariants, e.g., to ensure that thread activity conforms to de-
sired state machine transitions [41, 56]. Compilers may be
able to reflect such cross-thread behaviors into thread state
that is eventually reflected into a thread’s top-half registers
(providing visibility to the thread’s monitor). However, the
specifics of this approach require further investigation. An
alternative solution is for IME to provide a shared bottom-
half memory hierarchy that partitions bottom-half RAM and
cache lines in the same way that top-half RAM and cache
lines are partitioned. This approach eliminates side channels,
but requires more die area and energy consumption.

Dyad migration: A single datacenter machine has multi-
ple cores. To manage power consumption and balance load,
a datacenter operator would like to spin those cores up and
down as necessary. However, if a machine lacks a shared
bottom-half memory hierarchy, dyad migration across local
cores becomes more expensive—an application thread must
tear down its monitor on core X , and then reinitialize a new
monitor on core Y , copying memory pages and making sev-
eral context switches into and out of the kernel. Even if a
shared bottom-half memory hierarchy exists, synchronizing
migration between two cores is nontrivial if done purely in
hardware (e.g., via microcode). Further research is needed to
understand the expected frequency of dyad migration, and the
best way to accomplish it.

Note that dyad migration across different machines is also
important. IME will require hardware support and new crypto-
graphic network protocols to securely snapshot, transport, and
install dyad state. The network protocols will likely extend
traditional approaches for remote attestation (§3).



5 Desired Feedback
We hope that our paper will inspire discussion about what the
next generation of trusted datacenter hardware should look
like. The security problems of TrustZone (and particularly
SGX) are well-publicized. However, the next steps forward
are unclear. Various research projects have focused on attack-
ing SGX and TrustZone, or defending against those attacks at
a software level; unfortunately, much of this work assumes
that SGX and TrustZone will not be changing in fundamental
ways. At HotCloud, we hope to spark conversations about
what fundamental change might look like.

Section 4 describes some known challenges for our pro-
posed IME architecture. We would appreciate feedback on
those specific topics. Below, we briefly discuss additional
interesting problems.

The costs of strong isolation: IME introduces trade-offs
between computational performance, side-channel isolation,
and die area. For example, how much RAM should be allo-
cated to the bottom half? How complex should a bottom-half
pipeline be—is a simple five-stage pipeline acceptable, or is
a complex, out-of-order pipeline necessary? Provisioning too
few bottom-half resources will induce stalls in the top-half
pipeline, as retiring top-half instructions block on the verdict
of the associated monitor code. This blocking will become a
side-channel unless monitors are carefully designed! Provid-
ing copious computational resources to the bottom half would
reduce top-half stalls, but increase overall hardware budgets.

System calls: In SGX, an enclave cannot make system calls.
Instead, the enclave relies on the untrusted host process to
invoke system calls on the enclave’s behalf; system call ar-
guments and results are placed in an untrusted host page.
This approach incurs an extra context switch for every sys-
tem call invocation and return. Ideally, IME would allow a
dyad’s top-half code to directly invoke system calls and ex-
amine the results. A possible design is for the dyad’s top-half
code to designate a memory page as a “system call page.”
Top-half code would register the page with both the top-half
OS and IME’s bottom-half hardware. The OS must be in-
formed so that, when the top-half code issues a system call,
the OS knows where system call arguments and results should
be. IME’s bottom-half hardware must be informed about the
page so that, when context-switching to the associated dyad,
the bottom-half can mark the system call page as readable
and writable by privileged software. When context switching
away from the dyad, the bottom-half must add the system call
page to the global TLB blacklist.

Datacenter-specific IME hardware: Datacenter operators
have recently begun to design custom server hardware that is
tailored to operator-specific workloads. To what extent can
IME do the same, e.g., to optimize bottom-half hardware for
monitor checks that are particularly important for datacenter
operators?

References
[1] A. Aldaya, B. Brumley, S. ul Hassan, C. Garcia, and

N. Tuveri. Port Contention for Fun and Profit, Novem-
ber 1, 2018. Cryptology ePrint Archive: Version
20181106:170703. https://eprint.iacr.org/2018/
1060.

[2] ARM. ARM Security Technology: Building
a Secure System using TrustZone Technology,
2009. http://infocenter.arm.com/help/topic/
com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf.

[3] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M.L.
Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch,
and C. Fetzer. SCONE: Secure Linux Containers with
Intel SGX. In Proceedings of OSDI, pages 689–703,
November 2016.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the Art of Virtualization. In Proceedings of SOSP,
October 2003.

