
Towards Plan-aware Resource Allocation in Serverless Query Processing

Malay Bag
malayb@microsoft.com

Microsoft

Alekh Jindal
alekh.jindal@microsoft.com

Microsoft

Hiren Patel
hirenp@microsoft.com

Microsoft

Abstract
Resource allocation for serverless query processing is a chal-
lenge. Unfortunately, prior approaches have treated queries as
black boxes, thereby missing significant resource optimization
opportunities. In this paper, we propose a plan-aware resource
allocation approach where the resources are adaptively allo-
cated based on the runtime characteristics of the query plan.
We show the savings opportunity from such an allocation
scheme over production SCOPE workloads at Microsoft. We
present our current implementation of a greedy version that
periodically estimates the peak resource for the remaining of
the query as the query execution progresses. Our experimental
evaluation shows that such an implementation could already
save more than 8% resource usage over one of our production
virtual clusters. We conclude by opening the discussion on
various strategies for plan-aware resource allocation and their
implications on the cloud computing stack.

1 Introduction

A new breed of serverless query processing is becoming in-
creasing popular, where the system takes care of automati-
cally provisioning the resources for analytical queries, e.g.,
Athena [2], Big Query [6], SCOPE [4]. This is attractive for
the users since they do not have to worry about resource allo-
cation and they pay-as-you-go at the query level, however, it
is highly challenging for the cloud providers due to multiple
reasons. First of all, it is very hard to estimate the fine-grained
resource requirements for each query at compile time. This is
because the relationship between resource and query perfor-
mance is non-trivial, even for expert users [9]. The problem
gets worse with the lack of accurate statistics over massive
inputs sets in big data. Second, the resource requirements
change over the course of query execution. For instance, ana-
lytical queries often have large scans and data shuffles early
on, thereby requiring much more scale out in early parts of
the query plan. The question then is whether to allocate for
the peak, or the average, or something else. Finally, analytical

Default AllocationOver-
allocation Over-

allocation
Over-
allocation

Re
so

ur
ce

s

Figure 1: Resource usage in a typical SCOPE job over time.

queries are often long running and therefore over-allocation
of resources could lead to significant inefficiencies in terms
of resource overall utilization.

To illustrate, consider the SCOPE big data analytics plat-
form at Microsoft, where the users specify the declarative
SCOPE queries and the system takes care of running it in a
massively distributed environment. The SCOPE query proces-
sor relies on a user-specified resource limit, i.e., the maximum
number of containers (or tokens) that a query could use, and re-
serves them as guaranteed resources before starting the query
execution. In case a query needs more resources, SCOPE
can opportunistically use spare tokens from the cluster and
thus improve the overall resource utilization [3]. However, the
guaranteed resources once allocated are blocked for the entire
duration of the SCOPE job. For instance, Figure 1 shows the
token usage skyline in a typical SCOPE job. The dotted line
shows the user-specified tokens while the solid line shows
the actual tokens used over time. The gap between the two
is indicated as over-allocation. We make the following key
observations:

• The user-specified resource limit is more than 50% off
than the actual peak resource. Indeed, it is very hard for
users to get the resource-limit right.

• The actual resource consumption is not a straight line
but rather a curve, with multiple peaks, and therefore a
fixed resource allocation may not be the best strategy.

• The resource requirements peaks early on, with succes-
sively smaller peaks later on. Thus, the query needs pro-
gressively less resources over time.

Query
Compiler

Query
Optimizer

Job
Scheduler

Job
Manager

Resource
Shaper

SCOPE
script

AST
Peak

resource
hint

Modify
Resource

Allocation

Request/Release resources1 3

Result

Peak resource
limit

2

Query
plans

5

4 8

6
Task Finish
Event

7

Plan-aware
Resource Allocation

Figure 2: Plan-aware resource allocation highlighted in blue.

• Considering the end-to-end job execution, the area under
the curved line is much smaller than the area under the
dotted line, indicating significant gains possible.

In the rest of the paper, we first argue that the above chal-
lenges are rooted in the fact that current approaches to re-
source allocation in big data environments are black-box
in nature. We then propose to adopt a plan-aware approach
where the resource manager is aware of the fine-grained struc-
ture (and resource needs) of the query plan, and present po-
tential saving opportunities from the SCOPE workloads at
Microsoft. As a first step towards plan-aware resource allo-
cation, we present a greedy resource shaping algorithm for
adaptively adjusting the resource allocation as the job execu-
tion progresses. We show an experimental evaluation of this
scheme over our production SCOPE workloads. Finally, we
seek discussion and feedback on several open topics.

