Towards Plan-aw
In Serverless

Malay Bag
Alekh Jindal

Hiren Patel

Resource Allocation Issue in Serverless
Query Processing

= Hard to estimate resource
requirement at compile time

Default Allocation

= Resource requirement
changes over execution period

(%]
Q
O
et
>
(@]
wv
Q
o

= For long running analytical
guery, over-allocation leads to
significant inefficiencies.

" Prior Work

= SCOPE does not consider the query plan, instead treat the job as black box

= Allocate resource based on the past history and/or query plan (Morpheus,
Ernest, Perforator)

= Dynamic re-allocation using expensive estimator based on previous run
(Jockey)

= Find optimal resources for each operator during compile/optimize step (Raqo)

In summary prior approaches does not tune resource allocation to fine grained
behavior of the query execution over time

Plan—aware Resource Allocation

= Periodically invokes resource

shaper to calculate new oscm © orei’fjfce f

resource requirement. - Query Job
Compiler - Opt|m|zer » Scheduler » Manager el

9 Peak resource

= Resource shaper handles it gqm
dynamic changes in the graph |

H |
0 Plan-aware Resource
= Calculates new requirement Resource Allocation Shaper

based on remaining part of
the job graph

@ Request/ReIease resources \

Task F|n|5h ‘."‘ Modlfy 1

L [

1> plans Event | | Resource I
: | Allocation |
1

Plan—aware Resource Allocation

= At any point, if new
requirement is less than
current allocation, Job
Manager updates Job
Scheduler

%]
]
(S
—
>
@]
n
(]

o

= No performance impact,
transparent to the user

i Greedy Resource Shaper

Algorithm 1: Resource Shaper

Input :stage graph G, stage vertices V, current resources R,
completion state W
QOutput :updated peak P

T=Treeify(G)
maxRemaining = Empty
foreach root € T.roots do
L maxRemaining. Add(RemainingPeak (root, V, W))

if maxRemaining < R then
L GiveUpResources (R— maxRemaining)

i Greedy Resource Shaper

Algorithm 2: RemainingPeak
Input :root stage s, stage vertices V, completion state W
Output : updated peak P

if W[s] > V|[s] then

| return Empty;

childResources = Empty;
foreach child € s.ChildStages do
|_ childResources.Add(RemainingPeak(child, V, W));

return Max (Resources (s), childResources)

Tree—ification

= Convert DAG to a tree by
removing one of the output
edges of spool operator (which
has multiple consumers)

=

¢t——>

lnputl ‘] |nput2 ‘ Input3 l Input4 ‘
= Remove edges to the consumer m “ m

with maximum in-degree, until
the DAG become a tree m

Max width

= Break ties with random
selection

m m
A 4

‘ Outputl \ Outputl Outputl |

Tree-ified job graph

= Qutput is an inverted tree

@

Max Vertex Cut example

Max width

Outputl Outputl Outputl |

Tree-ified job graph

Evaluation

Run 154 jobs on a virtual
cluster

Overall 8.3% savings of
cumulative resource usage

Potentially there are 8-19%
saving opportunityin our 5
production clusters, which
would save us tens of
millions of dollars in
operating cost

22 29 3 43 50 57 64 71 78 85 92 99 106
Production SCOPE Jobs

13

120 127

134 141 148 154
d

Please contact {malayb, alekh.jindal, hirenp} @ iCro:

