VectorCDC: Accelerating Data Deduplication with Vector Instructions

Sreeharsha Udayashankar, Abdelrahman Baba and Samer Al-Kiswany

Introduction

- Data explosion
 - Global data production expected to exceed 180 ZB by 2025 [1]
 - Cloud storage providers

- Mechanisms
 - Distributed file systems [2]
 - Storage Architectures [3]
 - Data Deduplication [4]
- [1] Arne Holst. Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2025. Statista, 2021.
- [2] Sanjay Ghemawat et al. The Google File System. SIGOPS Oper. Syst, 2003.
- [3] Peter M Chen et al. RAID: High-performance, reliable secondary storage. ACM Computing Surveys (CSUR), 1994.
- [4] Nagapramod Mandagere et al.. Demystifying data deduplication. ACM/IFIP/USENIX Middleware'08 Conference, 2008

Introduction

- Data Deduplication [5]
 - Identify and eliminate duplicate data
- Deduplication Overview
 - File Chunking and Hashing
 - Fingerprint Comparison
 - Data Storage

Hash-based and Hashless

Client 2

^[5] Dutch T Meyer et al. A study of practical deduplication. ACM Transactions on Storage (ToS), 2012.

^[6] Athicha Muthitacharoen et al. A low-bandwidth network file system. SOSP, 2001.

 $[\]label{thm:content} \begin{tabular}{l} [7] Yucheng Zhang et al. A \emph{E}: An asymmetric extremum content defined chunking algorithm for fast and bandwidth-efficient data deduplication. INFOCOM, 2015. \end{tabular}$

Introduction

- Data Deduplication [5]
 - Identify and eliminate duplicate data
- Deduplication Overview
 - File Chunking and Hashing
 - Fingerprint Comparison
 - Data Storage

Content-Defined Chunking (CDC) [6]

Client 1

Client 2

^[5] Dutch T Meyer et al. A study of practical deduplication. ACM Transactions on Storage (ToS), 2012.

^[6] Athicha Muthitacharoen et al. A low-bandwidth network file system. SOSP, 2001.

^[7] Yucheng Zhang et al. AE: An asymmetric extremum content defined chunking algorithm for fast and bandwidth-efficient data deduplication. INFOCOM, 2015.

Motivation - Vector Accelerated CDC

- CDC is computationally intensive
 - Idea: Accelerate with SIMD (AVX / SSE) CPU instructions

- Existing approaches
 - SS-CDC [8]
 - Low speedups despite using AVX-512 instructions

(a) Chunking Speeds on Random Data

Motivation - Vector Accelerated CDC

- Fundamental inefficiencies
 - Rolling hash algorithms [8]

- Dependency between adjacent bytes
 - Solution: Process different regions of the file with SIMD
 - Expensive scatter/gather instructions

$$y = x + f(51) - g(10)$$

 $f(x)$ and $g(x)$ are functions

VectorCDC

- New vector acceleration method for hashless CDC
 - Use AVX-friendly tree-based search and packed scanning
 - Compatible with a wide range of existing hashless CDC
 - 21x higher throughput over SS-CDC
 - No impact on deduplication space savings

a) Tree-based Search

b) Packed Scanning

Outline

- Introduction
- Background
 - Hashless CDC
 - Vector Instructions
- Design
- Evaluation
- Conclusion

- Hashless CDC
 - AE [7]
 - RAM [9]
 - MAXP [10]

 $^{[7] \ \} Yucheng \ Zhang \ et \ al. \ AE: An \ asymmetric \ extremum \ content \ defined \ chunking \ algorithm \ for \ fast \ and \ bandwidth-efficient \ data \ deduplication. \ INFOCOM, 2015.$

^[9] Ryan Widodo et al. A new content-defined chunking algorithm for data deduplication in cloud storage. Future Generation Computer Systems, 2017

^[10] Nikolaj Bjørner et al. Content-dependent chunking for differential compression, the local maximum approach. Journal of Computer and System Sciences, 2010

- Hashless CDC
 - AE [7]
 - RAM [9]
 - MAXP [10]

^[9] Ryan Widodo et al. A new content-defined chunking algorithm for data deduplication in cloud storage. Future Generation Computer Systems, 2017

