
A Cloud Gaming Framework for Dynamic Graphical
Rendering Towards Achieving Distributed Game Engines

James Bulman, Peter Garraghan

Evolving Distributed Systems Lab

Lancaster University, UK

Game Instance

Video Games

World’s largest entertainment sector
• $143.5 billion in 2020

Game engines use tightly-coupled subsystems
• Graphics, physics, AI, lighting, audio, etc…

• Synchronize within the game loop

Ambitious creativity -> Quality of Experience
• Higher computation & hardware demands

• Game consoles, GPUs, VR, etc.

Update
game
state

Render
game
state

Handle
Input

Swap
Buffers

Game Code

Graphical API

Operating System

Hardware

Cloud Gaming

Cloud gaming exploits cloud resources providing Games as a Service
• Google Stadia, Microsoft Project xCloud

• Game executed in cloud VM with minor* modifications

Benefits
• Instant access to games without downloads

• Powerful hardware -> higher quality experiences

• Cross-device access

Cloud VM

Video by Jordan Mechner, licensed under the Creative Commons Attribution-Share Alike 4.0 International

https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Research Problem

Reliance on Cloud performance & dependability
• VM interference or failure

• Network volatility

• Inconsistent framerate, total service loss

Monolithic game engine architectures
• Tightly-coupled subsystems

• Limited portability (OS, graphics API)

• Game per VM: “Equiv. game experience + latency”

Allow cloud-client
execution

Distributed game
subsystems

Client device

Input
processor

Video
player

Input Video

Cloud VM

Input
processor

Update
game state

Render
game state

Video
encoding

Objectives

Features
• Loose-coupling graphical renderer and game engine

• Dynamic cloud-client frame interlacing

• Graphical API hot-swapping

Advantages
• Platform and graphics API independence

• Tolerate against Cloud failure and network loss

• First distributed game engine designed for the cloud

A Cloud Gaming Framework for Distributed Game Engines

Overview

CloudRend
• Leverages generic graphical commands

• Converts these commands to API specific calls

• Cloud-client rendering

• Supports Vulkan, OpenGL

Cloud VM
CloudRend

Mitigation

API
Hotswap

Frame
Interlacing

Game Instance Manager

Graphic
Converter

QoS
Monitor

Renderer
Selector

Command
Buffer

CloudRend
CloudRend

OpenGL Vulkan

Mitigation

Hotswap
Run-time switching of Graphical APIs

(Vulkan, OpenGL)

Frame Interlacing
Collaborative cloud-client rendering

(based on network)

Cloud VM

OpenGL

Vulkan

Cloud VM

OpenGL

Cloud VM

30 frames/s 30 frames/s

Architecture

Game Loop

Screen

Local
Renderer
Instance

OpenGL

CloudRend
Instance

#2

OpenGL

Encoder

CloudRend
Instance

#1

Vulkan

Encoder

CloudRend
Interface

Decoder

0% 100%

Client Cloud

CloudRend

Client Cloud

Screen

Game Loop
CloudRend
Interface

RenderModel()

RenderLightSet()

EndFrame()
Transmit

Command Buffer

Decode Frame

CloudRend
Instance

Command
Processor

RenderModel()

RenderLightSet()

RenderModel
Vulkan

vkCmdBindVertexBuffers()

vkCmdPushConstants()

vkCmdBindIndexBuffers()

vkCmdDrawIndexed()

RenderLightSet
Vulkan

vkCmdPushConstants()
Encode Frame

Read Framebuffer

Setup

System

• Cloud: i7-7700HQ, GTX 1050 GPU, Vulkan/OpenGL

• Client: Raspberry Pi 4, Quad Core Cortex-A72, OpenGL ES 3.0

Variable latency wireless network (16 – 100 ms)

Experiments

• Cloud-client frame interlacing (100-0% … 0%-100%)

• Graphical API hotswapping per frame

• 10,000 frame per run, frames per second (FPS), network

Low: 500 vertices

High: 200k vertices

Initial Results

Higher consistent framerates
when interlacing

Low network utilization
~4 Mbps

0

20

40

60

Local 25%
Cloud

50%
Cloud

75%
Cloud

Cloud

Fr
am

e
ra

te
 (

FP
S)

Low Vertices Scene

High Vertices Scene Trade-off render complexity
vs network latency

Conclusions

Cloud gaming framework via distributed game engines
• Successful game distribution across cloud and client devices

• 33% performance gains, cloud latency vs. client computation

Vision
• Create fully-fledged cloud gaming framework and distributed game engines
• Cloud gaming in the home

Future Work
• Network-aware + power-aware frame interlacing

• System at scale – shared subsystems

• More decoupled subsystems – AI, collision detection, physics

Thanks

Contact
• James Bulman - j.bulman@lancaster.ac.uk

• Peter Garraghan - p.garraghan@lancaster.ac.uk

Evolving Distributed Systems Lab

School of Computing & Communications

Lancaster University, UK

