
This paper is included in the Proceedings of the
23rd USENIX Conference on File and Storage Technologies.

February 25–27, 2025 • Santa Clara, CA, USA
ISBN 978-1-939133-45-8

Open access to the Proceedings
of the 23rd USENIX Conference on

File and Storage Technologies
is sponsored by

Liquid-State Drive: A Case for DNA Block Device
for Enormous Data

Jiahao Zhou, Mingkai Dong, Fei Wang, Jingyao Zeng, Lei Zhao, Chunhai Fan,
and Haibo Chen, Shanghai Jiao Tong University

https://www.usenix.org/conference/fast25/presentation/zhou-jiahao

Liquid-State Drive: A Case for DNA Block Device for Enormous Data

Jiahao Zhou♢, Mingkai Dong♢, Fei Wang♣, Jingyao Zeng♢, Lei Zhao♣,
Chunhai Fan♣, Haibo Chen♢

♢Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
♣ School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for

Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University

Abstract
The rapid development of DNA synthesis and sequencing
technologies is making the ultra-high-density storage medium
DNA to meet the rising demand for enormous data storage.
The block storage interface, which is massively employed in
storage systems, is the critical abstraction to integrate DNA
storage into silicon-based computer systems. In this paper,
we explore building block devices on DNA and identify the
challenges of petabyte-scale metadata management and high
DNA access costs. We propose a holistic DNA block device
design called LIQUID-STATE DRIVE to provide low-cost block
access to exabyte-scale data with the help of small yet fast
SSDs. We adopt the dual-layer translation table to leverage
SSDs to decrease the metadata updating cost. We introduce
symbiotic metadata and delayed invalidation to reduce the
cost of garbage collection and block updating. Our evaluation
demonstrates that in microbenchmarks and real-world traces,
the write cost reduces up to seven orders of magnitude and
2,927×, and the read cost reduces up to 6,206× and 7×,
respectively. We expect our exploration and experience in
building DNA block devices to be useful in expediting the
advancement of DNA storage and bridging the gap between
information technology and biotechnology.

1 Introduction
The global data volume is experiencing exponential growth
with the advancement of big data and AI. 64.2 zettabytes
(ZB) of data were generated in 2020, and it was projected that
181 ZB of data would be generated in 2025 [12,40]. However,
the installed base of the total storage capacity is only 6.7 ZB
in 2020 [39] due to the limited density of traditional storage
media. The lack of sufficient storage volume has thus caused
numerous valuable data to dissipate without being effectively
captured, stored, and utilized.

To mitigate data dissipation, DNA is emerging as an ex-
tremely high-density storage medium. DNA has a density of
109 GB/mm3, eight orders of magnitude higher than tapes,
which makes DNA a promising candidate for storing ZB-
scale data [10, 14, 25, 26, 45]. Moreover, the storage lifespan

of DNA can extend up to centuries with low maintenance
costs [10,18,26]. Such enticing advantages have catalyzed an
abundance of efforts from both the industry and academia, fo-
cusing on DNA storage techniques such as DNA sequencing,
synthesis and encode/decode. These efforts have significantly
accelerated the progress of DNA storage, advancing it at a
rate akin to that of Moore’s Law [10, 45].

DNA’s promising features have attracted numerous re-
search efforts on key-value-style DNA storage [10,26,28,46].
However, these systems store only the values in DNA while
maintaining the keys and key-value mappings in traditional
storage, making it difficult to scale to large amounts of data.
Confronted with the difficulties of maintaining complex key-
value mapping (i.e., indexing) for varying-length keys in
DNA, we find that the simpler, yet general and widespread
block-style storage of DNA storage remain under-explored.

Block storage can be seen as a simplified key-value store,
where the keys are integers (i.e., the block numbers) within a
fixed range and the values (i.e., the blocks) are data of a fixed
size. Unlike key-value stores accessing data in objects, block-
style storage enables fine-grained block access to the stored
data, which can reduce access amplification for enormous
data. Moreover, the block storage interface is simple and uni-
versal. Sophisticated storage systems (e.g., key-value stores,
file systems) can be directly used or re-built upon it [38].
Thus, the exploration of building DNA block devices is ben-
eficial for the integration of silicon-based computer systems
and carbon-based DNA storage.

Although DNA sequencing and synthesis techniques can
support block read and write accordingly, implementing block
updates is challenging. Due to the immaturity of the DNA
modification technique [11, 29, 35], the block update is
achieved by removing the old DNA strands (i.e., the erase
operation) and creating new strands. This incurs significant
costs due to amplification, because the erase granularity is
103× larger than read, and read granularity is 106× larger
than write (further explained in §3.1).

A common method is to involve out-of-place updates, main-
taining a table that translates the logical block address (LBA)

USENIX Association 23rd USENIX Conference on File and Storage Technologies 557

to the physical block address (PBA). However, adapting the
translation table to DNA is non-trivial and faces the follow-
ing challenges. ❶ The frequently updated translation table
requires to be stored in DNA, but updating it in DNA is costly.
The size of the translation table, called DNA Translation Layer
(DTL), reaches petabyte (PB) scale for storing exabyte (EB)
scale data, making it necessary to store DTL in DNA. How-
ever, the DTL is updated every write, and both in-place and
out-of-place updates are costly for DTL, making updating
the DTL in DNA problematic. ❷ GC is necessary, but the
overhead of managing in-DNA GC metadata is substantial.
Performing garbage collection (GC) to reclaim stale data is
necessary for the out-of-place update. However, it also re-
quires PB-scale GC metadata to be stored in DNA, incurring
substantial management overhead to GC and updates.

We propose LIQUID-STATE DRIVE, referred to as LiqSD, a
general purpose DNA block device design that solves these
challenges. LiqSD organizes the translation table into dual
DTL, storing the lightweight one in the fast SSD, enabling
updating the DTL at a low cost. We store the PB-scale GC
metadata symbiotically with each physical block to minimize
the metadata management overhead in GC. We delay invali-
dating the old block until reading to decrease the management
overhead in updates. Besides, we customize the GC and cache
to tolerate the inconsistency caused by delayed invalidation.
LiqSD is a general purpose DNA block device that can be
used in diverse scenarios including, but not limited to, cloud
storage, multimedia storage, and archival storage.

We have implemented LiqSD based on a DNA storage sim-
ulator and evaluated the read and write cost of LiqSD in sev-
eral real-world scenarios. We show that in microbenchmarks
and real-world traces, LiqSD achieves the best performance
compared to baseline. The write cost reduces up to seven
orders of magnitude and 2,927×, and the read cost reduces
up to 6,206× and 7×, respectively.

In summary, our contributions include:
• We explore the holistic DNA block device design and

analyze and identify the associated challenges.
• We design LiqSD to address the challenges through

dual DTL, symbiotic metadata, and delayed invalidation,
which lead to substantial performance improvement.

2 Background and Motivation
This section introduces the basics and development trends of
DNA storage, the block device, and the out-of-place update.

2.1 DNA Basics
DNA composition. DNA comprises two strands twisted
together in a double helix. Each strand consists of a sequence
of nucleotides, which have four types according to their bases:
adenine (A), thymine (T), cytosine (C), and guanine (G). Two
DNA strands are twisted together with hydrogen bonds ac-
cording to the Watson–Crick complementary base pairing
rule [44] (A with T, C with G). In the following context,

we use the terms base and nucleotide interchangeably. In
DNA storage, the nucleotide sequence of a strand in a DNA
molecule is used to present information.

Polymerase chain reaction (PCR). PCR is a widely used
method to amplify strands to millions of replications selec-
tively [30]. PCR amplifies the DNA strands by thermal cy-
cling and selectively amplifies strands where the two ends
can bind to the given short single strands called primer by
the complementary base pairing rule. In each thermal cycle,
the number of selected strands is doubled, so we can amplify
them exponentially and filter out other strands by PCR.