2 Prior Art: Black Box Resource Allocation

We saw from Figure 1 that current resource allocation in
SCOPE does not consider the query plans and rather considers
a SCOPE job as a black box. Furthermore, the user-specified
token counts aims to provision the peak resources that re-
mains fixed throughout the job execution. Given the large gap
between allocated and actual resource consumption, efficient
resource provisioning has received a lot of attention in the
context of cloud workloads. In particular, for big data systems,
the typical approach is to determine the resource requirements
of a job based on past history of resource consumption, e.g.,
Morpheus [8]. Alternate approach is to perform sample runs
and build models using them, e.g., Ernest [11]. However, these
approaches still treat jobs as black box models without consid-
ering the shape of the job or how the resources requirements
change in different stages of the job (or even over time).

Other works on resource modeling and optimization builds
resource cost models which could be then used to pick re-
sources for a given query plan, e.g., Perforator [9]. However,
Perforator [9] still relies on sample runs and is limited to
static allocation and do not adapt over the course of job execu-
tion. Jockey [5] considers dynamic re-allocation of resources,
however, they employ much heavier simulator that is very
expensive to execute at runtime. As a result, Jockey creates an

Re
so

ur
ce

s

Plan-aware Allocation

Default Allocation

Figure 3: An instance of plan-aware resource allocation over
the same typical SCOPE job as shown in Figure 1.

estimator based on previous runs, much similar to Morpheus,
which the system can use to re-allocate resources. Instead,
one could use a very lightweight simulator that uses cost esti-
mates of each stage from the query optimizer and only replays
the vertex scheduling strategy. In case the cost estimates are
inaccurate, we could fix them separately using learned cost
models [10]. Finally, Raqo [12] considers finding the opti-
mal resources for each operator in the query plan as part of
query optimization, however, it misses the transformation of
operators into a stage graph and how cost varies with varying
resources on this stage graph.

In summary, prior art considered analytical queries as black
boxes, thereby missing the opportunity to tune resource allo-
cation to the fine-grained behavior of the queries over time.

3 Plan-aware Resource Allocation

We now describe our plan-aware resource allocation approach.
Figure 2 depicts the scheme for a typical big data processing
system. The key addition here is a resource shaper component
that adapts the resources to the query plan characteristics
over time. To do this, the job manager invokes the resource
shaper at periodic intervals, e.g., whenever a task finishes
(Step 6). The resource shaper considers the query plan and the
tasks finished so far to provide a possibly modified resource
allocation (Step 7). Finally, the job manager coordinates with
the job scheduler to either request or to release resources
(Step 8). Note that the resource shaper could run in-process
within the job manager, to handle dynamic changes to the
execution graph, and the query plans could be passed on to
the job manager anyways, thereby eliminating Step 5.

Figure 3 shows an instance of plan-aware resource alloca-
tion where the resource shaper simply re-computes the new
peak for the remainder of the query plan as the query execu-
tion progresses. At any time, if the newer computed allocation
is lower than the current one, the system releases the excess
resources. We can see that compared to the default allocation,
plan-aware allocation has significantly lower resource usage,
defined as the area under the resource allocation curve. Fur-
thermore, these savings come without sacrificing the query
performance. Finally, the above resources optimizations are
completely automatic and transparent for the users.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100 1000

Fr
ac

tio
n

of
 J

ob
s

Ratio of Allocated/Peak resources

Cluster1
Cluster2
Cluster3
Cluster4
Cluster5

(a) CDF of Allocated Vs Peak Resources

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100 1000

Fr
ac

tio
n

of
 J

ob
s

Ratio of Allocated/Average resources

Cluster1
Cluster2
Cluster3
Cluster4
Cluster5

(b) CDF of Allocated Vs Average Resources

Table 1

Cluster ClusterName Over-Allocation Jobs (Allocated -Peak) Gap (Allocated - Tight) Gap (Peak - Actual) Gap PeakAlloc Savings AdaptiveAlloc Savings TightAlloc Savings TOTAL SAVINGS
(over-alloc jobs)

TOTAL SAVINGS
(entire workload)