[5] A. Baumann, M. Peinado, and G. Hunt. Shielding Ap-
plications from an Untrusted Cloud with Haven. In
Proceedings of OSDI, pages 267–283, October 2014.

[6] J. Bech, A. Biesheuvel, M. Brown, and D. Thompson.
Implications of Meltdown and Spectre : Part 2, Febru-
ary 7, 2018. Linaro blog. https://www.linaro.org/
blog/meltdown-spectre-2/.

[7] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and
D. Boneh. Hacking Blind. In Proceedings of IEEE
Symposium on Security and Privacy, May 2014.

[8] F. Brown, S. Narayan, R.S. Wahby, D. Engler, R. Jhala,
and D. Stefan. Finding and Preventing Bugs in
JavaScript Bindings. In Proceedings of IEEE Sym-
posium on Security and Privacy, pages 559–578, May
2017.

[9] E. Bugnion, J. Nieh, and D. Tsafrir. Hardware and
Software Support for Virtualization. Synthesis Lectures
on Computer Architecture, 38, 2017.

[10] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T.F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution. In Proceedings of USENIX Security,
pages 991–1008, August 2018.

[11] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp,
M. Minkin, D. Genkin, Y. Yuval, B. Sunar, D. Gruss,

https://eprint.iacr.org/2018/1060
https://eprint.iacr.org/2018/1060
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://www.linaro.org/blog/meltdown-spectre-2/
https://www.linaro.org/blog/meltdown-spectre-2/


and F. Piessens. LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection. In
Proceedings of the IEEE Symposium on Security and
Privacy, May 2020.

[12] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T.H.
Lai. SgxPectre Attacks: Stealing Intel Secrets from
SGX Enclaves via Speculative Execution, June 3, 2018.
arXiv: Version 1802.09085v3. https://arxiv.org/
abs/1802.09085.

[13] V. Costan and S. Devadas. Intel SGX Explained, Febru-
ary 20, 2017. Cryptology ePrint Archive: Version
20170221:054353. https://eprint.iacr.org/2016/
086.pdf.

[14] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Mini-
mal Hardware Extensions for Strong Software Isolation.
In Proceedings of USENIX Security, pages 857–874,
August 2016.

[15] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen,
A.-R. Sadeghi, S. Brunthaler, and M. Franz. Readac-
tor: Practical Code Randomization Resilient to Memory
Disclosure. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 763–780, May 2015.

[16] S.J. Crane, S. Volckaert, F. Schuster, C. Liebchen,
P. Larsen, L. Davi, A.-R. Sadeghi, T. Holz, and B. De
Sutter. It’s a TRaP: Table Randomization and Protection
against Function-Reuse Attacks. In Proceedings of CCS,
pages 243–255, October 2015.

[17] J. Edge. A seccomp overview, September 2, 2015. LWN.
https://lwn.net/Articles/656307/.

[18] W. Enck, P. Gilbert, B.-Y. Chun, L.P. Cox, J. Jung, P. Mc-
Daniel, and A.N. Sheth. TaintDroid: An Information-
Flow Tracking System for Realtime Privacy Monitoring
on Smartphones. In Proceedings of OSDI, pages 393–
407, October 2010.

[19] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Pono-
marev. BranchScope: A New Side-Channel Attack on
Directional Branch Predictor. In Proceedings of ASP-
LOS, pages 693–707, March 2018.

[20] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno.
Komodo: Using Verification to Disentangle Secure-
enclave Hardware from Software. In Proceedings of
SOSP, pages 287–305, October 2017.

[21] J. Fingas. Intel fixes CPU security flaw it said was
patched in May, November 13, 2019. Engadget.
https://www.engadget.com/2019/11/13/intel-
fixes-cpu-security-flaw-for-real/.

[22] B. Gras, K. Razavi, H. Bos, and C. Giuffrida. Translation
Leak-aside Buffer: Defeating Cache Side-channel Pro-
tections with TLB Attacks. In Proceedings of USENIX
Security, pages 995–972, August 2018.

[23] A. Greenberg. Intel Is Patching the Patch for
the Patch for Its “Zombieload” Flaw, January 27,
2020. Wired. https://www.wired.com/story/
intel-zombieload-third-patch-speculative-
execution/.

[24] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and
T. Jaeger. TrustShadow: Secure Execution of Unmodi-
fied Applications with ARM TrustZone. In Proceedings
of MobiSys, pages 488–501, June 2017.

