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Resource Allocation Issue in Serverless
Query Processing

= Hard to estimate resource
requirement at compile time

Default Allocation

= Resource requirement
changes over execution period
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= For long running analytical
guery, over-allocation leads to
significant inefficiencies.




" Prior Work

=  SCOPE does not consider the query plan, instead treat the job as black box

= Allocate resource based on the past history and/or query plan (Morpheus,
Ernest, Perforator)

= Dynamic re-allocation using expensive estimator based on previous run
(Jockey)

= Find optimal resources for each operator during compile/optimize step (Raqo)

In summary prior approaches does not tune resource allocation to fine grained
behavior of the query execution over time




Plan—aware Resource Allocation

= Periodically invokes resource
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Plan—aware Resource Allocation

= At any point, if new
requirement is less than
current allocation, Job
Manager updates Job
Scheduler
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= No performance impact,
transparent to the user




i Greedy Resource Shaper

Algorithm 1: Resource Shaper

Input :stage graph G, stage vertices V, current resources R,
completion state W
QOutput :updated peak P

T=Treeify(G)
maxRemaining = Empty
foreach root € T.roots do
L maxRemaining. Add(RemainingPeak (root, V, W))

if maxRemaining < R then
L GiveUpResources (R— maxRemaining)




i Greedy Resource Shaper

Algorithm 2: RemainingPeak
Input :root stage s, stage vertices V, completion state W
Output : updated peak P

if W[s] > V|[s] then

| return Empty;

childResources = Empty;
foreach child € s.ChildStages do
|_ childResources.Add(RemainingPeak(child, V, W));

return Max (Resources (s), childResources)




Tree—ification

= Convert DAG to a tree by
removing one of the output
edges of spool operator (which
has multiple consumers)
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with maximum in-degree, until
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= Break ties with random
selection
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= Qutput is an inverted tree
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Evaluation

Run 154 jobs on a virtual
cluster

Overall 8.3% savings of
cumulative resource usage

Potentially there are 8-19%
saving opportunityin our 5
production clusters, which
would save us tens of
millions of dollars in
operating cost
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