






































































Open	Challenges

• Side-channels	involving	monitor-induced	stalling

• Multi-threaded	applications

• Syscalls

• High-performance	network	IO

• Dyad	Migration

• Additional	die	area



IME	Design:	
Side-channels?
• Constant-time	execution	àruntime	
of	top-half	code	is	tailored	to	the	
worst-case	execution	time	of	
monitor	checks

• Early	launch	of	monitorsà The	
monitor	check	for	instruction	i can	
start	during	an	earlier	instruction	i-n



Open	Challenges

• Side-channels	involving	monitor-induced	stalling

• High-performance	network	IO

• Multi-threaded	applications

• Syscalls

• Dyad	Migration

• Additional	die	area



Open	Challenges

• Side-channels	involving	monitor-induced	stalling

• High-performance	network	IO

• Multi-threaded	applications

• Syscalls

• Dyad	Migration

• Additional	die	area



Open	Challenges

• Side-channels	involving	monitor-induced	stalling

• High-performance	network	IO

• Multi-threaded	applications

• Syscalls

• Dyad	Migration

• Additional	die	area



Open	Challenges

• Side-channels	involving	monitor-induced	stalling

• High-performance	network	IO

• Multi-threaded	applications

• Syscalls

• Dyad	Migration

• Additional	die	area



Open	Challenges

• Side-channels	involving	monitor-induced	stalling

• High-performance	network	IO

• Multi-threaded	applications

• Syscalls

• Dyad	Migration

• Additional	die	area



IME:	Conclusion

1. Isolate	a	secure	computation	from	other	local	computations	

(including	privileged	ones!)

2. Enforce	dynamic	runtime	checks	to	demonstrate	to	users	that	their	

secure	computations	are	actually	secure

3. Provide	a	software	readable	description	of	the	microcode



Thank	you!
Authors

Varun	Gandhi																																																									James	Mickens	
vgandhi@g.harvard.edu mickens@g.harvard.edu


