

Towards GPU Utilization Prediction for Cloud Deep Learning

Gingfung Yeung, Damian Borowiec, Adrian Friday, Richard Harper, Peter Garraghan

Evolving Distributed System Lab School of Computing & Communications Lancaster University UK

Deep Learning (DL) Systems

Machine Learning engineers, researchers, users

More Deep Learning (DL) workloads Growing number of expensive GPUs

Require efficient resource usage & high DL performance

DL System Challenges

• Avg. GPU utilization

~ 52% in production systems [Jeon et al. '19]

Long job completion + queue times

~ Up to hours [Jeon et al. '19; Gu et al. '19]

Addressed via understanding and exploiting workload patterns

Online profiling approach

DL Metrics

Iteration time

- Useful for scale-out workers, migration, SLA-aware inference
- [Peng et al. '18; Xiao et al.' 18; Shen et al.' 19]
- Network I/O
 - Useful for efficient distributed training
 - [Gu et al. '19]

GPU Utilization

- For packing and calculating interference
- [Thinakaran et al. '19; Xu et al. '19]

Case: Scheduling

Resource Management Framework

Time is Money

Online Profiling

• Pros

- Accurate, near real-time workload patterns
- Provide insights to the system

• Cons

- Heterogenous workloads require different profiles
- Time consuming (~mins to ~hours)
- Require modifying underlying frameworks

Online Profiling

• Pros

- Accurate, near real-time workload patterns
- Provide insights to the system
- Cons Obtain prior execution ?
 - Heterogenous workloads require different profiles
 - Time consuming (~mins to ~hours)
 - Require actual execution onto an isolated machine
 - Require modifying underlying frameworks

Prediction

DL System Challenges

- Avg. GPU utilization
 - ~ 52% in production systems [Jeon et al. '19]
- Long job completion + queue times ~ up to hours [Jeon et al. '19; Gu et al. '19]

Addressed via understanding and exploiting workload patterns

DL Metrics

Iteration time

- Useful for scale-out workers, migration, SLA-aware inference
- [Peng et al. '18; Xiao et al.' 18; Shen et al.' 19]
- Network I/O
 - Useful for efficient distributed training
 - [Gu et al. '19]

GPU Utilization

- For packing and calculating interference
- [Thinakaran et al. '19; Xu et al. '19]

Objective

GPU utilization prediction engine for Cloud DL Systems

Benefits

- Estimates GPU utilization of unseen workloads
- Prior to execution
- No modification of existing DL frameworks
 - E.g. PyTorch, TensorFlow, MXNet...

Analysis, prediction model, case study

DL computation graph

Leverage graph information to **predict** workload usage.

Features: Num. Convs, FLOPs, layers, etc. (See paper for full features list)

 $f(x) \to y$

Analysis

Profile DL workload utilization

• Determine important model features

Set up

- Nvidia 1080, Nvidia 2080, Intel i7-6850k
- 13 DNN model architectures, 81 workloads

See paper for full list of models and permutations.

• Tools

- Nvidia-smi
- Nvidia Nsight Systems

Analysis

Analysis

GPU Utilization Prediction

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(p_i + 1) - \log(y_i + 1))^2}$$

	RMSLE
Linear	0.291
LightGBM	0.255
XGBoost	0.197
Random Forest	0.154

Evaluation

33.5% Makespan reduction61.5% Utilization improvements

Open Challenges

• Hardware

• Number of processing elements, memory bandwidth and cache sizes.

• DL Compilers

• Extract lower level IR to determine optimization decision for more accurate prediction. (e.g. Op fusion – ConvBatchNorm)

Distributed Workload

- Network I/O, parallelism strategy and system configuration.
 - (e.g. ring topology)

Co-location Scheduling

- Incorporate prediction and system constraints
- Derive an optimization algorithm
 - (e.g. Mixed Integer Programming).