DNA sequencing. DNA sequencing is used to determine
the exact nucleotide sequences of DNA molecules. We se-
quence the DNA by next-generation sequencing (NGS) [7],
a widely commercialized sequencing method. In NGS, we
perform PCR to amplify target strands beforehand to avoid
sequencing the irrelevant strands. The sequencing process
outputs massive amounts of data but with high latency. For
example, the state-of-the-art sequencing machine can out-
put up to 16 Tbases in 48 hours, with a throughput of about
100 Mbit/s [21]. In addition, nanopore sequencing is another
prevalent method. Compared to NGS, it enables real-time
latency but reduces throughput to about 51 Mbases/s [3].

DNA synthesis. DNA synthesis is a technique to construct
and assemble DNA strands from nucleotides. Microarray syn-
thesis is a mature approach to parallelly synthesize numerous
short (≤ 300 nucleotides) DNA strands rapidly and inexpen-
sively [8]. A microarray contains numerous electrodes, and
each electrode synthesizes a strand by sequentially adding
nucleotides to its end. By controlling the voltage of each elec-
trode, different nucleotides are added to the end of each strand
to synthesize distinct strands. After that, we selectively release
certain strands from designated electrodes while retaining oth-
ers, allowing for discrete transfer into separate vessels [41].
By controlling the strand concentration, new strands can be
easily, safely and precisely combined with the original strands
in vessel [38]. To maximize the synthesis throughput, it is a
common practice to synthesize tens of thousands of strands in
a batch. Besides, researchers are miniaturizing the electrodes
for synthesizing more strands per unit area simultaneously.
Nguyen et al. deployed millions of nanoelectrodes in an area
under one µm2, improving synthesis throughput to kB/s [32].

DNA encode/decode. To store/retrieve information in DNA,
we encode/decode data in digital/DNA. A naïve method maps
two bits to one nucleotide. This method causes many errors
due to the violations of synthesis and sequencing constraints
and is considered impractical. Other methods, such as rotation
code, fountain code and collision aware code [16, 18, 45],
were proposed to fulfill the constraints with a trade-off in
density. The encoding step usually adds redundancy, e.g.,
Reed-Solomon Code [36], so the decoding step can use the
redundancy to tolerate errors.

558 23rd USENIX Conference on File and Storage Technologies USENIX Association

Encode Synthesize

PCRDecode Sequencing
Digital Data DNA

Figure 1: DNA storage and retrieval workflow.

Chip

Spot

…

…

…

SC 0

SC 1

SC N-1

Primer Index Payload Primer

DNA Storage Hardware

Strand

SSD

RAM

Processor

DNA Storage Media

Host

Figure 2: DNA storage hardware overview.

DNA storage/retrieval workflow. Putting the operations
together, we can have a picture of basic workflows of DNA
storage. As shown in Figure 1, to store digital data in DNA,
we encode digital data into DNA sequences, synthesize the
sequences into DNA strands, and store the stands in the vessel.
To retrieve data in DNA, we perform PCR to amplify the
target strands, sequence strands into nucleotide sequences,
and decode the sequences into digital data.

It is worth clarifying that the retrieval process is not destruc-
tive. In each retrieval process, it is a prevalent method to con-
sume a minuscule quantity of the stored DNA for sequencing.
Experimental evidence substantiates that the retrieval process
can guarantee reading data more than 2.28 quadrillion times
without corruption [16]. Furthermore, random PCR can be
employed to replenish the consumed DNA strands [42].

2.2 Rapid Development of DNA Storage
The actualization of DNA-based data storage remains a com-
plex endeavor, impeded by the limitations of current tech-
niques. However, the capacity and total cost of ownership
(TCO) of DNA is superior and the rapid evolution of DNA
storage performance is noteworthy, spurring optimism for
their practical application within the forthcoming decades.

DNA’s extremely high density and long lifespan make ca-
pacity and TCO far superior to traditional media. DNA has
a density of 109 GB/mm3, eight orders of magnitude higher
than tape. The extraordinary density makes DNA a promis-
ing candidate for storing the world’s data [17, 26]. DNA also
has superior longevity and stability compared to traditional
storage media. The lifespan of DNA can be centuries, com-
pared to about five years for HDD and 15 to 30 years for
tape [10, 15]. The remarkable stability of DNA makes data
almost maintenance-free, whereas the traditional media need
costly maintenance, such as periodic refresh, data migration,
thermal and humidity management [6, 18]. Therefore, these
advantages make the TCO of DNA lower than traditional
media. The TCO for storing 1 PB data in tape for 10 years
is three times (and twenty times for 100 years) higher com-
pared to DNA storage if the writing cost of DNA becomes
$25/TB [4, 6].

The TCO will be further reduced as the cost and perfor-
mance of DNA storage evolve rapidly in a trajectory eclipsed
Moore’s Law [10]. The synthesis cost is projected to decrease
from $0.1/base in 2005 [13] to $1/TB in 2030 [6], and the
sequencing cost has reduced at least 1,000,000× [6] to under

$0.1/Mbase [21, 22]. On the contrary, the traditional storage
media are evolving slowly. For example, the cost of HDD
slowly reduces from $0.033/GB in 2017 to $0.014/GB in
2022, decreasing by 56% in 5 years [24]. The cost of tape is
also slowly reduces from $7.18 in 2012 to $5.72/TB in 2023,
decreasing by 20% in 11 years [1, 5]. For performance, Mi-
crosoft [32] has developed the nanoscale DNA storage writer,
enabling write throughput to reach MB/s, and the throughput
of sequencing has reached MB/s [21, 22].

Considering the enticing advantages and rapid advance-
ment, DNA storage is highly probable to become a reality
within the approaching decades. Consequently, exploring the
approaches to integrating DNA storage into computer systems
is critically important.

2.3 Block Device
The block device, characterized by random access to data
organized in fixed-size blocks (e.g., 4 KiB) [23], is widely
applied in computer systems. A block device provides an
abstraction that the storage space is a continuous array of
blocks. Each block has a unique address (i.e., the block num-
ber) so that data written to the block can be retrieved given
the address.

The block device empowers us to access data with fine
granularity and construct sophisticated storage systems atop
it. Li et al. [26] proposed a block-based mapping scheme for
DNA storage. However, this work primarily focuses on map-
ping blocks to strands in tubes and lacks support for updates.
Sharma et al. [38] built block interface semantics in DNA
storage to enable efficient data access at block granularity.
Nevertheless, they mainly focus on the specific elongated
PCR technique and lack designs, such as metadata manage-
ment, garbage collection, data caching, and crash consistency,
which are essential for a holistic block device. For example,
due to the lack of metadata management, writing a block re-
quires reading the block initially to seek the precise update
place, and reading a block may trigger an unbounded cascade
of reads.

To summarize, the holistic design of DNA block device
remains to be explored.

2.4 Out-of-Place Update
Out-of-place update is an extensively used technique to reduce
the high cost of in-place updates effectively. Widely used
block devices (e.g., SSD and HDD) read and write data in

USENIX Association 23rd USENIX Conference on File and Storage Technologies 559

…

SC 0

SC 1

SC N-1

…… … …

…… … …

… …

…

Block 0 Block 1 Block M-1

Spot

Figure 3: Partition in DNA block device.

Block X Chunks Strands

…

……

…

……

Block 1 Block X

… ……

Split Encode
Synthesize

Store

PCR
Sequence

Decode
Group

Read
Write

Chunks in SCBlocks in SC Strands in SC

&

ChunksAdd
ECC …

Recover

Figure 4: Write and read workflow of a naïve DNA block device.

4 KiB block granularity. However, some storage media require
extra effort to update a block. Take the flash as an example.
In-place update (i.e., overwrite) of a 4 KiB page requires
erasing the 2 MiB block containing the page. Note that in
flash terminology, a 4 KiB block is commonly known as a
“page”, and the erasure unit, typically 2 MiB in size, is often
referred to as a “block”. To preserve other data within the
2 MiB block, we read other pages within the same block, erase
the block, and write the new page and other pages back. These
cumbersome steps make updates expensive.