Cluster1 Cosmos08 59 11.7 33 3.2 1.6 1.9 0.7 4.2 2.20200108222401

Cluster2 Cosmos09 56 8.3 41 8.5 1.8 3.2 7.4 12.4 3.35143311804171

Cluster3 Cosmos11 55 15.3 37 3.8 4.3 2.3 0.8 7.4 2.51365827423681

Cluster4 Cosmos14 43 4.5 35 2.9 4.3 1.5 5.8 1.66286604873666

Cluster5 Cosmos15 38 4.7 30 3.4 4.8 1.5 0.6 6.9 1.34404890624625

Pe
rc

en
ta

ge

0

15

30

45

60

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

Over-Allocation Jobs

Pe
rc

en
ta

ge

0

5

10

15

20

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

Allocated-Peak Gap Peak-Actual Gap

Pe
rc

en
ta

ge

0

12

24

36

48

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

Allocated-Tight Gap

Pe
rc

en
ta

ge

0

5

10

15

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

PeakAlloc AdaptiveAlloc TightAlloc

Overall: 2.2%

�1

(c) Allocation gap for recurring jobs

Figure 4: Resource optimization opportunity from different production clusters at Microsoft.

3.1 Saving Opportunities

We now present an analysis of production SCOPE workloads
at Microsoft. SCOPE job consists of stages that are connected
in a directed acyclic graph (DAG) with the data flow be-
ing from top to bottom. Each stage further contains one or
more physical operators that could be processed locally in
a single container, and instances of a stage (called vertices)
can process different partitions of data in parallel. For the
sake of presentation, we limit our discussion to maximum
degree of parallelism (also referred to as tokens in SCOPE)
as the unit of resource, however, one could easily extend it
to other dimensions such as container size, VM type, etc. As
mentioned earlier in Section 1, SCOPE jobs relies on a user
provided maximum number of tokens to reserve (the allocated
resources) before the job starts executing. Therefore, we first
analyze the effectiveness of this resource allocation. Figure 4a
shows the cumulative distribution of the ratio of the allocated
and the peak consumed resources of SCOPE jobs from a sin-
gle day in five different production clusters at Microsoft, com-
prising of 10s of thousands of jobs from each of the clusters.
The vertical black line shows the ideal ratio when allocated re-
sources are equal to the peak resources. Interestingly, we see
from Figure 4a that 40% to 60% of the jobs are over-allocated
in different clusters, by as much as 1000x, indicating signif-
icant opportunities for down-sizing the resource allocation.
The curve for Cluster5 is the best since the business unit on
that cluster spent considerable effort to build client-side tools
for resource allocation. However, Cluster5 still suffers from
over-allocation in 40% of the jobs, with more than 10 times
over-allocation in 15% of the jobs. Figure 4b shows the cumu-
lative allocated and average resource consumption in each job.
Now we see that 70% to 85% jobs are over-allocated with
respect to their average resource consumption. This proves
that there is a significant gap between the peak and the aver-
age resource consumption, and an adaptive allocation strategy
could indeed be helpful. Finally, Figure 4c shows the aggre-
gate over-allocation opportunity on each of the clusters. We
break down the over-allocation into two components: (i) the
gap between the allocated and the peak resource usage in each
job, and (ii) the gap between the peak and the actual resource

usage. Here, the resource usage is defined as the area under
the resource curve. We can see from Figure 4c that the gap
between allocated and peak resources ranges from 5−10%,
while the gap between peak and actual resource usage adds
another 3− 9%. Together, they represent 8− 19% resource
efficiency opportunity for 40−60% of the workload, trans-
lating to tens of millions of dollars in operations costs in the
exabyte-scale SCOPE infrastructure.

Reducing the above identified over-allocation has several
implications. First of all, it improves the operational efficiency
in a highly valuable business that powers big data analytics
across the whole of Microsoft, including products such as
Office, Windows, Bing, Xbox, etc. Second, it frees up guaran-
teed resources that could be used to submit more SCOPE jobs.
Third, it reduces the queuing time of jobs by having them re-
quest for less resources. And finally, it improves the user expe-
rience by automating a mandatory parameter in SCOPE jobs.
Note that apart from reducing the over-allocation, one could
also increase the allocation for significantly under-allocated
jobs. This could not only improve the job performance but
also make job performance more predictable, since right-
sizing the allocation reduces the dependence on opportunistic
resource allocation [3].

