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Game Instance

Video Games

World’s largest entertainment sector
• $143.5 billion in 2020

Game engines use tightly-coupled subsystems
• Graphics, physics, AI, lighting, audio, etc…

• Synchronize within the game loop

Ambitious creativity -> Quality of Experience
• Higher computation & hardware demands

• Game consoles, GPUs, VR, etc.
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Cloud Gaming

Cloud gaming exploits cloud resources providing Games as a Service
• Google Stadia, Microsoft Project xCloud

• Game executed in cloud VM with minor* modifications

Benefits
• Instant access to games without downloads

• Powerful hardware -> higher quality experiences

• Cross-device access

Cloud VM
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Research Problem

Reliance on Cloud performance & dependability
• VM interference or failure

• Network volatility

• Inconsistent framerate, total service loss

Monolithic game engine architectures
• Tightly-coupled subsystems

• Limited portability (OS, graphics API)

• Game per VM: “Equiv. game experience + latency”
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Objectives

Features
• Loose-coupling graphical renderer and game engine

• Dynamic cloud-client frame interlacing

• Graphical API hot-swapping

Advantages
• Platform and graphics API independence

• Tolerate against Cloud failure and network loss

• First distributed game engine designed for the cloud

A Cloud Gaming Framework for Distributed Game Engines



Overview

CloudRend
• Leverages generic graphical commands

• Converts these commands to API specific calls

• Cloud-client rendering

• Supports Vulkan, OpenGL
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Mitigation

Hotswap
Run-time switching of Graphical APIs 

(Vulkan, OpenGL)

Frame Interlacing
Collaborative cloud-client rendering 

(based on network)
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Architecture
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Setup

System

• Cloud: i7-7700HQ, GTX 1050 GPU, Vulkan/OpenGL

• Client: Raspberry Pi 4, Quad Core Cortex-A72, OpenGL ES 3.0 

Variable latency wireless network (16 – 100 ms)

Experiments

• Cloud-client frame interlacing (100-0% … 0%-100%)

• Graphical API hotswapping per frame

• 10,000 frame per run, frames per second (FPS), network

Low: 500 vertices

High: 200k vertices



Initial Results

Higher consistent framerates 
when interlacing

Low network utilization
~4 Mbps
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Conclusions

Cloud gaming framework via distributed game engines
• Successful game distribution across cloud and client devices

• 33% performance gains, cloud latency vs. client computation

Vision
• Create fully-fledged cloud gaming framework and distributed game engines
• Cloud gaming in the home 

Future Work
• Network-aware + power-aware frame interlacing

• System at scale – shared subsystems

• More decoupled subsystems – AI, collision detection, physics
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