Rethinking Isolation Mechanisms
for Datacenter Multitenancy

Varun Gandhi and James Mickens

Harvard University

Trusted Execution Environments: Intel SGX

Innovative Instructions and Software Model for Isolated

Execution

Frank McKeen, llya Alexandrovich, Alex Berenzon, Carlos Rozas, Hisham Shafi,

Vedvyas Shanbhogue and Uday Savagaonkar

Intel Corporation

{frank.mckeen, ilya.alexandrovich, alex.berenzon, carlos.v.rozas, his
vedvyas.shanbhogue, uday.savagaonkar }@intel.com

ABSTRACT
For years the PC community has struggled to provide secure
solutions on open platforms. Intel has developed innovative new
hnology to enable SW developers to develop and deploy secure
applications on open platforms. The technology enables
applications to execute with confidentiality and integrity in the
native OS environment. It does this by providing ISA extensions
for generating hardware enforceable containers at a granularity
determined by the developer. These containers while opaque to the
operating system are managed by the OS. This paper analyzes the
threats and attacks to applications. It then describes the ISA
extension for generatinga HW based container. Finally it describes
the programming model of this container.

1 INTRODUCTION

Today’s computer systems handle increasing amounts of
important, sensitive, and valuable information. This information
must be protected from tampering and theft. An entire industry is
devoted to stealing information such as banking data or corporate
intellectual property from tems [1]. There are many
applications which must keep cret on a platform. Some
example applications are financial programs, ebanking, and
medical records programs. Each secret holder may be mutually
distrustful of other secret holders. ch secret must be protected
independently of the other secrets. This paper describes Intel®
Software Guard Extensions, (Intel® SGX), a set of new
instructions and memory access changes added to the Intel®
Architecture. These extensions allow an application to instantiate
a protected container, referred to as an enclave. An encla
protected area in the application’s add ace, Figure 1, which
provides confidentiality and integrity even in the presence of
privileged malware. Attempted accesses to the enclave memory
area from software not resident in the enclave are prevented even
from privileged software such as virtual machine monitors, BIOS,
or operating systems.

SGX allows the protected portion of an application to be
distributed in the clear. Before the enclave is built the enclave code
and data is free for inspection and analysis. The protected portion
is loaded into an enclave where its code and data is measured. Once
the application’s code and data is loaded into an enclave, it is
protected against all external software access. An application can
prove its identity to a remote party and be securely provisioned
with keys and credentials. The application can also request an
enclave & platform specific key that it can use to protect keys and
data that it wishes to store outside the enclave.

In addition to the security properties, the enclave
environment offers scalability and performance associated with

execution on the main CPU of an op

Supporting SGX involves two
Architecture. First is the change
semantics. The second is protection d

This paper is divided into seve
provide an overview of the SGX |
describes the SGX instruction set an|
describes the hardware components u
an application. Section 5 describes t
Section 6 describes how an applicatid
enclave. Section 7 describes how enc|
protected memory to allow for mul
Finally, in section 8, we summarize
this technology contains novel enhany
in open systems.

The SGX architecture also
architecture for remote attestation an
[2]. In addition some important usage}
described in [3].

—

App Stack

App Code

Figure 1: Enclave within Applicati

2 Protection Overview
all other software fror
located inside an enclave including
from other enclaves. Attempts to mo
detected and either prevented or exec|
of security properties are:

= 'SGX provides detection o

Intel SGX Explained

Victor Costan and Srinivas Devadas
victor@costan.us, devadas @mit.edu
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

ABSTRACT

Intel’s Software Guard Extensions (SGX) is a set of
extensions to the Intel architecture that aims to pro-
vide integrity and confidentiality guarantees to security-
sensitive computation performed on a computer where
all the privileged software (kernel, hypervisor, etc) is
potentially malicious.