4 Greedy Resource Shaper

We now describe a greedy implementation of resource shaper
that dynamically shapes the resource allocation based on the
query execution graph, as illustrated in Figure 3. The idea is
to estimate the peak resource usage in the remaining of the
job execution, and release any excess resources. We have pur-
posefully chosen to be more conservative by only releasing
resources, rather than being more aggressive in following the
resource curve and both releasing and requesting resources.
This is because releasing resources is a more lightweight oper-
ation without incurring the request overheads on the resource
manager or the queuing overheads on the job execution. It is
therefore pragmatic to passively inform the resource manager
of the spare resources which could be recycled at any time.
To detect the peak for the remaining query, we present a novel

S1[100] S2[100] S3[70] [30]

S5[20][30] S6[50] S7[25]

S8[25] S9[25]

S4[80] [20]

S10[25] S11[50] S12[50]

Input1 Input2 Input3 Input4

Output1 Output1 Output1

30

M
ax

 w
id

th

50 50

130
Tr

ee
-if

ie
d

jo
b

gr
ap

h

Figure 5: Shaping the resources for a typical SCOPE job at a
particular point in execution.

query graph based peak resource estimator that could be in-
voked at any point duration the course of query execution,
e.g., at the end of each task execution. Excess resources are
released via communication between the job manager and the
job scheduler.

Below we discuss the two steps, namely tree-ification and
max-cut, for estimating the peak resource in the remaining of
the job execution.

1. Tree-ification. A key techniques that we use for estimating
the peak resources for the remaining of the job is to convert a
job graph into one or more trees. This is possible by removing
one of the output edges of the Spool operators in the job graph,
since Spool is the only operator in SCOPE that could have
more than one consumers1. The intuition behind removing
one of the output Spool edges is that the stage containing the
Spool operator could not run concurrently with its consumer
stages. We remove the edge with the consumer that has the
maximum in-degree. In case of a tie we pick any consumer
at random. Furthermore, in the trivial case, if the maximum
in-degree of spool consumers is one then we do not remove
any edge, since the subgraph is already a tree.

2. Max-cut. Figure 5 illustrates the resource shaper on a
typical SCOPE job. The stage graph of this job consists of
twelve stages over four inputs and produces three outputs.
Note that stages S2, S6, and S8 have spool operators, since
they have two downstream consumers each. To convert this
DAG into a set of trees, we consider removing one of the
outgoing edges of these spools. For S8, we remove the edge
with S11, since it has a higher in-degree than S10. For S2
and S6, we pick an edge at random since their consumers
have equal in-degrees of 2. This results in three trees that

1A Spool operator represents a common subexpression that is consumed
by one or more downstream operators [4].

Algorithm 1: Resource Shaper
Input :stage graph G, stage vertices V , current resources R,

completion state W
Output :updated peak P

T = Treeify(G)
maxRemaining = Empty
foreach root ∈ T.roots do

maxRemaining.Add(RemainingPeak(root, V , W))

if maxRemaining < R then
GiveUpResources(R− maxRemaining)

Algorithm 2: RemainingPeak
Input :root stage s, stage vertices V , completion state W
Output :updated peak P

if W [s]≥V [s] then
return Empty;

childResources = Empty;
foreach child ∈ s.ChildStages do

childResources.Add(RemainingPeak(child, V , W));
return Max(Resources(s), childResources)

are highlighted in red, green, and yellow in Figure 5. Now
consider the vertices shown in square brackets for each of
the stage in Figure 5. Also consider a point in execution
where the green numbers in brackets denote the completed
vertices, the yellow numbers denote the running vertices, and
the white numbers denote vertices that are yet to be scheduled.
Given this particular point in execution, we can compute the
maximum remaining peak by computing the maximum width
of each of the trees, which turns out to be 30, 50, and 50
respectively, and then taking the sum of the individual tree
widths, i.e., 130. If the job started with say 200 tokens then
we can release 70 tokens at this point in execution.

Algorithm 1 shows the control loop of the resource shaper
that first converts the job graph (G) into a set of trees, and then
recursively computes the remaining peak in each of the tree
root nodes (note that the trees are inverted here, so the output
operators are the root nodes). If the total remaining peak is
less than the current resources, then the job manager makes
the call to give up excess resources. Algorithm 2 find the
remaining peak. The algorithm returns empty if all vertices
in a stage s have been completed, i.e., the count of completed
vertices in s (denoted as W[s]) matches or exceeds the total
vertices in s (denoted as V[s]). Otherwise, it iteratively adds
the peak resources of its children, and returns the max of the
children and parent peak resources. Function Resources(s)
gives the count of vertices that are yet to be executed in stage
s. Essentially, the peak resource estimation algorithm finds
the max-cut in each of the trees generated from the job graph
and takes the sum.