To address this problem, SSD maintains a Flash Transla-
tion Layer (FTL) that maps logical page address (LPA) to
physical page address (PPA) and updates a logical page in
an out-of-place way [20]. In detail, when updating a logical
page, SSD selects a newly erased physical page, writes data
to it, modifies the FTL entry to map the LPA to the new PPA,
and finally invalidates the old PPA.

Garbage collection (GC) reclaims space occupied by stale
data (i.e., the garbage) and is necessary for out-of-place up-
dates. Out-of-place update effectively reduces the update
costs but leaves the stale data as is, which accumulates and
crowds out available space as updates increase. Garbage col-
lection addresses the issue by periodically identifying stale
data in a block, migrating useful data of valid physical pages
in the block, and erasing the whole block for future writes.

An efficient GC usually relies on a valid bitmap and a re-
verse translation table. GC needs to recognize and relocate
valid physical pages before erasing the blocks. A naïve ap-
proach is traversing the FTL to check the page validity and
find the corresponding entry of a physical page, which is ex-
pensive. Therefore, SSD usually maintains a valid bitmap to
record the validity of each physical page and a reverse transla-
tion table to record the LPA of each PPA, avoiding the costly
FTL traversal and accelerating the GC process significantly.

3 A Naïve DNA Block Device
In this section, we introduce the DNA storage hardware and
the problems and challenges of a naïve DNA block device.

3.1 DNA Storage Hardware
Grounded on the DNA storage basics, we can build the DNA
storage hardware shown in Figure 2. DNA storage hardware
consists of DNA storage media, processor, RAM, and SSD.

Write Read Erase
Flash Page Page Block

DNA Chip Strand SC Spot

Table 1: Granularity of DNA chip and flash.

DNA storage media. DNA storage media are responsible
for storing data, which is a counterpart to the flash for SSD.
DNA storage media are organized into many chips. Each chip
contains a matrix of spots, each of which is a container storing
billions of DNA strands. Unlike the gates in flash memory,
the DNA strand in liquid or powder has no fixed physical
location. Thus, the addressing information is usually included
in the strand itself [26]. The right side of Figure 2 shows an
encoding format of a DNA strand. There is a pair of primers
at both ends of the strand, which is the identifier in PCR
because PCR only amplifies the strands with the given primer
pair. We logically organize all strands with the same primer
pair as a strand collection (SC). We use the index within the
strand to identify strands in the same SC and store data in
the payload. Quantitatively, a single spot can contain several
thousand SCs [26, 33] due to the constraints of synthesis and
sequencing, and a single SC contains up to several million
strands [9, 26, 33]. The strand length is about 300 nt (i.e.,
nucleotide), the primer length is about 20 nt, the index length
is about 10 nt, and the payload length is about 250 nt.

As the storage medium, a DNA chip provides write and
read operations to store and retrieve information. Because
DNA modification technologies have many constraints [11,
29, 35], such as lack of generality, the DNA chip does not
support modifying the existing strands. Instead, the DNA
chip provides erase to wipe data before writing, similar to
flash memory. The granularity of each operation is different
in DNA chips. Table 1 compares the DNA chip and flash
memory in the granularity of operations. In flash, both read
and write granularity is a page (4 KiB), and erase granularity is
a block (typically 2 MiB). In DNA, we write by synthesizing
and storing multiple copies of the same DNA strand in the
spot, read by amplifying and sequencing strands with the
same primer (i.e., an SC) in the spot, and erase by dropping all
strands in the spot. Hence, the write granularity is a strand, the
read granularity is an SC containing millions of strands, and
the erase granularity is a spot containing billions of strands.

560 23rd USENIX Conference on File and Storage Technologies USENIX Association

Processor, RAM, and SSD. The processor is responsible
for processing data (e.g., encoding and decoding data), the
random access memory (RAM) is used for immediate data
storage and retrieval, and the SSD is responsible for storing
some persistent lightweight metadata and caching data.

Measuring with amplification. The read/write amplifica-
tion is a suitable metric to measure the cost and performance
of the DNA storage hardware. Despite the DNA access cost
is high, there has been significant progress in reducing access
costs in recent years, even surpassing the pace of Moore’s
Law [10, 37]. Due to the rapid evolvement, we measure the
performance of DNA block devices by read/write amplifi-
cation, which is the ratio of requested and actual read/write
data volume. This metric serves as a pertinent metric for eval-
uating the cost and performance of DNA storage systems,
independent of the advancement in synthesis and sequencing.

3.2 The Design of Naïve DNA Block Device
We need to provide the fixed-sized block abstraction to build
the DNA storage hardware into a block device. A straightfor-
ward approach is to designate strands in DNA storage media
as blocks and expose them to users [26]. In this section, we
will first examine a naïve DNA block device’s design and
workflow, then glimpse its problems and challenges.

Block partition. We divide the storage space of DNA stor-
age media into blocks by mapping consecutive strands into a
block. Every strand has an index within it (see Figure 2) to
index itself in SC. We designate a group of strands with the
same primer and consecutive indexes (e.g., index ∈ [0,160))
as one block. The strands only exist after the data is written
to the block. Figure 3 shows there are N ×M blocks in a spot,
where N is the SC number in a spot, and M is the block num-
ber in an SC. Each block is associated with a unique number
called physical block address (PBA), and we can locate the
corresponding chip, spot, SC, and block with a given PBA.

Operation workflows. Figure 4 illustrates the operation
workflows. To write data into a previously unwritten block,
we split the data into chunks that can be stored in a single
strand. After that, we apply an error-correction code (ECC) to
the data by adding redundant chunks [36]. Then, we encode
chunks into DNA sequences and synthesize DNA strands.
Finally, we store the strands in the spot indicated by the PBA.

Updating a block written previously is more complicated
(not shown in the figure). Before updating, we must remove
the old strands containing the block’s original data via the
erase operation to prevent mixing the old and new strands.
However, an erase operation will remove all strands within
the spot due to the erase granularity. To prevent the loss of
other blocks in the spot, we must read them before erasing
and write them back afterward. Hence, to update a block, we
locate the spot based on the PBA, read all blocks in the spot,
erase the spot, and write back the new block and other blocks.

Reading a block (in Figure 4) requires to locate the chip,

spot, and SC by its PBA first. Then, we get a sample from the
spot and perform PCR and sequencing to get the sequences
of all strands in the SC. Next, we tolerate errors in sequences
by ECC and decode sequences into digital chunks. Finally,
we group chunks back into blocks based on the index within
the strand and get the desired block.

3.3 Problems and Challenges
Despite its simplicity, the naïve DNA block device design is
impractical. In the naïve design, update is expensive. How-
ever, contemporary storage systems inherently necessitate
frequent updates, e.g., key-value store updates and file system
metadata modifications. Therefore, the naïve design incurs un-
acceptable synthesis and sequencing costs (as our evaluation
results show in §6.2) and thus is impractical.

The fundamental cause of the high-cost update is the con-
flict between the erase-before-write nature in DNA and the
in-place update. The erase-before-write nature makes an over-
write operation expensive, and the in-place update enforces
every write of the same position become an overwrite. We in-
troduce the out-of-place update with DNA Translation Layer
(DTL) to avoid the in-place update, bypassing the conflict.
However, introducing DTL to DNA faces two challenges.

Firstly, the frequently updated DTL requires to be stored in
DNA, but updating the in-DNA DTL is costly. In DTL, each
logical block is indexed by an 8-byte entry, meaning the size
of DTL is entrysize/blocksize= 8/4,096= 1/512 of the data.
Thus, the DTL of an EB-scale DNA block device requires PB-
scale storage space, comparable to the total storage capacity
of a contemporary data center [19]. Therefore, storing the
PB-scale DTL in traditional storage media is impractical. A
reasonable approach is storing the PB-scale DTL in DNA.
However, the DTL is frequently updated as we need to update
the translation entry in every write, and an update is expensive
in DNA, incurring unacceptable costs. This problem is similar
to the problem encountered with updating blocks, but the out-
of-place update cannot solve it. In out-of-place updates, we
need an 8-byte entry to index a DTL entry, which means a
PB-scale DTL requires a PB-scale translation table to index
itself, reintroducing the PB-scale storage problem. Thus, the
naïve design of nested translation layers does not work, and
frequently updating the DTL in DNA remains challenging.