This paper analyzes Intel SGX, based on the 3 pa-
pers [14,78, 137] that introduced it, on the Intel Software
Developer’s Manual [100] (which supersedes the SGX
manuals [94,98]), on an ISCA 2015 tutorial [102], and
on two patents [108, 136]. We use the papers, reference
manuals, and tutorial as primary data sources, and only
draw on the patents to fill in missing information.

This paper’s contributions are a summary of the
Intel-specific archites | and micro-archi | details
needed to understand SGX, a detailed and structured pre-
sentation of the publicly available information on SGX,
a series of intelligent guesses about some important but
undocumented aspects of SGX, and an analysis of SGX's
security properties.

1 OVERVIEW

Secure remote computation (Figure 1) is the problem
of executing software on a remote computer owned and
maintained by an untrusted party, with some integrity
and confidentiality guarantees. In the general setting,
secure remote computation is an unsolved problem. Fully
Homomorphic Encryption [61] solves the problem for a

{Data Owner's
{Computer

{Remote Computer

| |Computation

| container
Dispatcher 3

sewp | :
Computation ; i
i|| Private Code :

|| private Data ||!

i
Trusts Authors Manages
Trusts. ﬁ
Data Owner Software Infrastructure
Provider Owner

Figure 1: Secure remote computation. A user relies on a remote
computer, owned by an untrusted party, to perform some computation
on her data. The user has some assurance of the computation’s
integrity and confidentiality.

performed on it.

SGX relies on software attestation, like its predeces-
sors, the TPM [71] and TXT [70]. Attestation (Figure 3)
proves to a user that she is communicating with a specific
piece of software running in a secure container hosted
by the trusted hardware. The proof is a cryptographic
signature that certifies the hash of the secure container’s
contents. It follows that the remote computer’s owner can
load any software in a secure container, but the remote

p service user will refuse to load her data into

limited family of p but has an i ctical
performance overhead [138].

Intel’s Software Guard Extensions (SGX) is the latest
iteration in a long line of trusted computing (Figure [2)
designs, which aim to solve the secure remote compu-
tation problem by leveraging trusted hardware in the
remote p The trusted hard blishes a se-
cure contai and the remote service user
uploads the desired computation and data into the secure
container. The trusted hardware protects the data’s con-
fidentiality and integrity while the computation is being

a secure container whose contents’ hash does not match
the expected value.

The remote computation service user verifies the ar-
testation key used to produce the signature against an
endorsement certificate created by the trusted hardware’s
manufacturer. The certificate states that the attestation
key is only known to the trusted hardware, and only used
for the purpose of attestation.

SGX stands out from its predecessors by the amount
of code covered by the attestation, which is in the Trusted

=)/

30% 15%

NIELTI;OWN SPECTRE

50%
CPU

FORESHADOW

Deficiencies of SGX

e Weak Isolation

 Tenants share micro-architectural
state in SGX

What if'l told you

e Post-load Integrity
e SGX incapable of verifying post-load

integrity, e.g., CFl »‘
Trusted HW

* Opaqueness cannot be trusted

e Poor vulnerability management

* Microcode patches often incorrect
or incomplete

Our Research:
Isolated Monitor Execution

* Enforce dynamic security invariants (e.g.,

CFl) on the application
e Strong microarchitectural isolation

» Software-readable description of

microarchitecture

Appg source code

v
=

Compiler

Monitorg

Appg binary

Developer
machine

. 4

Datacenter machine

Top-half RAM

App, binary
monitored

Appg binary
monitored

App; binary
unmonitored

Top-half pipeline

1

Bottom-half pipeline

|

TLB |] TLB blacklist
entries entries

Pipeline

Re&i]sters
|

a0

I Pipeline

Registers

e,
100+

LB entries]