Table 1

Query ID Root process id pnall totalduration saved duration pntd pnd pntd% pnd%

1

8D2389A9-
BA05-4D37-
BC85-9545CFE1
D2AB

80 1152 0 1108 92160 88640 0 0

2
23BEE3A2-5EC9
-48D5-89E2-
B26DBA4BDF66

50 473 4156 434 23650 21700 17.57294 19.15207

3
F8CE696A-1993-
464D-9E37-8685
22AF5B62

80 1943 25426 1898 155440 151840 16.35744 16.74526

4

CA700B59-
E0F6-495B-
AF78-29B0AC98
C8DD

130 5839 0 5816 759070 756080 0 0

5
D83595CC-4084-
4082-B382-
C8525CF7F74E

60 2702 76033 2677 162120 160620 46.89921 47.33719

6
7E0D0720-3D18-
4561-995D-
A5DB5BFE44C3

50 361 3844 338 18050 16900 21.2964 22.74556

7
FCECABC9-2239
-4FCE-9567-26A
8BF20F76D

172 600 64496 572 103200 98384 62.49612 65.55537

8
5E01CAA1-4813-
4E0A-B39B-
CB418174578F

66 301 8769 278 19866 18348 44.14074 47.79267

9
DB18D5F5-108E
-4D77-B235-
BD383F4993F9

52 506 11428 474 26312 24648 43.43265 46.36482

10
B352F65D-6D79-
4AEA-9754-63B3
AF3E7DAB

150 4548 0 4512 682200 676800 0 0

11
2EB7F049-2C17-
4AB6-848E-330C
E9ABBC9B

100 5213 79251 5191 521300 519100 15.20257 15.267

12
81B6586F-5D2F-
4063-84BD-2209
808D6972

172 419 49693 396 72068 68112 68.95293 72.95778

13
770392E8-
CEB7-4440-8363
-4BF4CC3BD4F7

80 869 0 851 69520 68080 0 0

14
5101348E-25DC-
487E-9121-
B05935AC4BB1

235 569 0 535 133715 125725 0 0

15

C61645D8-00BC
-4DCA-
B071-05673C6B
BC72

130 6508 0 6484 846040 842920 0 0

16
DBE6346E-1FB1
-4F49-8188-20D3
1100C629

130 6902 0 6871 897260 893230 0 0

17

58564AFC-591A-
49CD-
B5AD-4261F0BB
631B

52 355 9331 337 18460 17524 50.54713 53.24698

18

E76E19F9-
BEAB-4B0D-
A712-
EB1DA0E23C96

172 311 32621 291 53492 50052 60.98295 65.17422

19

B834C3E1-
BCC5-4CB0-
A0F6-70B3B016
34F9

66 166 4437 147 10956 9702 40.49836 45.73284

20
E61CEE2B-301B
-4BB7-9BFA-
E46AE8BF4BD1

50 135 983 116 6750 5800 14.56296 16.94828

21

34177A87-4E35-
4340-
A32B-7012E84A
BA14

50 223 2299 196 11150 9800 20.61883 23.45918

22

A668D027-
B6D7-4C7C-
B407-
D59F579B61F0

80 1119 0 1089 89520 87120 0 0

23
96657B9A-5301-
4331-A2B9-
C6740F238F5F

235 381 0 359 89535 84365 0 0

24
8CA5549A-58E7-
4C8E-993D-4B06
393064C2

235 1025 0 1003 240875 235705 0 0

25

88B38E92-5EA8-
42EB-
ACB9-23249130
A832

50 175 2115 150 8750 7500 24.17143 28.2

26

EDC84D42-
DB39-402E-9AD
A-
AAB25F2C199C

235 571 0 545 134185 128075 0 0

27

9FF12EDC-
F517-42F5-
A6EA-
B2223E008A70

50 274 2273 248 13700 12400 16.59124 18.33065

28

B6A1CC8E-7B7
D-4567-
B49A-60BD9C75
BE13

80 1129 0 1104 90320 88320 0 0

29
6868F958-01D2-
4B19-9856-
F49B96375F01

100 284 2951 248 28400 24800 10.39085 11.89919

30
738F6242-849C-
40B4-9FDF-
B96BD1A0E78A

100 1262 11486 1241 126200 124100 9.101426 9.255439

31

C0C33948-
D5C3-4E5C-
B74B-
EEC5550E3FB3

235 877 0 858 206095 201630 0 0

32
ED558997-3484-
4DD7-B9A7-
FD9F1BC2DBA2

60 2734 70001 2713 164040 162780 42.67313 43.00344

33

22EBF5EA-2505-
474C-
B54E-2FD1C642
B44B

150 4144 0 4105 621600 615750 0 0

34
8C8B5E60-9445-
4C39-BD13-
D4C65EBC0D5C

130 6314 0 6289 820820 817570 0 0

Query ID

Pe
rc

en
ta

ge
 S

av
in

gs

0

20

40

60

80

Production SCOPE Jobs
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 154

�1

Figure 6: Performance results from one of the production virtual cluster. Each bar denotes the percentage saving in resource
usage by each of the production SCOPE queries on that virtual cluster.

Pe
rc

en
ta

ge
 S

av
in

gs

0

3

6

9

12

15

