
Oasis: An Out-of-core Approximate Graph
System via All-Distances Sketches

†Tsun-Yu Yang, ‡Yi Li, †Yizou Chen, ‡Bingzhe Li, and †Ming-Chang Yang
†The Chinese University of Hong Kong

‡The University of Texas at Dallas

23rd USENIX Conference on File and Storage Technologies

Outline

• Introduction

• Background

• Oasis System

• Evaluation

2

Graph and Graph Processing

• Graphs are a powerful data structure that can express a wide range of real-world
relationships. They do this by storing entities as vertices and connections
between entities as edges.

• There are many important graph applications reply on neighborhood information.
- Social network analysis

- Recommendation system

- Navigation planning

• Solutions:
- In-memory graph processing ⇒ efficient but expensive for large-scale graphs

- Out-of-core graph processing ⇒ cheap but slow I/O bandwidth

3

Approximate Graph Processing
• In many real-world applications, exact answers are not always necessary.

• All-distances sketch (ADS) has recently emerged as a promising scheme to
capture neighborhood information.
• ADS is a probabilistic data structure defined for each vertex. It is a “sketch” to summarize

how a vertex u is connected to other vertices in a graph.

• More precisely, an ADS of a vertex u contains the distances of u connected to other
“landmark” vertices.

• According to an existing study 1, ADS is the only sketching scheme that
combines the following three characteristics:

- Multi-Functionality ⇒ ADS can be deployed for various applications

- Controllable and Guaranteed Accuracy ⇒ Control the error bounds of approximation

- Scalability ⇒ space and time complexity grow near-linearly with the graph scale

4
[1] Takuya Akiba and Yosuke Yano. Compact and scalable graph neighborhood sketching, In Proceedings of the 22nd ACM SIGKDD

Key Challenges of ADSs

5

Despite the fact that ADS is well-developed in theory, there is still a wide gap in its
practical use in real-world cases, mostly because of its excessively high memory
consumption.

Key Challenges:

1. Recent efforts in ADS mainly focus on theoretical aspects and propose
algorithms with all-in-memory environments.

2. Since managing ADSs is more complex, most techniques from out-of-core
graph systems is ineffective for ADS scenarios. So, running ADS construction on
traditional out-of-core graph systems leads to poor performance.

Due to these challenges, we propose Oasis, an out-of-core approximate graph system
that brings the ADS technique into practical use by leveraging storage effectively.

Outline

• Introduction

• Background

• Oasis System

• Evaluation

6

All-Distances Sketches – Theory

7

• Given a graph 𝐺 = (𝑉, 𝐸), ADSs are defined with a integer parameter 𝑘 and a
random rank assignment function 𝑟 to all vertices.
• The parameter 𝑘 decides the trade-off between sketch size and estimation accuracy.

• 𝑟 is a rank function, where 𝑟 𝑣 → [0, 1] for any 𝑣 ∈ 𝑉.

𝐴𝐷𝑆 𝑢 = 𝑣, 𝑑𝑢,𝑣 𝑣 ∈ 𝑉, 𝑟 𝑣 < 𝜋(𝑢, 𝑣)}

Each vertex has its own ADS array of size 𝑂(𝑘log𝑉)
➔ The total size of ADSs is 𝑂(𝑉𝑘log𝑉)

𝜋 𝑢, 𝑣 = 𝑘𝑟
𝑡ℎ{𝑁(𝑢, 𝑣)}

𝑁 𝑢, 𝑣 = 𝑥 ∈ 𝑉 𝑑𝑢,𝑥 < 𝑑𝑢,𝑣}

All-Distances Sketches – Overview

8

Raw
Graph

𝑛 times

User input: 𝒌

ADS
Construction

ADS
Estimation

User input: Estimator

Produced
ADSs

Outline

• Introduction

• Background

• Oasis System

• Evaluation

9

Overview of Oasis

10

Memory

Storage

ADS Construction
Module

Oasis
System

Raw
Graph 𝑨𝑫𝑺(𝒗𝟎) 𝑨𝑫𝑺(𝒗𝟏) 𝑨𝑫𝑺(𝒗𝟐) …

Memory Buffer

ADS Estimation
Module

User
Inputs

1

2

3

1

2

3

Partition-based Data Layout

11

Edge Data
(Matrix Rep.)

Sr
c.

 V
ID

 P
ar

ti
ti

o
n

s

Dst. VID Partitions

𝐸00 𝐸01

𝐸10 𝐸11

…

Equal-sized
Blocks

Divide Raw Edge Layout into Different Edge Grids
based on Vertex ID Partitions

So
u

rc
e

V
er

te
x

ID
s

Dst. Vertex IDs

Each thread will
handle one block

Active Data Separation
• Since ADS is the largest data structure

during construction, how to minimize the
I/O amount of loading ADSs is crucial.

• Active data separation is a technique
aiming to minimize the loading for active
ADSs.
• Active ADSs refer to the set of ADSs that

require processing in the current iteration.

12

𝑎 𝑏 𝑐

𝐴𝐷𝑆(𝑏)

Use a separate file to hold the active ADSs

Original ADS file

𝑥

𝑥

Selective ADS Accessing
• Selective ADS Accessing is designed to reduce unnecessary ADS reads by loading

only the ADSs that actually receive updates.

13

𝑎 𝑏 𝑐

𝐴𝐷𝑆(𝑏)

𝑑

𝑒

𝑥

𝑥

𝑥𝑥

Framework of Oasis ADS Estimation

14

Memory
Storage

Oasis
System

𝐴𝐷𝑆(𝑣0)

Memory Buffer

Query Queue { (target vid(s), pointer to estimator), …}

(𝑣0, 1)

ADS
Estimator 1

ADS
Estimator 2

…

𝐴𝐷𝑆(𝑣1) 𝐴𝐷𝑆(𝑣2) …

(𝑣2, 𝑣4, 2) (𝑣1, 1) …

Load ADSs based on the
target vertex IDs

1. Locality-aware Query
Assignment

2. Grid-based Estimation

Outline

• Introduction

• Background

• Oasis System

• Evaluation

15

Evaluation Setup

• We compare Oasis against two in-memory schemes: Basic and SOTA
- Basic is a straightforward implementation of ADS formula.

➢ Perform graph traversal from every vertex.

➢ The number of edge traversal is 𝑂(𝑉𝐸).

- SOTA is proposed to achieve significantly lower time complexity.

➢ Run on transpose graph. Perform bounded graph traversal.

➢ The number of edge traversal is 𝑂(𝐸klog𝑉).

• We use 16 partitions by default.

16

Comparisons of ADS Construction

17

Design Choices of ADS Construction

18

Oasis-DP ⇒ Oasis without active data separation
Oasis-LF ⇒ Oasis without edge block
Oasis-SA ⇒ Oasis without selective ADS accessing

Conclusion

• This work introduces Oasis, which is an out-of-core approximate graph system
based on ADSs to manage ADSs with low memory and high efficiency.

• First, this work studies how to construct ADSs with a small memory amount,
and proposes various system-level optimizations to decently improve its
construction time.

• Next, an ADS estimation framework is presented, allowing users to implement
their estimators easily and provides efficient runtime estimation.

19

Thank you for your attention
Q&A

