

Archer: Adaptive Memory Compression with Page-Association-Rule Awareness for High-Speed Response of Mobile Devices

Changlong Li, Zongwei Zhu, Chao Wang, Fangming Liu, Fei Xu, Edwin H.-M. Sha, and Xuehai Zhou

Contents

Design
Evaluation

Conclusion

Emerging Mobile Scenarios

- People spend more and more time on mobile devices (e.g., smartphones, autonomous vehicles, and robots)
- Emerging scenarios make the memory issue more serious
 - > VR/MR, transformer-based models, mobile games, camera-based services

Mobile Devices

Memory-intensive apps in mobile scenarios

Memory compression is widely adopted to save space

Page compression limits system performance and degrades the user experience

> Typical scenarios studied: **app launching**, **continuous shooting**, and **short-form video**

FAST⁷₂₅

Memory compression is widely adopted to save space

Page compression limits system performance and degrades the user experience

> Typical scenarios studied: **app launching**, **continuous shooting**, and **short-form video**

Response time significantly increases with compression.

Memory compression is widely adopted to save space

Page compression limits system performance and degrades the user experience

> Typical scenarios studied: **app launching**, **continuous shooting**, and **short-form video**

FAST⁷

Memory compression is widely adopted to save space

Page compression limits system performance and degrades the user experience

> Typical scenarios studied: **app launching**, **continuous shooting**, and **short-form video**

FAST¹/₂₅

Opportunities of Large-grain Compression FAST⁷₂₅

■ Page compression is reasonable: minimize the read amplification

Can we do large-grain compression without increasing read amplification?

Opportunities of Large-grain Compression FAST⁷₂₅

- Page compression is reasonable: minimize the read amplification
- **Can we do large-grain compression without increasing read amplification?**
- Observation: 26.3% of anonymous pages are strongly associated with others
 - Like Beer and Diaper, many pages are always accessed together
 - \succ The association is implicit but can be mined
 - If the system is aware of these highly associated pages and does large-grain compression on them, the performance has the potential to be significantly improved.

Association Rule Mining

Contents

Design
Evaluation
Conclusion

Archer: an <u>A</u>ssociation-<u>r</u>ule aware memory <u>c</u>ompression framework for the <u>h</u>igh speed <u>r</u>esponse of mobile devices

Overview

- FSG: Footprint Stream Generator
- FT-List: Frequent-pattern Tree List
- > ACR: Adaptive Compression Region

FAST¹/₂₄

Component: FSG

Archer: an <u>A</u>ssociation-<u>r</u>ule aware memory <u>c</u>ompression framework for the <u>high speed</u> response of mobile devices

- **FSG** Footprint Stream Generator --
- FT-List: Frequent-pattern Tree List
- ACR: Adaptive Compression Region

Anon Pages in Buddy System

Component: FT-List

■ Archer: an Association-rule aware memory compression framework for the high speed response of mobile devices

- FSG: Footprint Stream Generator
- ► **FT-List** Frequent-pattern Tree List --
- ACR: Adaptive Compression Region

Anon Pages in Buddy System

Component: ACR

Archer: an Association-rule aware memory compression framework for the high speed response of mobile devices

- FSG: Footprint Stream Generator
- FT-List: Frequent-pattern Tree List
- ➢ ACR Adaptive Compression Region

□ ACR is implemented based on the original	
ZRAM region in the Linux kernel.	

Contents

Benefit on photographic and frame rate

Benefit on photographic and frame rate

- □ The tail launching latency is reduced by 44.9% for cold launches and 60.3% for hot launches.
- □ The worst-case performance in continuous shooting and frame rendering improves by **1.6x** and **1.3x**.

Contents

Background & Motivation
 Design
 Evaluation
 Conclusion

Problem: page compression is not suit for memory intensive applications in mobile scenarios

The user experience degraded when suffering high memory pressure

- **Key insight**: by **mining the page association rule**, large-grain compression is feasible in mobile systems
 - **Challenge**: collecting page footprint dynamically and in lightweight, do compression adaptively

Archer: Adaptive Memory Compression with Page-Association-Rule Awareness for High-Speed Response of Mobile Devices

Archer can improve the app launching speed by 1.55x on average over the stateof-the-art mechanisms.

THANK YOU!

Changlong Li, Zongwei Zhu, Chao Wang, Fangming Liu, Fei Xu, Edwin H.-M. Sha, and Xuehai Zhou

Author info: https://faculty.ecnu.edu.cn/_s16/lcl1/main.psp