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5

�1

Figure 7: Resource usage savings over the same workload as
in Figure 4. (Compare with the opportunity from Figure 4c)

5 Evaluation

We now present an evaluation of greedy our resource shaper
implementation in two parts: (1) to show the estimated ben-
efits from the entire production workload fleet, and (2) to
show the performance results over one of the virtual clusters,
i.e., a smaller subset of the overall workload. For both experi-
ments we use resource usage savings as the metrics. Recall
that resource usage is defined as the area under the resource
allocation curve.

5.1 Overall Estimated Savings

We first present estimated gains over the same workload fleet
as used for the motivating analysis from Figure 4, i.e., a single
day workload consisting of 10s of thousands of SCOPE jobs
from each of five different production clusters. For this experi-
ment, we replayed the resource skyline history for each of the
jobs and invoked the resource shaper module to estimate the
savings. Figure 7 shows the percentage guaranteed resources
that gets freed up when the resource shaper estimates the peak
resource usage in the remaining of the job execution, and
release any excess resources. The percentage savings varies
for different clusters. Cluster2 shows the highest benefit since

it contains jobs processing very large datasets that could use
very high peak resources but then their resource requirements
taper very fast. These are ideal examples where resources
could be quickly freed up as the job execution proceeds.

Note that the savings shown in Figure 7 are modest com-
pared to the opportunity illustrated in Figure 4c. This is be-
cause our current resource shaper only computes the peak in
the remaining of the query plan, since releasing excess re-
sources is much cheaper than requesting additional ones. Still,
overall, we see that 4−13% of guaranteed resources in over-
allocated jobs could be freed up in different clusters. This
translates to significant operational cost savings in a hundreds
of millions of dollar business.

5.2 Performance Results
Given that production resources are scarce, running perfor-
mance experiments over the entire production fleet is not
feasible. Therefore, we pick a subset by selecting one of the
virtual clusters2 with 154 SCOPE jobs. We re-ran each of
these jobs over the production inputs but redirected their out-
puts to a dummy location, similar as in prior works [1, 7, 13].
In each of the executions, the job manager invokes the re-
source shaper and measures the actual savings in resource
usage. Figure 6 shows the savings for each of the jobs. We
see that 99 out of 154 jobs, i.e., 64%, having savings. The
savings could range up to 78%, with average savings being
20.5% across all 154 jobs. Overall, we see a savings of 8.3%
for the cumulative resource usage of these 154 jobs.

The above results demonstrate the utility of plan-aware
resource allocation for our production workloads. Note that
there are no side effects of our approach, i.e., there is no per-
formance penalty and the overheads for running the resource
shaper algorithm are negligible, since we perform a single
post-order traversal over each of the trees.

2A virtual cluster is a sub-cluster roughly, roughly corresponding to a
business unit, having a dedicated set of resources for its workload.