^[10] Nikolaj Bjørner et al. Content-dependent chunking for differential compression, the local maximum approach. Journal of Computer and System Sciences, 2010

- Hashless CDC
 - AE [7]
 - RAM [9]
 - MAXP [10]

^[9] Ryan Widodo et al. A new content-defined chunking algorithm for data deduplication in cloud storage. Future Generation Computer Systems, 2017

[10] Nikolaj Bjørner et al. Content-dependent chunking for differential compression, the local maximum approach. Journal of Computer and System Sciences, 2010

- Hashless CDC
 - AE [7]
 - RAM [9]
 - MAXP [10]

^[9] Ryan Widodo et al. A new content-defined chunking algorithm for data deduplication in cloud storage. Future Generation Computer Systems, 2017

^[10] Nikolaj Bjørner et al. Content-dependent chunking for differential compression, the local maximum approach. Journal of Computer and System Sciences, 2010

Background - Vector Instructions

- Special CPU instructions with SIMD capabilities [11]
 - Used in math / multimedia applications
- Vector registers
 - 128 512 bits (16 64 bytes) wide
 - SSE-128
 - AVX-256
 - AVX-512

Outline

- Introduction
- Background
- Design
- Evaluation
- Conclusion

VectorCDC Design

 Identify common phases among all hashless CDC algorithms

- Extreme Byte Search
- Range Scan
- Extreme Byte Search
 - Accelerate with novel tree-based search
 - Takes advantage of pipelining

Extreme Byte Search for maximum value

VectorCDC Design

- Identify common phases among all hashless CDC algorithms
 - Extreme Byte Search
 - Range Scan
- Extreme byte search
 - Accelerate with novel tree-based search
 - Takes advantage of pipelining
- Range Scan
 - Packed Scanning

VectorCDC Design

- Identify common phases among all hashless CDC algorithms
 - Extreme Byte Search
 - Range Scan
- Extreme byte search
 - Accelerate with novel tree-based search
 - Takes advantage of pipelining
- Range Scan
 - Packed Scanning

Accelerating RAM with VectorCDC

Fixed Size Window

Extreme Byte Search

Range Scan

Evaluation

Metrics

Space Savings

Speed / Throughput

Backward Compatibility

Alternatives

Hashless

AE [7]

RAM [9]

Hash-based

FastCDC [13]

Rabin's Chunking [6]

SS-CDC [8]

 $TTTD^{\,[12]}$

- [6] Athicha Muthitacharoen et al. A low-bandwidth network file system. SOSP, 2001.
- [7] Yucheng Zhang et al. AE: An asymmetric extremum content defined chunking algorithm for fast and bandwidth-efficient data deduplication. INFOCOM, 2015.
- $[8] \ Fan \ Ni \ et \ al. \ SS-CDC: A \ two-stage \ parallel \ content-defined \ chunking \ for \ deduplicating \ backup \ storage. \ SYSTOR, 2019$
- [9] Ryan NS Widodo et al. A new content-defined chunking algorithm for data deduplication in cloud storage. Future Generation Computer Systems, 2017.
- [12] Kave Eshghi et al. A framework for analyzing and improving content-based chunking algorithms. Hewlett-Packard Labs Technical Report, 2005
- [13] Wen Xia et al. FastCDC: A fast and efficient content-defined chunking approach for data deduplication. USENIX ATC, 2016.

Chunking Throughput

Configuration: 8 KB chunks

1. VRAM is 12-15x faster than alternatives!

Speedups

2. VectorCDC achieves higher speedups than SS-CDC!

(a) Speedups with SS-CDC

(b) Speedups with VectorCDC

3. VRAM is 21x faster than SS-Gear!

Summary

- Data deduplication is used to improve storage efficiency
 - Content-defined chunking algorithms critical to system performance
- VectorCDC
 - Redesign hashless CDC with SSE/AVX-friendly techniques
 - 21x higher throughput than state-of-the-art vector accelerated CDC
 - No negative space savings impact
- Code: https://github.com/UWASL/dedup-bench

UNIVERSITY OF WATERLOO

