JACKPOT: Online Experimentation of Cloud Microservices

BY M. TOSLALI¹, S. PARTHASARATHY², F. OLIVEIRA², AND A. K. COSKUN¹

¹BOSTON UNIVERSITY; ²IBM T.J. WATSON

Talk @ HotCloud July 15, 2020

Cloud Microservices in Today's World

- Cloud microservices architecture provides agility
 - Shortens code delivery cycles
 - Enables developers to rapidly innovate
- Agile practices encapsulate:
 - Continuous deployment
 - Online experimentation

7/15/2020

Figure from cisco.com

Web & Mobile Online Experimentation

- Goal: Compare multiple versions of a component in production to identify "best" one
- Versions are subject to single KPI¹ (reward, e.g., CTR²)

example.com/a.html

22% conversion

example.com/b.html

CONVERSION

Figure from optimizely.com

7/15/2020

¹ Key performance indicator ² Click-through rate

Cloud Challenges

- Cloud is volatile due to:
 - Resource contention
 - Failures
 - Latency
- Profound financial and reputation damages
- Necessity: multi KPI experiments
 - Latency along with a reward

Half a second delay caused a 20% drop in traffic³

amazon

Every 100ms of latency cost 1% in sales⁴

³ <u>http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html</u>

⁴ https://www.gigaspaces.com/blog/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/

4

Further Challenges Posed by Microservices

- Interactions between microservices can affect the overall user-perceived performance and correctness
- Canopy [Kaldor et al., 2017] describes a scenario on Facebook.com

- Necessity: Experiment with combination of microservices (i.e., path)
 - E.g., path = frontend_v2, backend_v1

Jackpot: Online Experimentation of Cloud Microservices

- We propose a novel formulation for online experimentation of cloud microservices
 - Generalizes traditional approaches used in mobile & web environment
 - Encapsulates challenges posed by the cloud environment
- To enable developers to apply our formulation:
 - We present the system "Jackpot: Online Experimentation of Cloud Microservices"

Design Choices

1) Multivariate experiments

Identify the best *path* instead of best version on a single service

2) Multi-KPI experiments

- Express preferences in an experiment using multiple KPIs (e.g., CTR + latency)
- Hard and soft constraints on KPIs

3) Multi-types of experimentation

- Best path identification
- Utility maximization
- Pure statistical estimation

Jackpot Internals

Istio service mesh provides:

- Traffic management: Mesh should be dynamically configured to issue traffic split between paths
- 2) Distributed tracing: Ability to assess and compare a combination of microservices

Jackpot injects headers to incoming requests in the course of an experiment:

- 1) Enables traffic routing according to a *path*
- 2) Collects path specific KPIs

Jackpot's Workflow

Jackpot input: Experiment Spec

- Provided as a YAML file
- Contains:
 - Services
 - KPIs

Multivariate Sigmoid

$$h_a(p) = \mathbb{E}[X_0[p]]\Pi_{j=1}^k S\left(a\left(1 - \frac{\mathbb{E}[X_j[p]]}{\ell_j}\right)\right)$$

a: Amplification, X_i : KPI, ℓ_i : Constraint

Combine multiple KPIs into one
Flexibility: Hard & Soft constraints

Online Learning

$$h_a(p) = \mathbb{E}[X_0[p]] \prod_{j=1}^k S\left(a\left(1 - \frac{\mathbb{E}[X_j[p]]}{\ell_j}\right)\right)$$

Utility components need to be learned online Jackpot maintains Bayesian belief distributions Monte Carlo sampling answers:

- 1. What is the estimated utility of path *p*?
- 2. What is the probability of p being optimal?

11

Holistic Algorithm: Top-k Sigmoid Thompson Sampling

- Thompson Sampling (TS) is a provably robust multi-armed bandit algorithm
- Multi-armed bandit: exploration vs. exploitation dilemma
- k-STS samples from belief distributions and plug these into the sigmoid function (Monte Carlo)
 - Finally chooses top-k paths uniformly at random

1-STS

- Generalized version of TS
- Exploits the best path
 - Type1: Utility maximization

2-STS

- Generalized version of Top-two TS
- Explores the best and an alternative
 - Type2: Best path identification

N-STS/UNIF

- Uniform policy (UNIF)
- Evaluates each candidate equally

7/15/2020

Type3: Statistical estimates

Experiments

We evaluate the performance of 1-STS, 2-STS, UNIF.

- Constraint on mean latency
 - i.e., E[X1[p]] <= 300ms
- Set $a = 10 \implies$ hard constraint
- Workload: 50 reqs/epoch
- 100 *epochs*, 5 *runs*

Bookinfo application

Best Path Identification

- 1-STS struggles to reach higher confidence levels
 - Selects the optimal in almost all periods
- 2-STS prevents focusing on one candidate
 - Top-2, the best or an alternative is chosen

Best path identification experiment

 2-STS requires <u>49% fewer</u> epochs compared to UNIF, and <u>63% fewer</u> compared to 1-STS

Utility Maximization

- Observe that 1-STS maximizes the reward during experimentation
 - True reward of optimal = 0.77
- 1-STS works toward exploiting the optimal, thus <u>maximizing the utility</u>

Reward maximization experiment.

Next Steps

- Dynamic incorporation of versions as they arrive into ongoing experiments
- The ability to handle heterogeneous cloud applications
 - Absence of header propagation
 — No path-level traffic splitting

THANK YOU

Contact: toslali@bu.edu

Microservices application in a service mesh End-user requests http://w Ingress Tracing substrate Multivariate Probabilistic Belief Experiment traffic policy specification sigmoid distributions JACKPOT Devops Engineer

Jackpot: Online Experimentation of Cloud Microservices

- Online experimentation on a combination of microservices (i.e., paths)
- Multi-KPI experiments
- Multi-types of experimentation