[25] S. Gueron. Memory Encryption for General-Purpose
Processors. IEEE Security and Privacy Magazine,
14:54–62, Nov–Dec 2016.

[26] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan.
vTZ: Virtualizing ARM TrustZone. In Proceedings of
USENIX Security, pages 541–556, August 2017.

[27] Intel. PCI-SIG SR-IOV Primer: An Introduction to
SR-IOV Technology, January 2011. Revision 2.5.

[28] Intel. Intel 64 and IA-32 Architectures Op-
timization Reference Manual, June 2016.
https://www.intel.com/content/dam/www/
public/us/en/documents/manuals/64-ia-32-
architectures-optimization-manual.pdf.

[29] Intel. Deep Dive: Intel Analysis of Microarchi-
tectural Data Sampling, 2020. Intel Developer
Zone. https://software.intel.com/security-
software-guidance/insights/deep-dive-intel-
analysis-microarchitectural-data-sampling.

[30] D. Jang, Z. Tatlock, and S. Lerner. SafeDispatch: Secur-
ing C++ Virtual Calls from Memory Corruption Attacks.
In Proceedings of NDSS, February 2014.

[31] Y. Jeon, P. Biswas, S. Carr, B. Lee, and M. Payer. Hex-
Type: Efficient Detection of Type Confusion Errors for
C++. In Proceedings of CCS, pages 2373–2387, October
2017.

[32] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom. Spectre Attacks: Exploit-
ing Speculative Execution. In Proceedings of the IEEE
Symposium on Security and Privacy, May 2019.

[33] P. Koppe, B. Kollenda, M. Fyrblak, C. Kison, R. Gawlik,
C. Paar, and T. Holz. Reverse Engineering x86 Processor
Microcode. In Proceedings of USENIX Security, pages
1163–1180, August 2017.

https://arxiv.org/abs/1802.09085
https://arxiv.org/abs/1802.09085
https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf
https://lwn.net/Articles/656307/
https://www.engadget.com/2019/11/13/intel-fixes-cpu-security-flaw-for-real/
https://www.engadget.com/2019/11/13/intel-fixes-cpu-security-flaw-for-real/
https://www.wired.com/story/intel-zombieload-third-patch-speculative-execution/
https://www.wired.com/story/intel-zombieload-third-patch-speculative-execution/
https://www.wired.com/story/intel-zombieload-third-patch-speculative-execution/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling


[34] P. Kunert. If at first you don’t succeed, you’re
likely Intel: Second Spectre microcode fix
emitted, February 21, 2018. The Register.
https://www.theregister.co.uk/2018/02/21/
intel_spectre_2_microcode_patch/.

[35] B. Lee, C. Song, T. Kim, and W. Lee. Type Casting
Verification: Stopping an Emerging Attack Vector. In
Proceedings of USENIX Security, pages 81–96, August
2015.

[36] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Man-
gard. ARMageddon: Cache Attacks on Mobile Devices.
In Proceedings of USENIX Security, pages 549–564,
2016.

[37] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg. Meltdown: Reading Kernel
Memory from User Space. In Proceedings of USENIX
Security, pages 973–990, August 2018.

[38] K. Lu, C. Song, B. Lee, S.P. Chung, T. Kim, and W. Lee.
ASLR-Guard: Stopping Address Space Leakage for
Code Reuse Attacks. In Proceedings of CCS, pages
280–291, October 2015.

[39] K. Murdock, D. Oswald, F.D. Garcia, J. Van Bulck,
D. Gruss, and F. Piessens. Plundervolt: Software-based
Fault Injection Attacks against Intel SGX. In Proceed-
ings of the IEEE Symposium on Security and Privacy,
May 2020.

[40] A. Myers and B. Liskov. Protecting Privacy Using
the Decentralized Label Model. ACM Transactions on
Software Engineering and Methodology, 9(4):410–442,
2000.

[41] T. Mytkowicz, M. Musuvathi, and W. Schulte. Data-
Parallel Finite-State Machines. In Proceedings of ASP-
LOS, pages 529–542, March 2016.

[42] B. Parno, J.M. McCune, and A. Perrig.
Bootstrapping Trust in Modern Computers,
2011. https://www.microsoft.com/en-us/
research/wp-content/uploads/2016/02/
BootstrappingTrustBook.pdf.

[43] R. Roemer, E. Buchanan, H. Shacham, and S. Savage.
Return-Oriented Programming: Systems, Languages,
and Applications. ACM Transactions on Information
and System Security, 15(1), March 2012.