Monitoro
Bottom-half RAM

Corex

Software-readable

microarchitectural description

Outline

e SGX Overview
* IME Design
e Related Work

* Open Challenges

Overview of SGX Untrusted host process embeds an

x86-64: Virtual address enclave
space of untrusted host e Cannot access enclave pages: reads
: return -1, writes are ignored
Kernel static data * Jumps to enclave code using EENTER
Kernel code * Enclave code runs at Ring 3 (i.e.,
Kernel heap+stacks the least-privileged level)
All of physical memory - * However, can access the entire
Entry table address space of host
Stack e Cannot issue syscall or int
Empty gap instructions: relies on host for 10!
e Data for a write IO must be
Stack placed in memory accessible to
Heap untrusted host
Enclave] Static data » Data from a read 10 must be
Code pulled from memory accessible
Hf*adp L to untrusted host
Static data * Returns to untrusted host using
Code EEXIT instruction

Overview of SGX e EPCM is an SGX structure

x86-64: Virtual address e Contains one metadata entry for
space of untrusted host each page in the EPC

e Can only be modified by SGX

Kernel static data

instructions

Kernel code e Consulted during memory accesses
Kernel heap+stacks to prevent EPC pages from
All of physical memory — unauthorized access
Entry table _ .
Stack * Memory Encryption Engine

Empty gap * Adds counters, MACs, and encryption to
outgoing memory writes to EPC

* For incoming reads of EPC, decrypts data

Stack Heap and then checks it for integrity and
] freshness (i.e., no rollbacks)
Enclave Static data
Heap Code
Static data o

Code

SGX is Vulnerable to Hyperthreading
Side Channels!

Instruction Register Rewritten Instruction Register Execute Register Retire
queue rename instruction scheduling read write
queue
PC Reorder Wyffer:
4} logical coly A
Enclave Rename R
code table ——
Ol g 4nniny
Non-enclave Rename } R
Code table
:§>7 Reorder fiffer:
PC N ’ ‘ logicg#fore B
Out-of-order execution
In-order

retirement

SGX is Vulnerable to Cache Side Channels!

* Meltdown showed that, due to out-of-order execution, there are race
conditions between:

* A memory access bringing a value into the cache, and that value being computed
on

* The permission checks on that memory access

* An untrusted host embeds an enclave. .. so the enclave and the
untrusted host share the same L1 cache!
e Untrusted host can:
* Load enclave
e Wait for enclave to bring a cleartext secret byte into the L1 cache
* Leverage Meltdown-style probe array to read the value of the byte

e Secret to leak must be in L1 cache because the race condition is only winnable if
the secret isin L1, not L2 or L3 = L1 terminal fault [Foreshadow Paper]

Outline

* SGX Overview

* IME Design

 Security Monitor Policies
* Related Work

* Open Challenges

ME Design:
High-level |dea

e Dyad
* Monitored application thread

* Monitor: A dynamic integrity checker

* Monitor consists of software-defined
security checks that run in the bottom-
half pipeline

e Bottom-half CPU can
* Read top-half instruction sequence
and register state
 Stall/resume and raise exception in
the top-half pipeline

Appg source code

Compiler

v
=

Appg binary Monitorg

Developer
machine

L 4

Datacenter machine

Top-half RAM

App binary
(monitored)

TLB |]
entries

Re&ilsters Pipeline

Top-half pipeline

OooQ
oo —u—}I}D»I}D»[h

Registers I Pipeline

iy by

LB entriesH

Monitoro
Bottom-half RAM

Bottom-half pipeline

Corex

Software-readable

microarchitectural description

IME Design: Address space layout

x86-64: Top-half virtual address
space of an untrusted host

FFFFFI;FF FRFFFFFF Kernel static data
Kernel code
Kernel-mode
Kernel heap+stacks Reserved top-half
¢ - RAM pages
FFFF8000 00000000 |—1of Physical memory Entry table
Empty gap Stack
00007FFF FFFFFFFF Stack
T Monitored Thread Heap
U d Static data
ser-moae Heap o
l Static data -
Code

00000000 00000000

IME Design: Address space layout

x86-64: Bottom-half virtual address

FFFFFFFF FFFFFFFF

A
Empty Gap

v

FFFF8000 00000000

00007FFF FFFFFFFF

!