Secondly, DTL involves GC, but the overhead of managing
in-DNA GC metadata is substantial. To prevent stale data
from occupying storage space indefinitely, periodic GC is
necessary for reclaiming the space. However, both the reverse
translation table and valid bitmap, critical for GC performance
as described in §2.4, are at the PB scale. Storing these PB-
scale structures in DNA incurs substantial overhead in two
ways. First, these structures are frequently accessed in GC, but
accessing DNA is costly. Second, maintaining these in-DNA
structures increases the cost of block updates significantly.
For instance, we need to mark the old block as invalid in the
valid bitmap for every update. However, to index the old block

USENIX Association 23rd USENIX Conference on File and Storage Technologies 561

…L1
DTL

…

L0
DTL

Data
Layer

Empty PS

LSA

PSA

0
…

1 2

Empty Spot

…

SSD
(GB Capacity)

DNA
(EB Capacity)

Full Spot Working Spot

Invalid PSValid PS

…

TS
LBA

New PBA

Normal
PatchStale Mapping

Valid Mapping
Vain Mapping

GC
Patch

Old PBA
New PBA

TS
LBA

…

Obsolete

Free
Invalid

Block

OOB

Data

IS
Exist
Non-Exist

Valid

…

PS 0 PS1 PS K

…… …

Figure 5: LiqSD overview. LiqSD is divided into three layers. The EB-scale data layer stores physical blocks, the PB-scale L1 DTL indexes
the physical blocks, and the GB-scale L0 DTL indexes the L1 DTL.

in the valid bitmap, we have to read the in-DNA DTL to get
the PBA of the old block, further amplifying the update costs.

LiqSD solves the challenges by three techniques: dual DTL,
symbiotic metadata, and delayed invalidation. For the first
challenge, we organize the DTL into GB-scale L0 DTL and
PB-scale L1 DTL and update the L1 DTL at a low cost by
inserting patches. For the second one, to minimize the access
overhead in GC, we store the reverse translation table and
valid bitmap with physical blocks symbiotically; to decrease
the maintenance overhead in updating, we delay invalidating
the stale data until reading the L1 DTL and customize GC
and cache to tolerate the resultant inconsistency.

4 LiqSD
This section details the design and workflow of LiqSD and
elaborates on three key techniques that solve the challenges.

4.1 Dual DTL
To solve the challenge of costly DTL updating, we propose
the structure of dual DTL. With dual DTL, the storage of
LiqSD is divided into three layers, including the data layer,
L1 DTL, and L0 DTL, as shown in Figure 5.

Free Valid

ObsoleteInvalid

Write

Unmap

Invalidate

Erase

Figure 6: Block state transition.
Data Layer. The data layer contains numerous blocks to
store data. Like the naïve DNA block device introduced in
§3.2, we designate consecutive strands into a block, presented
by a column in the data layer in Figure 5.

Each data block in the data layer is in one of four possible
states: Free, Valid, Obsolete, and Invalid. As Figure 6 shows,
a free block contains no data and becomes valid if we write
data and map it in the DTL. Note that from the hardware’s
perspective, a free block means that no strand belongs to the

block in the spot, and writing to the data indicates synthesizing
and storing the corresponding strands in the spot. A valid
block becomes obsolete if we unmap it from the DTL and
finally becomes invalid if we mark it as invalid in the valid
bitmap. The obsolete state is transient for delayed invalidation,
which we will elaborate on §4.3. The erase operation turns all
blocks in the spot to free blocks as all strands are dropped.

We write blocks into the data layer in a log-structured
approach. In detail, we append the blocks to the working spot
in sequential manner. If a working spot is full, we mark it as
a full spot and select an empty spot as the new working spot.
The erase operation turns a full spot into an empty spot.

L1 DTL. L1 DTL is a PB-scale in-DNA structure that maps
logical block addresses (LBAs) to physical block addresses
(PBAs). L1 DTL consists of several physical sections (PS),
e.g., PS 0 to PS K in Figure 5. Each physical section contains
translation entries (e.g., columns in PS 0 in the figure) for a
consecutive LBA range. Each physical section is stored in an
SC so that we can read the whole physical section in one DNA
chip read. Each entry is stored as a single DNA strand and
updated by inserting a new strand (called a patch) presenting
the updated entry. The entry size conforms to the minimal
write granularity of the DNA storage media, allowing us to
update an entry with a single DNA chip write. We ensure
the number of LBAs in a physical section is smaller than
its capacity so that we can update entries multiple times by
inserting patches before the physical section is full.

Both normal block write operations and GC will update
entries in L1 DTL. We use normal patches and GC patches,
respectively, to distinguish the updates. A normal block write
will allocate a new physical block to store the new data and
change the mapping by inserting a normal patch that records
the LBA, the new block’s PBA, and timestamp (TS). The times-
tamp is the time of writing the patch and is used to identify
the latest update to the entry. A GC patch contains an extra
old PBA, which will be explained in §4.3.1.

Each physical section is in one of the three states: empty,
valid, and invalid. An empty physical section contains no

562 23rd USENIX Conference on File and Storage Technologies USENIX Association

patches (i.e., entries) and is unused. It becomes a valid physi-
cal section after we insert patches into it. When a valid physi-
cal section is full, we read all entries in it, merge them, store
merged entries in a new physical section, and turn the old
physical section into an invalid physical section. Erasing the
spot will turn all invalid physical sections into empty ones.

L0 DTL. L0 DTL is a GB-scale array storing the mapping
from logical section addresses (LSAs) to physical section
addresses (PSAs). The whole block address space of LiqSD
is divided into many logical sections (LSs), each presenting
a consecutive LBA range. By involving logical sections and
the mapping from LSAs to PSAs, we can efficiently merge
patches in a full PS and migrate merged entries to a new PS.

To access a block specified by an LBA, we calculate the
corresponding LSA (e.g., LSA is equal to LBA divided by
the maximal number of entries in a PS) and then look up
the L0 DTL to get the location of the PS. For example, LSA
2 maps to PS 1 in Figure 5. The resulting PS (in L1 DTL)
contains the entry for translating the LBA to PBA so that we
can finally access the block with the PBA. We will elaborate
on the complete read/write workflow in §4.4.

As we use an SC (usually 24 MiB) as the PS, the size of L0
DTL is at GB scale, and we can store L0 DTL in traditional
storage devices (e.g., SSD in our implementation). We do not
need to be concerned about updating the L0 DTL because the
overhead of accessing SSD is negligible compared to DNA.

Compared to the naïve design of nested translation layers
in §3.3, dual DTL leverages the asymmetric read and write
granularity of DNA chips to design L0 and L1 DTL. Specifi-
cally, we use a strand to present the entry and an SC for the
PS, exploiting the strand-level write granularity and SC-level
read granularity. Updating entries in patches and co-locating
patches within the same SC help reduce the write and read
amplification, respectively. Reducing the size of L0 DTL to
store it in SSD also significantly reduces the access to DNA.

Lightweight metadata in SSD. We maintain lightweight
metadata in SSD. The write pointer records the position of
the next to-be-written block in the data layer, and the written
patch counter counts patches written into each physical sec-
tion. Besides, to accelerate GC, the valid SC bitmap maintains
a validity bit for each SC, and the valid PS bitmap maintains
a validity bit for each physical section. The free/full/work
spot list records the state of each spot. The latest TS recorder
records the last invalidating time of each logical section. All
the above metadata is small enough (e.g., only about 5 GiB
for 1 EB data) to be stored in SSD.

