
Disaggregation and the Application

Sebastian Angel Mihir Nanavati Siddhartha Sen

CPUs

Memory

G
P

U
s

Storage

R
D

M
A

 N
IC

Traditional data center racks

Prior and current disaggregation efforts

Towards DDCs

OS kernel
+

Cache

Why? Many benefits for operators

1) Independence
• Evolve independently
• Scale independently
• Fail separately

2) Flexible provisioning

3) Less waste

Can you run regular applications on DDCs?

Yes! OSes such as LegoOS [SOSP ‘18]
provide a transparent POSIX API

Should you run regular applications on DDCs?

Summary: terrible performance

App 1

App 2

Goal: send data from App 1 to App 2

Key issue: Too much data movement

Key issue: Too much data movement

App 1

App 2

Goal: send data from App 1 to App 2

Our position:

OSes should expose the disaggregated
nature of DDCs to applications and let

them exploit it for their benefit

In the rest of this talk

• What abstractions should DDC OSes expose to applications?

• Which applications can benefit from these abstractions?

OSes can expose:

• That processes access the same memory nodes

• Failure independence

•Memory nodes might have a CPU/FPGA
• Useful for near-data processing / computation offloading

We propose three new OS abstractions

•Memory grant

•Memory steal

• Failure informers / Spies

Memory grant

App 1

App 2

1) Grant pages to App 2

2) Notify that new pages are available

Properties of Grant

•Grant has move semantics
• Grantor loses access to the memory
• Similar to vmsplice with “GIFT” flag in Linux

•Virtual memory addresses remain the same
• To preserve correctness of internal references
• Problem: what if grantee already used those addresses?

Memory steal

App 1

App 2

2) Notify that pages are gone!

1) Steal pages from App 1

Properties of Steal

• Same semantics as Grant
• But is involuntary: Can happen at any time

• Meant to be used by different instances of the same app
• Can coordinate through the network / use capabilities
• Incorrect steal = bug

• Must ensure stolen memory is consistent
• Can model with crash consistency

Failure informers / Spies

App 1

App 2

“FYI: My memory failed”

ok… so now what?

In the rest of this talk

• What abstractions should DDC OSes expose to applications?

• Which applications can benefit from these abstractions?

Some applications

• Dataflow applications could
• Use Grant to pass data around

• Use Steal to deal with stragglers

• New memcached instances can Steal part of object space (scale out)

• Paxos can use failure informers for quicker reconfigurations
• Memory dies → Paxos replica informs others and then kills itself

• CPU dies → New replica takes over the dead CPU’s memory and keeps going

Summary

Running existing applications on DDC is not advisable

There is potential in modifying apps to exploit the nature of DDCs

OSes should expose more information and control to applications

Grant Steal Spy