User-mode

l

00000000 00000000

space of a monitor

Empty gap

Allocated bottom-half

RAM pages

Entry table

Stack

Monitor

Heap

Static data

Code

IME: Control Flow Integrity

Control flow integrity dictates that software execution follow a path
determined by a control flow graph (CFG)

0x000154D2 0x000154D2 0x000154D2

Static CFG Call graph 1 Q O Call graph 2
O Ox@00984E4

0x00002 DAS

- X

Ox00035FA1 Ox00035FA1 0x00035FA1

0x000984E4 O0x00002DA9S

IME: Control Flow Integrity

Control flow integrity dictates that software execution follow a path
determined by a control flow graph (CFG)

0x000154D2 0x000154D2 0x000154D2
i . - Call graph 2
Static CFG CFl is performed on addresses) —TERR

reflected in register state

0x000984E4 ‘ ’ Ox00002DA9S U 0x000984E4

OXOOOOZ DA9

5 X

Ox00035FA1 Ox00035FA1 0x00035FA1

Instruction Register Rewritten Instruction Register Execute L1 cache Register Retire
queue rename instruction scheduling read write
queue

Store buffers
Fetch+decode [PC Reorder buffer:
N :@ logical core A
B Rename
[
— > > > _ >
: table - :§>;
1 o —
> i @ > —» e R e
= D)
| Rename =
—> —> > — >
table
L1 instruction :§>7 Reorder buffer:
cache PC logical core B
L1 data cache

RAM
Launch monitor code? pﬁ‘i’:teer fop-half instr+inputssoutputs buffer * Developers provide a code pointer table
table ‘ L1 data cache * Key: A top-half PC value that should
o0 trigger bottom-half monitoring
,) EE) . VaIug: The bo’Ftom-haIf PC of the
CIC] monitor function
* Hits in the table wake up the bottom-half

RAM L1 instruction Fetch Decode Execute Memory Retire
cache CPU to execute CFG checks

Instruction Register Rewritten Instruction Register Execute L1 cache Register Retire

queue rename instruction scheduling read write
queue
Store buffers
Fetch+decode |PC Reorder buffer:
N :§>7 logical core A
E i .| Rename o .
: | table - = :§>; N
> E @ > e e o> -
i Rename . - :5}
' | table g >
L1 instruction :E>7 Reorder buffer:
cache PC logical core B
L1 data cache
RAM
XTI D T CRL. 5 pg?:tzr Top-half instr+inp$ts+outputs buffer ® Bottom-half HW Copies the top-half
table { L1 data cache instruction stream into a circular
OO buffer
> > L] > : : :
oo * Bottom-half ISA defines instructions
that can operate on bottom-half
RAM Uinstruction Fetch Decode Execute Memory Retire state and top-half stream state

cache

Rewritten Instruction
instruction scheduling

queue

h 4
|

Instruction Register
queue rename
Fetch+decode |PC
||
I 1
11
P Rename
— >
: table
:
> |
1
1
: Rename
table

@

L1 instruction

A4

Register Execute L1 cache Register Retire
read write

Store buffers

Reorder buffer:
logical core A

Reorder buffer:

YYOY

cache PC logical core B
L1 data cache
RAM
Ll (O G pﬁ?:t:r Top-half instr+inputs+outputs buffer
(o) .0 1 (o)
table 1 data cache cmp A:tpcb.ﬁt.lo %b1l |
e //For top-half instruction at
. { OO //PC %tpcb, compare the first
00 .) .
0o //input register to bottom-//half register
%b1l
RAM L1 instruction Fetch Decode Execute Memory Retire

cache

Instruction Register Rewritten Instruction

queue rename instruction scheduling
queue
Fetch+decode |PC

: 1

1

1

| .| Rename _ |

' table

Register Execute L1 cache Register Retire
read write

Store buffers

Reorder buffer:
logical core A

RAM

@

Rename
table

v
|

L1 instruction

cache

PC

YYOY

Reorder buffer:

logical core B
L1 data cache A

- ? Code v
IR DT G2 . Top-half instr+inputs+outputs buffer
pointer
table L1 data cache