4.2 Symbiotic Metadata
To address the challenge of significant accessing overhead in
GC, we propose symbiotic metadata that co-locates the over-
sized GC-related metadata, including the reverse translation
table and the valid bitmap, with the physical data blocks in
DNA. As illustrated in the penultimate row of the data layer

in Figure 5, we store the reverse translation table entry into
the out-of-block (OOB) space. OOB is the unused 32-byte
space in the payload area (shown on the right side of Figure 2)
of the last strand in the physical block. The reverse translation
entry stored in OOB can be accessed along with the block
data, eliminating the overhead of accessing it during GC.

We store the valid bitmap bit into the invalid strand (IS),
shown by the last row of the data layer in Figure 5. The in-
valid strand is a reserved strand carrying no data in a physical
block. It is not synthesized along with the data strands of the
physical block, but rather when the physical block is invali-
dated. Hence, the existence of the invalid strand indicates the
invalidity of the physical block. We store the valid bit in the
reserved strand instead of in OOB, because the validity of a
physical block needs to be modified on update, but we cannot
modify the OOB stored in an existing strand. With symbiotic
metadata, we eliminate extra metadata accesses in GC.

4.3 Delayed Invalidation
To solve the challenge of substantial invalidating overhead
of the update, we propose delayed invalidation. In the out-of-
place update, we need to invalidate the old physical block in
the valid bitmap during updating. To index the old physical
block in the valid bitmap, we need to read the L1 DTL in DNA
to get the PBA, incurring substantial overhead to updates. In
delayed invalidation, we do not invalidate the old block during
the update. Instead, we invalidate them at the time of reading
the L1 DTL. The delayed invalidation accelerates the update
since we do not need to read the DTL to get the old block’s
PBA. When reading the L1 DTL, we need to find out these
blocks and invalidate them, which is elaborated in §4.4.

However, the delayed invalidation turns the old physical
block into an obsolete block, causing problems with GC and
cache. The obsolete block may be mistaken for a valid block
because the invalid strand is non-existent. This mistake makes
GC and cache problematic. During GC, we may mistakenly
migrate an obsolete block and map it in the L1 DTL. During
caching, we may cache obsolete blocks when reading blocks.
That is because to exploit the workload locality, we usually
add all non-invalid blocks within the SC, which are read to-
gether and include valid and obsolete blocks, into the cache.
This may cause users to read the obsolete blocks when the
cache hits. To address these problems, we customize the GC
and cache and elaborate in §4.3.1 and §4.3.2, respectively.

4.3.1 Garbage Collection

Garbage collection reclaims stale data and replenishes avail-
able space. To prevent data loss in case of a crash, all data read
from DNA is persisted in SSD during GC. To tolerate the in-
consistency introduced by delayed invalidation, we customize
the design of the GC below.

Data Layer GC. The data layer GC takes the following
steps. First, we select spots containing the least valid SCs (A
valid SC contains at least one non-invalid block.) according

USENIX Association 23rd USENIX Conference on File and Storage Technologies 563

to the valid SC bitmap in SSD. We then read all non-invalid
blocks (i.e., valid and obsolete blocks) in these valid SCs and
migrate data in these blocks. At last, we erase the selected
spots and clean the corresponding metadata in SSD.

To migrate data of a non-invalid physical block (indicated
by the old PBA), we first read the reverse translation entry
in OOB to get its LBA. We then store the block data into
the address (i.e., the new PBA) indicated by the write pointer.
Finally, we write a GC patch recording the old PBA, new PBA,
LBA, and timestamp to the corresponding physical section.

Notably, both valid and obsolete blocks may be migrated
since we cannot distinguish the two kinds of blocks due to
delayed invalidation. Given that the only difference between
the two kinds of blocks is whether there is a mapping in
DTL, migrating obsolete blocks may cause errors because the
migration will update the entry in the DTL (via the GC patch),
turning the obsolete block into a valid block by mistake.

To avoid reading the obsolete blocks as valid ones, we care-
fully designed the GC patch to store both old PBA and new
PBA, enabling us to recover the migration traces of blocks.
In each read process, we merge patches to recover the migra-
tion trace and identify whether the block before a series of
migrations is obsolete, which is elaborated in §4.4. Migrating
data in obsolete blocks increases the GC overhead, but we
expect the number of migrated obsolete blocks to be low as
we always select spots with the least non-invalid blocks.

L1 DTL GC. The L1 DTL also requires GC to reclaim
invalid physical sections. During GC, we ① traverse the valid
PS bitmap in SSD to select spots containing the most invalid
physical sections; ② read all valid physical sections in these
spots; ③ find all entries for each valid physical section; ④
relocate them to empty physical sections; ⑤ update L0 DTL
entries to record new PSAs; and ⑥ erase the selected spots.

LiqSD

LBA
Cache

PBA
Cache

L1 DTL
Cache

Write Read
1 2

2

3 4

1

2 2

Figure 7: Customized cache design. The LBA cache is write-back
data cache indexed by LBA; the L1 DTL cache is write-through
cache for the L1 DTL entries; the PBA cache is read-only data cache
indexed by PBA.

4.3.2 Cache

Adding a cache to LiqSD is non-trivial. To fully exploit work-
load locality, we usually add all non-invalid blocks within the
SC, which are read together into the cache. However, due to
the potential inconsistency between the L1 DTL and the data
layer, we cannot distinguish the obsolete and valid blocks
without traversing the L1 DTL. Placing an obsolete block into
the cache may cause a failure to read the latest, correct data.

0
5

1 2

…

PS 5

Look Up

PSA=5

PBA=9
…

91 2 3

1 1 1
…

Obsolete
Chain

Read Patch Merge & Look Up

Read Block

Invalidate

7
0

7
0

7
x

1… 7

9
x

Valid
 Chain7

9
x

7
x

…
7
0

7
0

L0 DTL

LBA=7

LSA=0

LBA=7

PBA=M

PBA=N

M N
M

N

Figure 8: LiqSD read workflow. We first look up L0 DTL to get
the PSA, then read and merge patches in the physical section to get
the PBA. Last, we read the physical block and invalidate obsolete
blocks.

To address this problem, we customize the cache, depicted
in Figure 7. The LBA cache is a write buffer for block writes,
indexed by LBA. The L1 DTL cache is a write-through cache
for L1 DTL entries, accelerating L1 DTL reads. The PBA
cache is a read-only cache for block data indexed by PBA.
All caches are stored in SSD and managed with LRU.

For write operations, ❶ we write the data in the LBA cache.
❷ If the cache is full, we write back the evicted logical block
and update the entry in the L1 DTL cache if exists. For read
operations, ① we search the logical block in the LBA cache.
② If the LBA cache misses, we search the L1 DTL entry in
the L1 DTL cache to get the PBA, then search the physical
block in the PBA cache. ③ If the L1 DTL cache misses, we
read the corresponding physical section in DNA and add all
entries that map to valid blocks into the L1 DTL cache. ④ If
the PBA cache misses, we read the SC containing the physical
block and add all non-invalid blocks within the SC into the
PBA cache. When GC relocates blocks whose L1 DTL entries
or data are cached, we remove them from the cache.

By separating the LBA and PBA cache, we will never
falsely read obsolete blocks even if they are in the PBA cache
because there is no L1 DTL entry pointing to them.

4.4 Read/Write Workflow
After describing all components of LiqSD, we elaborate on
the procedures of reading and writing logical blocks.

Read. As presented in Figure 8, to read a logical block
whose LBA is 7, we use its LBA to calculate the LSA value
as 0. We then look up the L0 DTL based on LSA 0 to obtain
the PSA, which is 5. After that, we read patches in the physical
section. Later, we merge them to get the DTL entries and look
up the entries based on the LBA 7 to get the PBA, which is 9.
At last, we read the block based on the PBA.