6 Discussion Topics

We believe that adding plan-awareness to resource allocation
opens up several new topics, and we seek active discussion
and feedback. We summarize some of these topics below.
Beyond conservative resource shaper? The resource shaper
presented in this paper was super conservative, and yet sub-
stantial gains were seen. The question therefore is whether
more aggressive strategies could do better. For instance, in-
stead of only finding the next peaks, could we also follow the
resource curve down the “valley" and come back up? This
would require to release and request resources over the course
of query execution, and the question is whether this is going to
be practical without hurting performance (e.g., waiting in the
queue for acquiring resources). Could efficient queue imple-
mentations help here? Being plan-aware not only allows us to
react to the query execution behavior but also see and reason
about what lies ahead in the remaining of the plan. Having
said that, so far we have only considered a conservative set of
improvements by looking at the query plan structure, and it is
still unclear how far we are from the optimal.
Modeling task scheduler? We made several simplifying as-
sumptions regarding how the tasks would be scheduled. And
even though we could still see gains in performance experi-
ments, we believe there is still a huge room for modeling the
task scheduler more carefully. For instance, we assumed that
all stages run equally fast, but what if we were to consider the
stage execution costs from the query optimizer? Likewise, the
assumption that the total max-width in each of the trees will
give the next peak is again very conservative. The question is
whether we could mimic the task scheduler more accurately
and whether that matters in practice.
Re-planning the query plan? Just as resource allocation is
impacted by the query plan, vice-versa is true as well. Es-
pecially if resources are constrained or if there is a lot of
contention, then an alternate query plan could be chosen.
Likewise, just as the resource allocation changes over time,
so could the query plan. For instance, instead of requesting
more resources, adjusting the query plan could be cheaper.
Merits and demerits of plan-aware resource allocation.
Finally, it would be interesting to get feedback on the merits
and loopholes in our approach. Specifically, since we are mak-
ing resource allocation dynamic and depending on the query
plan, are there concerns about the robustness of the job man-
ager? Do we see other problems with the dynamic behavior?
Is the plan-aware approach more likely to cope with changing
or mixed workload scenarios, where the black box approaches
need more time, or data, or manual adjustments to adapt to?
Discussing some of these tradeoffs would be interesting.

References

[1] Sameer Agarwal, Srikanth Kandula, Nicolas Bruno, Ming-
Chuan Wu, Ion Stoica, and Jingren Zhou. Re-optimizing
data-parallel computing. In NSDI, pages 21–21. USENIX,
2012.

[2] AWS Athena. https://aws.amazon.com/athena/.

[3] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren
Zhou, Zhengping Qian, Ming Wu, and Lidong Zhou. Apollo:
scalable and coordinated scheduling for cloud-scale computing.
In OSDI, pages 285–300, 2014.

[4] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey,
Darren Shakib, Simon Weaver, and Jingren Zhou. SCOPE: easy
and efficient parallel processing of massive data sets. PVLDB,
1(2):1265–1276, 2008.

[5] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric
Boutin, and Rodrigo Fonseca. Jockey: Guaranteed Job La-
tency in Data Parallel Clusters. In EuroSys, pages 99–112,
2012.

[6] Google BigQuery. https://cloud.google.com/bigquery.

[7] Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di,
Malay Bag, Marc Friedman, Yifung Lin, Konstantinos Karana-
sos, and Sriram Rao. Computation Reuse in Analytics Job
Service at Microsoft. In SIGMOD, 2018.

[8] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shra-
van Matthur Narayanamurthy, Alexey Tumanov, Jonathan
Yaniv, Ruslan Mavlyutov, Íñigo Goiri, Subru Krishnan, Janard-
han Kulkarni, et al. Morpheus: Towards automated slos for
enterprise clusters. In OSDI, pages 117–134, 2016.

[9] Kaushik Rajan, Dharmesh Kakadia, Carlo Curino, and Subru
Krishnan. Perforator: eloquent performance models for re-
source optimization. In Symposium on Cloud Computing,
pages 415–427. ACM, 2016.

[10] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and
Wangchao Le. Cost models for big data query processing:
Learning, retrofitting, and our findings. In SIGMOD, 2020.

[11] Shivaram Venkataraman, Zongheng Yang, Michael J Franklin,
Benjamin Recht, and Ion Stoica. Ernest: Efficient performance
prediction for large-scale advanced analytics. In NSDI, pages
363–378, 2016.

[12] L. Viswanathan, A. Jindal, and K. Karanasos. Query and Re-
source Optimization: Bridging the Gap. In ICDE, pages 1384–
1387, 2018.

[13] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel,
Wangchao Le, Shi Qiao, and Sriram Rao. Towards a Learning
Optimizer for Shared Clouds. PVLDB, 12(3):210–222, 2018.

	Introduction
	Prior Art: Black Box Resource Allocation
	Plan-aware Resource Allocation
	Saving Opportunities

	Greedy Resource Shaper
	Evaluation
	Overall Estimated Savings
	Performance Results

	Discussion Topics