[
> > oo

00

RAM L1 instruction Fetch Decode Execute Memory

cache

-

Allow bottom-half to stall or zap top-half
instruction retirement and memory writes

//TOP-HALF CODE

//fo O() T .5%:.25} wch _L'ET:::; gl e s e ok

mov Ox1, %rax I B .

mov -0x20(%rbp), %rcx el I > BE prospery

mov %rl2, %rsi ol m 1= e =g %%%%

mov @x8, %rdx Nmml J_ 8 Iy e /L D{

call %rcx == =N L N | - i |

//InstrAddr: ©x0000F126 i N I I e I
s mrr o | o S]

//MONITOR CODE y > gg

//Ensure that foo() ﬁﬁkgil

//invokes bar() — e S L S

mov Ox0000F126, %tpch

cmp %tpcb:%trcx, %brdx:(0xO0000F126)
failnz %tpcb

//TOP-HALF CODE
//foo()

mov Ox1, %rax
mov -0x20(%rbp), %rcx

mov %rl2, %rsi

mov Ox8, %rdx

call %rcx
//InstrAddr: Ox0000F126 e

//MONITOR CODE

Instructio Regist Rewritt, Instructio Register Execut L1 cach Register Ret
queue rename instruct heduling read write
qu 1]
| IS Store buffers
Fetch+decode IE R Reorder buffer:
| e T8 iy
Rename s D D
table g N
=11 s 1 s]
— > — > 1
2 I'] & B[n
[E H E D D
= 3 i
L1 instruction o] (@] > | p— Reorder buffer:
ache £ logical core B
v [} g
L1 data cache
£
I
]

//Ensure that foo()
//invokes bar()

mov OX0000F126, %tpcb
cmp %tpcb:%trcx, %brdx:(0xO0000F126)
failnz %tpcb

//TOP-HALF CODE

//foo() me mcion sheing 1o i
mov Ox1l, %rax B . .
mov -0x20(%rbp), %rcx > 8- o i .
mov %rl2, %rsi O

o > 2 'l 3 }* '
mov Ox8, %rdx = = 2 %%%
call %rcx L o
//InstrAddr: Ox0000F126 o .

]

//MONITOR CODE
//Ensure that foo()
//invokes bar() o
mov Ox0000F126, %tpch

cmp %tpcb:%trcx, %brdx:(0xO0000F126)
failnz %tpcb

Stalls because %rcx hasn’t been written
by top-half yet!

//TOP-HALF CODE

/ / _F () Instruction Register .Rewritt_en In:tr:c:ion Reg s;er Execute L1 cache Regi_ster Ret
0 0 queue rename |ns‘;(lrl:cut;on sc 1 i ing rea ' write
mov 6X1 J %r‘ax ___ Store buffers
Fetch+decode — Reorder buffer:
mov -0x20(%rbp), %rcx e I i =N i core
o Ly ,| Rename R n
mov %rl2, %rsi g table = | S = || 2
mov Ox8, %rdx e 1O e E N
o g T | table - [|
C a 1 1 /o r c x L1 irls;t:::tion E L E ’f(;rdelrct;l:ffegr:
//InstrAddr: Ox0000F126 v | s
L — |
Launch m _J
//MONITOR CODE

//Ensure that foo()
//invokes bar() e
mov Ox0000F126, %tpch

cmp %tpcb:%trcx, %brdx:(0xO0000F126)
failnz %tpcb

Stalls because %rcx hasn’t been written
by top-half yet!