[44] R. Rogowski, M. Morton, F. Li, F. Monrose, K.Z. Snow,
and M. Polychronaki. Revisiting Browser Security in
the Modern Era: New Data-only Attacks and Defenses.
In Proceedings of the IEEE European Symposium on
Security and Privacy, pages 366–381, April 2017.

[45] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich. VC3:
Trustworthy Data Analytics in the Cloud using SGX.
In Proceedings of IEEE Symposium on Security and
Privacy, pages 38–54, May 2015.

[46] M. Schwarz, M. Lipp, D. Moghimi, J. van Bulck,
J. Stecklina, T. Prescher, and D. Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In Proceed-
ings of CCS, pages 753–768, November 2019.

[47] D. Shen. Exploiting Trustzone on An-
droid. In Black Hat, August 2015. https:
//www.blackhat.com/docs/us-15/materials/
us-15-Shen-Attacking-Your-Trusted-Core-
Exploiting-Trustzone-On-Android-wp.pdf.

[48] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX:
Eradicating Controlled-Channel Attacks Against En-
clave Programs. In Proceedings of NDSS, February
2017.

[49] K.Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi. Just-In-Time Code
Reuse: On the Effectiveness of Fine-Grained Address
Space Layout Randomization. In Proceedings of IEEE
Symposium on Security and Privacy, pages 574–588,
May 2013.

[50] Trusted Computing Group. TCG Infrastructure Work-
ing Group Architecture Part II: Integrity Management,
November 17, 2006. Specification Version 1.0, Revision
1.0.

[51] Trusted Computing Group. TCG Attestation PTS Proto-
col: Binding to TNC IF-M, November 24, 2011. Speci-
fication Version 1.0, Revision 28.

[52] S. van Schaik, A. Milburn, S. Osterlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida.
RIDL: Rogue In-Flight Data Load. In Proceedings
of the IEEE Symposium on Security and Privacy, May
2020.

[53] A. Waterman and K. Asanovic. The RISC-
V Instruction Set Manual, Volume II: Privi-
leged Architecture, May 7, 2017. Version 1.10.
https://content.riscv.org/wp-content/
uploads/2017/05/riscv-privileged-v1.10.pdf.

[54] D. Williams-King, G. Gobieski1, K. Williams-King,
J.P. Blake, X. Yuan, P. Colp, M. Zheng, V.P. Kemerlis,
J. Yang, and W. Aiello. Shuffler: Fast and Deployable
Continuous Code Re-Randomization. In Proceedings
of OSDI, pages 367–382, November 2016.

https://www.theregister.co.uk/2018/02/21/intel_spectre_2_microcode_patch/
https://www.theregister.co.uk/2018/02/21/intel_spectre_2_microcode_patch/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/BootstrappingTrustBook.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/BootstrappingTrustBook.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/BootstrappingTrustBook.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Shen-Attacking-Your-Trusted-Core-Exploiting-Trustzone-On-Android-wp.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf


[55] B. Yee, D. Sehr, G. Dardyk, J.B. Chen, R. Muth, T. Or-
mandy, S. Okasaka, N. Narula, and N. Fullagar. Native
Client: A Sandbox for Portable, Untrusted x86 Native
Code. In Proceedings of the IEEE Symposium on Secu-
rity and Privacy, May 2009.

[56] D. Zhang. From Concurrent State Machines to Reli-
able Multi-threaded Java Code, April 2018. PhD thesis.
Technische Universiteit Eindhoven.

[57] N. Zhang, K. Sun, D. Shands, W. Lou, and Y.T. Hou.

TruSpy: Cache Side-Channel Information Leakage from
the Secure World on ARM Devices, 2016. Cryp-
tology ePrint Archive: Report 2016/980. https://
eprint.iacr.org/2016/980.pdf.

[58] W. Zheng, A. Dave, J.G. Beekman, R.A. Popa, J.E. Gon-
zalez, and I. Stoica. Opaque: An Oblivious and En-
crypted Distributed Analytics Platform. In Proceedings
of NSDI, pages 283–298, March 2017.

https://eprint.iacr.org/2016/980.pdf
https://eprint.iacr.org/2016/980.pdf

	Introduction
	Background
	Security challenge #1: Weak Isolation
	Security challenge #2: Post-load Integrity
	Security challenge #3: Opaqueness

	Our Proposal: Isolated Monitor Execution
	Open Challenges
	Desired Feedback