We merge the patches by the following steps. ① We iden-
tify all normal patches. ② We chain all GC patches to normal
patches to form chains, where a chain consists of one normal
patch and a series of GC patches with the same LBA. This is
done by assigning the normal patches to each empty chain,
and then adding all GC patches to chains in ascending times-

564 23rd USENIX Conference on File and Storage Technologies USENIX Association

…

7
8

0
5

1 2

Look Up

Append Block

Insert
Normal Patch

PS 5

0 1 2
Append
Block 8

PSA=5

PBA
=8

Insert PatchLBA=7
LSA=0

LBA=7

…

Figure 9: LiqSD write workflow. We get PSA from L0 DTL, ap-
pend the block to data layer, and insert a normal patch into physical
section.

tamp order. For each GC patch, we chain it to the last patch in
a chain, where the last patch should have a smaller timestamp
and equal LBA, and the new PBA should equal the old PBA
of the to-be-added GC patch. ③ After chaining all patches,
for chains with the same LBA, we mark the chain with the
latest normal patch as the valid chain and others as obsolete.
After merging all patches, we can get the DTL entry in the
last patch of the valid chain, and thus, we can get the PBA
of the logical block. Concurrently, we invalidate the obsolete
blocks identified during merge. For each obsolete chain, we
invalidate the obsolete block by inserting the invalid strand
into the PBA indicated by the new PBA of the last patch in the
obsolete chain (the PBAs are M and N in Figure 8). To pre-
vent double invalidating a block, we only invalidate obsolete
blocks whose patches are inserted after the timestamp in the
latest TS recorder and refresh the timestamp after invalidation.

Write. As shown in Figure 9, to write a logical block whose
LBA is 7, we first append the block (including the block data
and the reverse translation entry) into the new PBA value as
8 indicated by the write pointer. Then, we use the LBA to
calculate the LSA values as 0, obtain the PSA value as 5 by
looking up the L0 DTL, and insert a normal patch with the
LBA 7, the new PBA 8, and the timestamp into the physical
section. At last, we update the related metadata in SSD.

If the PSA is null, which means none of the logical blocks
mapped by the logical section have ever been written before,
we need to find an empty physical section and update the L0
DTL entry to map the logical section to it. If the physical
section is full, we need to read the physical section, merge
patches, write all entries (indicated by the last patch in the
valid chains) to an empty physical section, invalidate the old
physical section, and update the entry in L0 DTL. Besides, we
invalidate the obsolete blocks discovered in merging patches.

It is worth mentioning that we do not read the L1 DTL and
invalidate the old block in write, resulting in the old block
becoming obsolete block. We delay invalidating the obsolete
blocks until reading the L1 DTL, which occurs in reading
blocks and relocating physical sections. When reading the L1
DTL, we can distinguish the latest normal patch based on the
timestamp and recover the data relocation trace by chaining

the GC patches. Therefore, we can correctly get the PBA of
the logical block and discover the obsolete blocks and the
blocks that are relocated mistakenly by GC.

4.5 Crash Consistency
Crash consistency ensures the state of the storage device is
consistent under crash and is the key to achieving reliability.
LiqSD guarantees crash consistency by writing redo-logs in
SSD before each DNA operation, and redoing the operation
during recovery. Redo-logging is suitable for LiqSD due to the
idempotence of DNA operations: repeated reads and erases
do not affect stored data and repeated writes merely increase
the copy number of strands.

4.6 The Implications of SSD’s Short Lifespan
The limited lifespan of SSDs will not impact the longevity
of LiqSD. SSDs used for storing L0-DTL typically have a
lifespan of around five years, whereas DNA storage can last
for centuries. To minimize the risk of L0-DTL data loss, we
regularly migrate lightweight metadata from SSDs, such as
every three years. Additionally, employing RAID can reduce
the likelihood of data loss due to sudden SSD failures. Fi-
nally, even if L0 DTL is completely lost from SSDs, it can be
reconstructed from the L1 DTL stored in DNA. Specifically,
we first identify which LS a PS belongs to by examining the
LBA range of strands in L1-DTL. We then identify the valid
PS by the latest timestamp of strands if multiple PSs match
the same LS due to invalid PSs in the L1-DTL. After that, we
obtain the LS to PS mapping and hence recover the L0-DTL.

4.7 Discussion
In LiqSD, we update blocks and perform GC at a low cost.
We update the L1 DTL and data layer by writing the normal
patch and data without reads, thus enabling low-cost updates.
Moreover, we eliminate extra metadata access overhead of
GC by symbiotically storing GC metadata with blocks. We
also avoid the overhead of reading the L1 DTL in updates by
delaying invalidating blocks.

The advantages come at the cost of extra read and space
overhead compared to the naïve design. We need an extra
L1 DTL read to get the PBA when reading a block and extra
DNA space to store the L1 DTL and GC metadata. However,
we will show that the benefits are tremendous in §6, while the
space overhead is about 3.1% (2.5% for L1 DTL and 0.6%
for GC metadata) and the read overhead is about 48%.

Note that our design is orthogonal to DNA coding methods,
and we have employed coding methods to ensure reliability,
which is detailed in §5.

5 Implementation
We simulate DNA storage media and implement LiqSD based
on the simulator. The simulator accurately reflects the per-
formance of the actual system on the read/write amplifica-
tion metrics. The source code of the simulator is available at

USENIX Association 23rd USENIX Conference on File and Storage Technologies 565

Parameter Value
Strand Length 296 nt
Primer Length 20 nt
Payload Length 246 nt
Index Length 10 nt

Strands per SC 1,000,000
SC per Spot 2,000

Spot per Chip 24
Chip Number 10

(a) Setup of hardware simulator.

Parameter Value
Block Size 4,096 Byte

Strands per Block 161
Redundancy Ratio 40%
Reserved Strand 1
Blocks per SC 6211
Entries per PS 250,000
Patches per PS 500,000

Cache Size 120 MB
(b) Setup of LiqSD.

Table 2: Setup of hardware simulator and LiqSD

https://ipads.se.sjtu.edu.cn/projects/liqsd. Our
design only relies on well-established DNA manipulation
techniques and is orthotropic to their improvements, so we
did not perform wetlab experiments on LiqSD.

DNA storage media simulator. The simulator provides
interfaces to read an SC, write a strand, and erase a spot.
Internally, we simulate sequencing and synthesizing strands
with errors and counts the strands number. Specifically, we
inject nucleotide substitution, deletion, and insertion to the
strands based on the probability from an open-source DNA
simulator [2]. Table 2(a) shows the simulator’s main setup.

LiqSD. We implement LiqSD based on the simulator, pro-
viding interfaces for reading and writing logical blocks. We
employ a Reed-Solomon Code with a redundancy ratio of
40% to tolerate errors and the rotation code to fulfill the bio-
constraints. We validate the reliability of LiqSD by success-
fully running Vim in the storage stack of a lightweight Ext4
+ FUSE + LiqSD. Table 2(b) shows LiqSD’s main setup.

6 Evaluation
Our evaluation aims to answer the following questions:

1. What is the performance and overhead of LiqSD com-
pared to other DNA block device designs?

2. What is the overhead of GC?
3. What is the performance and overhead of delayed invali-

dation compared to eager invalidation?

6.1 Setup
Hardware configuration. We run all experiments on the
simulator described in §5. The system runs on a server with
two Intel(R) Xeon(R) Gold 5317 24-core CPUs running at
3.00 GHz, 188 GB of DRAM, and 7 TB NVMe SSD.

Compared systems. In our evaluation, we compare the fol-
lowing systems, all of which have identical cache sizes and
adopt the LRU cache strategy (if there is a cache).
• LiqSD is the complete block device implementation with

the dual DTL, symbiotic metadata, delayed invalidation,
and customized cache.

• LiqSD-naïveCache is a LiqSD variant that adopts a naïve
implementation of the cache, which caches only the target
block, rather than all blocks in the SC, upon a read request.

• LiqSD-noCache disables the cache in LiqSD.

Trace Capacity Description

Alibaba
Cloud 118 TB

Cluster in production of the elastic block ser-
vice of Alibaba Cloud. Typically runs oper-
ating systems, big data processes, and web
servers.

MSR Proj few TB Project directory servers in the data center.
MSR Mds few TB Media servers in the data center.
MSR Prxy few TB Firewall/web proxy servers in the data center.