//TOP-HALF CODE - | | | | |
//foo() P S - . ke R

mov -0x20(%rbp), %rcx
mov %rl2, %rsi

mov Ox8, %rdx

call %rcx

//InstrAddr: Ox0000F126 S

mov Ox1, %rax B ‘
tch+decode Reorder buffer:

mov

//MONITOR CODE

//Ensure that foo()
//invokes bar() s
mov Ox0000F126, Z%tpcb

cmp %tpcb:%trcx, %brdx:(0xO0000F126)
failnz %tpcb

Stalls because %rcx hasn’t been written
by top-half yet!

//TOP-HALF CODE o | - |
//foo() e g i il

mov -0x20(%rbp), %rcx
mov %rl2, %rsi

mov Ox8, %rdx

call %rcx

//InstrAddr: Ox0000F126 v

mov Ox1, %rax - ‘
tch+decode Reorder buffer:

mov

//MONITOR CODE

//Ensure that foo()
//invokes bar() o
mov Ox0000F126, Z%tpcb

cmp %tpcb:%trcx, %brdx:(0xO000F126)
failnz %tpcb

Stalls because %rcx hasn’t been written
by top-half yet!

//TOP-HALF CODE

Instruction Register Rewritten Instruction Register Execute L1 cache Register Retire
_F queue rename instruction scheduling read write
//foo(sioingyl sipesa
o -
mov eX1 J Ar‘ax Ll Store buffers
o, o, Fetch+decode |E| I Rleo:delr bt:ffeAr:
mov -0x20(%rbp), %rcx y - ogicalcore A
L Rename
(o) (o) L > > > Ll
mov %rl2, %rsi | table =N

-
mov
mov

|

PR e ST
logical core B
A

mOV 6X8, %r‘dX E Rename M
g table

call %rcx B
//InstrAddr: Ox0000F126

&
T
o "

L1 data cache

LJ

//MONITOR CODE
//Ensure that foo()
//invokes bar()

mov Ox0000F126, Z%tpcb
cmp %tpcb:%trcx, %brdx:(0xO0000F126)
failnz %tpcb

//TOP-HALF CODE
//foo()

mov Ox1, %rax

mov -0x20(%rbp), %rcx
mov %rl2, %rsi

mov Ox8, %rdx

call %rcx

//InstrAddr: Ox0000F126

//MONITOR CODE
//Ensure that foo()
//invokes bar()

mov Ox0000F126, Z%tpcb

cmp %tpcb:%trcx, %brdx:(0x0000F126)

failnz %tpcb

TYTRERY

instruction

L1 data cache

instruction

|-

Outline

* Trusted Computing Overview
* IME Design

e Security Monitor Policies

* Implementation

* Related Work

* Open Challenges

Related Work: TEEs in real world

Get Signal Support Blog Developers Careers Donate ¥ ©

. Signal

SGX contact discovery

Private contact discovery using SGX is fairly simple at a high level:

N

. Run a contact discovery service in a secure SGX enclave.

N

. Clients that wish to perform contact discovery negotiate a secure connection
over the network all the way through the remote OS to the enclave.

]

3. Clients perform remote attestation to ensure that the code which is running in
the enclave is the same as the expected published open source code.

4. Clients transmit the encrypted identifiers from their address book to the
enclave.

5. The enclave looks up a client’s contacts in the set of all registered users and
encrypts the results back to the client.

Since the enclave attests to the software that’s running remotely, and since the
remote server and OS have no visibility into the enclave, the service learns
nothing about the contents of the client request. It's almost as if the client is
executing the query locally on the client device.

Unfortunately, doing private computation in an SGX enclave is more difficult than
it may initially seem.

Related Work: ARM TrustZone

Normal world Secure world

Secure world
user mode

Normal world
user mode

!

