Disaggregation and the Application

Sebastian Angel Mihir Nanavati Siddhartha Sen

&Penn Research

Traditional data center racks

Ny sxasdwz e~

GPUs

o EN-EQ-VLI4-VD
2 3LARVDID @j

Féﬁ:: ¢

"% F"“‘j L_j] "‘z’.'x's’?.‘m: “
Storage

B iz

" Err Ready

Prior and current disaggregation efforts

ceY

mem _ ®—<:>l

Towards DDCs

o | /
OS kernel fopca\ — &—
rEPATL
Cache 54”%

cvu
Locel

Why? Many benetfits for operators

] Memory] 1) Independence

 Evolve independently
CpPY / * Scale independently
Local — &) * Fail separately
mem |
| "/ 540\@&
=00 \ : 2) Flexible provisioning
Loc&\ otV

V (

rf 3) Less waste

me M
A(_cele(ﬂd’ﬂ s

e

Can you run regular applications on DDCs?

Yes! OSes such as LegoOS [SOSP ‘18]
provide a transparent POSIX API

Should you run regular applicat

ions on DDCs?

Understanding the Effect of Data Center Resource
Disaggregation on Production DBMSs

Qizhen Zhang, Yifan Cai, Xinyi Chen. Sebastian Angel
Ang Chen, Vincent Liu, Boon Thau Loo

University of Pennsylvania, Shanghai Jiao Tong University, Rice University

ABSTRACT
Resource di is a new archi fordata

others for storage. To complete a single task, a
b ing node will need to continually “page”

centers in which resources like memory and storage
are decoupled from the CPU, managed independently,
and d through a high- d k. Recent
work has shown that although disaggregated

(DDCs) provid ional benefits,
applications ruming on DDCs experience degraded
performance due to extranetwork latency between the
CPU and their working sets in main memory. DBMSs
are an interesting case study for DDCs for two main
rea-sons: (1)DBMSs normally process data-int

memory from remote nodes into and out of its small
on-board working set, write chunks to remote disks, or
farm out tasks to remote CPUs or GPUs.

Disaggregating resources in this way provides
substantial benefits to data center operators. It allows
them to upgrade and expand each resource

D ly. e.g., if a new pr r y
becomes available or if the workload changes require
additional CPUs. It also allows them to prevent

workloads and rrequire data movement between n the
CPU and their working sets in main memory DBMSs
are an interesting case study for DDCs for two main
rea-sons: (1)DBMSs normally process data-intensive
worlkloads andrequire data movement between
different resource components: and(2) disaggregation
drastically changes the assumption that DEMSscan
rely on their own internal resource management.

ion and over-pr ing,eg,ifa
customer requests an unusual balance between CPU
cores,, RAM, and GPUs that doesnot fit neatly into
an existing machine. Finally, to users, disaggregation
creates the illusion of anear-infinite pool of any
resource for any program. Disaggregation has
fundamental implications on the performance of data-
intensive applications, not all of which are positive
For example, our recent work [8, 38] highlights the

Summary: terrible performance

Key issue: Too much data movement

Goal: send data from App 1 to App 2

Key issue: Too much data movement

Goal: send data from App 1 to App 2

Our position:

OSes should
and let
them exploit it for their benefit

In the rest of this talk

* What abstractions should DDC OSes expose to applications?

* Which applications can benefit from these abstractions?

OSes can expose:

* That processes access the same memory nodes
* Failure independence

* Memory nodes might have a CPU/FPGA
» Useful for near-data processing / computation offloading

We propose three new OS abstractions

* Memory grant
* Memory steal

* Failure informers / Spies

Memory grant

[(Memor_|

M / 1) Grant pages to App 2
CPY % \\/

eV | Q'l'
540\(%& | 7 7 N ; |
cru .
E 2) Notify that new pages are available
Accelerator$ |

Properties of Grant

e Grant has move semantics

* Grantor loses access to the memory
* Similar to vmsplice with “GIFT” flag in Linux

*Virtual memory addresses remain the same
* To preserve correctness of internal references
* Problem: what if grantee already used those addresses?

Memory steal

Properties of Steal

* Same semantics as Grant
* But is involuntary: Can happen at any time

* Meant to be used by different instances of the same app
* Can coordinate through the network / use capabilities
* Incorrect steal = bug

* Must ensure stolen memory is consistent
* Can model with crash consistency

Failure informers / Spies

“FYl: My memory failed”

ok... so now what?

In the rest of this talk

* Which applications can benefit from these abstractions?

Some applications

* Dataflow applications could
* Use Grant to pass data around
* Use Steal to deal with stragglers

* New memcached instances can Steal part of object space (scale out)

* Paxos can use failure informers for quicker reconfigurations
 Memory dies = Paxos replica informs others and then kills itself
* CPU dies = New replica takes over the dead CPU’s memory and keeps going

Ssummary

Running existing applications on DDC is not advisable
There is potential in modifying apps to exploit the nature of DDCs

OSes should expose more information and control to applications