ECFS 14.8 PB General-purpose archival system and accessi-
ble for users of ECMWF.

Table 3: Real-world trace description.

• Coarse-DTL is a block device implementation using a
coarse DTL with 24 MiB block size (i.e., the SC size). The
cache is enabled, and the GB-scale DTL is stored in SSD.

• No-DTL is the naïve DNA block device mentioned in §3.2
without the cache.

Workloads. We evaluate the above systems in microbench-
marks and real-world traces. In microbenchmarks, we eval-
uate the performance of sequential write, random write, se-
quential read, random read, and random update. We directly
conduct the read/write/update operations on all logical blocks
for the sequential and random write experiments. For other
experiments, we first populate all logical blocks by sequential
writes and then conduct the read/write/update operations. In
real-world traces, as shown in Table 3, we use block device
traces from Alibaba Cloud [27,43] and MSR Cambridge [31].
We also replay an archival file system trace from the European
Centre for Medium-Range Weather Forecasts (ECMWF) [19]
on ext4 and record the block device trace with blktrace.
Like in the microbenchmarks, we populate all logical blocks
by sequential writes before replaying the real-world traces.
Note that in evaluation, due to the traces’ large size, we uti-
lized the simulator to count the number of synthesized and
sequenced strands without actually storing the data.

Metrics. Since DNA storage is in the early development
stage, and the cost and speed of synthesis and sequencing (i.e.,
writes and reads) are improving rapidly, traditional metrics,
such as throughput, latency, and expense, may not be infor-
mative to measure DNA block devices. We use the following
relative metrics instead. SSD access cost is not considered in
the evaluation, because its millisecond latency is negligible
compared to the tens of minutes latency of DNA.

• Read amplification. The ratio of the requested read data
volume to the actual read data volume in DNA.

• Write amplification. The ratio of the requested write data
volume to the actual write data volume in DNA.

• Extra Read Ratio. The ratio of extra read data volume
caused by write to the requested write data volume in DNA.

6.2 General Performance & Overhead

We evaluate the general performance and overhead of LiqSD
in microbenchmarks and real-world traces.

566 23rd USENIX Conference on File and Storage Technologies USENIX Association

https://ipads.se.sjtu.edu.cn/projects/liqsd

LiqSD LiqSD-naïveCache LiqSD-noCache Coarse-DTL No-DTL

Seq Write
Random Write

Random Update
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

W
rit

e
A

m
pl

ifi
ca

tio
n

1.
00

6

1.
00

5

1.
01

0

1.
00

6

1.
00

3

1.
00

5

1.
00

6

1.
00

6

1.
01

5

1.
00

0

2294
6234

1.
00

0
90731

12276148

(a) Write amplification.

Seq Write
Random Write

Random Update
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

E
xt

ra
 R

ea
d

R
at

io

0
×

0
× 0.

00
70

×
0
× 0.

00
30

×
0
× 0.

00
30

×

2294
62343124

91736

12352874

(b) Extra read ratio.

Seq Read
Random Read

10
0

10
1

10
2

10
3

10
4

10
5

R
ea

d
A

m
pl

ifi
ca

tio
n

 1
.0

07

 61
66 92

78
 92

50
 92

78
 92

78

 1
.0

00

 62
34

 62
50

 62
50

(c) Read amplification.

Figure 10: Performance in microbenchmarks.

0.6 1.0 1.5 2.0 3.0 4.0
Requested Write Volume / System Capacity

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

W
rit

e
A

m
pl

ifi
ca

tio
n

0.60 0.65 0.70

1.014

1.016

Alibaba Cloud
MSR Prxy
MSR Proj

9.3

9.4

9.5

9.6

9.7

9.8

9.9

R
ea

d
A

m
pl

ifi
ca

tio
n

×103Write

Read

9320

9340

9360

Figure 11: LiqSD-noCache performance with GC.

LiqSD LiqSD-naïveCache Coarse-DTL NO-DTL

Alibaba Cloud
MSR Mds

MSR Proj
MSR Prxy

ECFS

10
0

10
1

10
2

10
3

10
4

W
rit

e
A

m
pl

ifi
ca

tio
n

1.
02

0.
36 0.

92

0.
67 1.

01

1.
02

0.
12

0.
91

0.
28

1.
01

40

10
48

78
3

57
2

1.
74

1.2×10^7 8.9×10^6 1.2×10^7 1.2×10^7 1.2×10^7

(a) Write amplification.

Alibaba Cloud
MSR Mds

MSR Proj
MSR Prxy

ECFS

10
0

10
1

10
2

10
3

10
4

10
5

R
ea

d
A

m
pl

ifi
ca

tio
n

34

36
9

78

55
0

1.
4

98
62

86
61

92
62

21
43

92
97

55

26
58

57

39
4

9.
1

9.2×10^4 2.1×10^7 5.3×10^8 8.1×10^6 1.6×10^9

(b) Read amplification.

Figure 12: Performance of real-world traces.

Performance in microbenchmarks. Figure 10 shows the
write and read performance in microbenchmarks. Regarding
write amplification, Figure 10(a) shows that the write amplifi-
cation of systems with LiqSD is slightly above 1 in all tests
as we only write a patch and block data in write. In sequential
write, Coarse-DTL and No-DTL show a write amplification
of precisely 1 as they write only the block data and not the L1
DTL. In random write and random update, Coarse-DTL ex-
hibits a high write amplification because of the coarse 24 MiB
block granularity. Specifically, to write 4 KiB data, we need
to read 24 MiB data in the block, update the data, and write
them back, thus incurring significant overhead. The No-DTL
shows a write amplification of 90,731 in random write and
12,276,148 in random update due to the in-place update.

Regarding the extra read ratio, Figure 10(b) shows the extra
read ratio of systems employing LiqSD is zero in sequential
and random write and negligible in random update because
we eliminate the read in writing blocks. The negligible extra
read ratio is caused by migrating full physical sections in the
L1 DTL to empty ones. However, Coarse-DTL exhibits a high
extra read ratio in random write and random update due to
the coarse block granularity. The extra read ratio of No-DTL
is enormous because we need to read the SC to check the
existence of the block in updates, and if the block exists, we
need to read all data within the spot.

Figure 10(c) shows the read performance in microbench-

marks. For sequential read, the read amplification is slightly
above 1 in LiqSD and precisely 1 in Coarse-DTL. For random
read, LiqSD-naïveCache and LiqSD-noCache demonstrate a
read amplification of near 9,250 since we need to read the
DTL and data block. LiqSD exhibits a read amplification of
around 6,200 since the L1 DTL reads are almost cached.

Performance in real-world traces. Figure 12 presents
the read and write performance of three systems. We omit
LiqSD-noCache since its performance is similar to LiqSD-
naïveCache. Regarding the write amplification, Figure 12(a)
shows the write amplification of systems with LiqSD is sig-
nificantly lower than Coarse-DTL and No-DTL in all traces.
The write amplification of LiqSD is nearly identical to LiqSD-
naïveCache except in MSR Mds and MSR Prxy. The excep-
tion occurs because the smaller write cache of LiqSD leads
to a lower cache hit rate.

Regarding read amplification, Figure 12(b) shows the read
amplification of LiqSD-naïveCache and No-DTL is substan-
tially higher than others, as the naïve cache can not leverage
the workload locality and No-DTL requires to read all blocks
in the spot when updating. The read amplification of LiqSD
is lower than Coarse-DTL in the majority except in MSR Proj
and MSR Prxy. The exceptions occur for two reasons. First,
MSR Proj and MSR Prxy are not write-intensive, and fewer
writes lead to fewer extra reads in Coarse-DTL. Second, the
read cache is smaller in LiqSD, causing a lower cache hit rate.