Normal world
privileged modes

—— ———————]

Secure world
privileged modes

Monitor mode |«

: Modes in an ARM core implementing the Security Extensions

Related Work: Sanctum

P e e e e e e e G G G G G- G G- G G- G G- - — — — — — — — — — — — — — — — — — —

|

:Machine

|

Hypervisor l

 Hypervisor Enclave multiplexing

_ Operating System i

ESupervisor Enclave management :

z A é

: Host Application i :

: Enclave

 User Enclave setup v

: Enclave syscall shims <> Sanctum-aware runtime
Non-sensitive code and data Sensitive code and data

Software Stack

Sanctum: Minimal Hardware Extensions for Strong Software Isolation,

Costan, et al.

Related Work: Sanctum

Normal DRAM Sanctum DRAM
page colors page colors / regions
E 0 0
LLC set colors
E MEMTOP MEMTOP

BRegion0 [HRegion1 WRegion2 [IRegion3
BRegion4 [IRegion5 MRegion6 [|Region?7

DRAM partitioning

Sanctum: Minimal Hardware Extensions for Strong Software Isolation,
Costan, et al.

Related Work: Sanctum

e ccacaaee--y e ccccacaaee-y
'
'
'
'

Logical CPU | ! Logical CPU |

, E _ : L1 L1
Registers - Registers H' Fetch I-Cache || I-TLB

T

Decode Microcode

...........................

Instruction Scheduler

i

L1

. - L1
D-Cache

D-TLB

A

INT INT INT MEM

4

Page Miss Handler (PMH)

FP FP SSE SSE

Execution Units

No isolation for hyper-threading

Sanctum: Minimal Hardware Extensions for Strong Software Isolation,
Costan, et al.

Related Work: Sanctum

No runtime integrity checks

Sanctum: Minimal Hardware Extensions for Strong Software Isolation,
Costan, et al.

Outline

* Trusted Computing Overview
* IME Design

* Security Monitor Policies

* Implementation

* Related Work

* Open Challenges

Open Challenges

* Side-channels involving monitor-induced stalling
* Multi-threaded applications

* Syscalls

* High-performance network 10

* Dyad Migration

 Additional die area

J

| I\/l E DeSlgn : Apposource code
. Compiler Develqper
Side-channels? r@ machine
Appg binary Monitorg
* Constant-time execution =2 runtime ' ' ¥
- . Datacenter machine
of top-half code is tailored to the T°f;;a:fn:‘:""
. . (monitored)
worst-case execution time of
. £ TLB |]
monitor checks 2 | Lentries
"';,I; I%Isters Pipeline
* Early launch of monitors—=> The e mtdddd)

Registers I Pipeline

LB entries]

monitor check for instruction i can

start during an earlier instruction i-n

Bottom-half pipeline

Monitorg
Bottom-half RAM

Corey

Software-readable
microarchitectural description

Open Challenges

* Side-channels involving monitor-induced stalling
* High-performance network 10

* Multi-threaded applications

* Syscalls

* Dyad Migration

e Additional die area

Open Challenges

* Side-channels involving monitor-induced stalling
* High-performance network 10

* Multi-threaded applications

* Syscalls

* Dyad Migration

e Additional die area

Open Challenges

* Side-channels involving monitor-induced stalling
* High-performance network 10

* Multi-threaded applications

* Syscalls

* Dyad Migration

e Additional die area

Open Challenges

* Side-channels involving monitor-induced stalling
* High-performance network 10

* Multi-threaded applications

* Syscalls

* Dyad Migration

e Additional die area

Open Challenges

* Side-channels involving monitor-induced stalling
* High-performance network 10

* Multi-threaded applications

* Syscalls

* Dyad Migration

e Additional die area

IME: Conclusion

Isolate a secure computation from other local computations

(including privileged ones!)

Enforce dynamic runtime checks to demonstrate to users that their

secure computations are actually secure

Provide a software readable description of the microcode

Thank you!

Authors

Varun Gandhi James Mickens
vgandhi@g.harvard.edu mickens@g.harvard.edu