USENIX Association 23rd USENIX Conference on File and Storage Technologies 567

Delayed Invalidation Eager Invalidation

Alibaba Cloud
MSR Prxy

MSR Proj
MSR Mds

ECFS

0.2

0.4

0.6

0.8

1.0

1.2

W
rit

e
A

m
pl

ifi
ca

tio
n

1.
01

6

0.
81

9

0.
91

5

0.
36

0

1.
01

0

1.
01

7

0.
86

7 0.
97

4

0.
37

0

1.
01

0

(a) Write amplification.

Alibaba Cloud
MSR Prxy

MSR Proj
MSR Mds

ECFS
10

0

10
1

10
2

10
3

10
4

R
ea

d
A

m
pl

ifi
ca

tio
n

34

551

78
369

1.35

4590 7465

558

4251

20521

(b) Read amplification.
Figure 13: Evaluation of delayed invalidation.

6.3 GC Overhead
We evaluate the effect of GC on the read and the write ampli-
fication of LiqSD-noCache in real-world traces. The results
of MSR Proj, MSR Mds and ECFS are similar, so we only
analyze MSR Proj.

Figure 11 illustrates the relationship between the read/write
amplification and the ratio of the requested write volume to
the system capacity. We decrease the system capacity to in-
crease the ratio, which makes GC perform more frequently.
In MSR Proj, the plotted line remains steady until it discon-
tinues when the ratio reaches 0.8, at which point the capacity
of the block device is exhausted. This is primarily because
the requested written data is mostly valid, resulting in little
stale data and due to the ineffectiveness of garbage collection.
In the other two traces, the read amplification remains stable,
while the write amplification increases by about 2.7× in Al-
ibaba Cloud and 1.3× in MSR Prxy. The read amplification
is rarely affected by GC because the amount of requested
read is far larger than that of GC read. Conversely, GC has a
significant effect on write amplification. Compared to MSR
Prxy, in Alibaba Cloud, the increase of write amplification is
more pronounced and the system capacity is exhausted much
earlier due to the higher valid block percentage.

Read Write
LiqSD 1RT → 1RT 1WT

Coarse-DTL 1RT 1RT → ⌈SC/(WS×WN)⌉WT

Table 4: Read and write latency analysis. RT/WT : one read/write
time; SC: strand number in an SC; WS: batch size of one write; WN:
writer number; →: operation dependency.

6.4 Delayed Invalidation
We evaluate the effect of delayed invalidation in real-world
traces. Delayed invalidation in Figure 13 corresponds to
LiqSD, while eager invalidation revokes LiqSD’s delayed
invalidation strategy, immediately invalidating old blocks in
updating.

Figure 13 shows the write amplification is slightly lower in
delayed invalidation due to its slightly higher cache hit rate.
The read amplification of eager invalidation is about 15,194×
and 7× higher than delayed invalidation in the worst and best
case, as the eager invalidation must read the L1 DTL in writes.

4k
(2.3P)

8k
(1.1P)

32k
(281T)

256k
(35T)

24M
(367G)

Block Size (Metadata Size)

100

101

102

103

104

Re
ad

 A
m

pl
ifi

ca
tio

n

4k
(2.3P)

8k
(1.1P)

32k
(281T)

256k
(35T)

24M
(367G)

Block Size (Metadata Size)

100

101

102

103

W
rit

e
Am

pl
ifi

ca
tio

n Alibaba
MSR Mds
MSR Prxy
MSR Proj
ECFS

Figure 14: Performance of different block size.

6.5 Performance of Different Block Size
We evaluated the impact of varying block sizes on read and
write amplification performance using real-world traces. In
Figure 14, the x-axis represents various block sizes and their
corresponding metadata sizes when the storage capacity is
1 EB (in parentheses). When the block size is 24 MB, all
metadata is stored on the SSD (i.e., the Coarse-DTL design).
The others represent LiqSD at different block sizes. Overall,
a block size of 4 kB generally achieves the best read and write
performance.

6.6 Latency Analysis
We conduct an analysis and comparison of the latency be-
tween LiqSD and Coarse-DTL. Due to the tens of minutes
latency of DNA read and write [26], running simulators with
real-world traces (typically with request intervals within mil-
liseconds) would yield distorted results. Hence, we qualita-
tively analyze the operation latency in Table 4. In a block read
operation, LiqSD requires two dependent reads, including
reading L1 DTL and block data, while Coarse-DTL requires
only one. Fortunately, more than 99.3% L1 DTL reads are
cached in real-world traces. In a block write operation, LiqSD
requires only one write while Coarse-DTL requires one read
and several writes depending on the read. The read of Coarse-
DTL is hard to cache because it requires reading all 6,250
blocks in the SC and any cache miss leads to the DNA read.
Besides, the queuing latency is significantly higher in Coarse-
DTL, because its subsequent write data volume is 6,250×
larger than LiqSD at worst, which means the write throughput
bottlenecks earlier and the GC is triggered more frequently.

We estimate the absolute read and write latency for LiqSD
under the current technology. The current read throughput is
~51 MBases/s and with real-time latency [3]. LiqSD takes
an average of ~49 minutes to read a block. The current
write throughput is in MBytes/s, with a latency about 74 min-
utes [32, 34]. LiqSD takes ~74 minutes to write a block.

7 Conclusion
To conclude, we proposed LiqSD, the first block device based
on DNA storage. We explored and addressed the challenges
encountered by DNA block devices, by providing low-cost
access at the expense of a slight space overhead. Evaluation
shows that LiqSD improves the write performance by up to
6,206× and the read performance by up to 7× with only
3.1% space overhead using real-world traces.

568 23rd USENIX Conference on File and Storage Technologies USENIX Association

8 Future Work
Based on our experiences, we propose some prospects and
suggestions for DNA storage. First, prioritizing increasing the
sequencing throughput and decreasing the synthesis expense.
Our real-world evaluation indicates that sequencing is the
performance bottleneck and synthesis is the expense bottle-
neck with current technology. Second, scaling DNA storage
capacity by scaling chips and spots is a priority over scaling
primers and strands. Scaling the primers and strands impairs
the performance as it enlarges the granularity of erase and
read, incurring more unnecessary sequencing and synthesis.
Third, exploring the fine-grained erase operation. We plan to
explore the fine-grained erase operation at the SC granularity
by utilizing biochemical techniques.

There are also some system directions that we can explore
in the future. First, we can categorize data into groups and
apply different policies to them based on their characteris-
tics, such as hot and cold, read-only and read-write. Second,
we can explore building more sophisticated storage systems
for different scenarios on the top of LiqSD, including a file
system, a key-value store, etc.

Acknowledgments
We sincerely thank our shepherd Erez Zadok and the anony-
mous reviewers for the constructive comments and sugges-
tions. This work is supported in part by the National Natu-
ral Science Foundation of China (No. T2188102, 61925206,
62141219). Mingkai Dong (mingkaidong@sjtu.edu.cn) is the
corresponding author.

References
[1] Disk Prices (US). https://diskprices.com.

[2] MESA - DNA synthesis, storage and sequencing simu-
lator. https://mesa.mosla.de/.

[3] PromethION - Oxford Nanopore Technologies.
https://nanoporetech.com/products/sequence/
promethion-24-48.

[4] TCO calculator for data storage | Fujifilm. https:
//www.fujifilm.com/us/en/business/data-
storage/resources/tco-tool,.

[5] LTO Ultrium Data Cartridge. https:
//www.fujifilm.com/de/en/business/data-
management/datastorage/ltotape/downloads,
2024.

[6] DNA Storage Alliance. AN INTRODUCTION TO DNA
DATA STORAGE. June 2021.

[7] Sam Behjati and Patrick Tarpey. What is next gener-
ation sequencing? Archives of Disease in Childhood-
education and Practice Edition, 98(6):236–238, Aug
2013.

[8] Twist Bioscience. Oligo pools for high through-
put screens - twist bioscience. https://www.
twistbioscience.com/products/oligopools.

[9] Meinolf Blawat, Klaus Gaedke, Ingo Hütter, Xiao-Ming
Chen, Brian Turczyk, Samuel Inverso, Benjamin W.
Pruitt, and George M. Church. Forward error correc-
tion for DNA data storage. Procedia Computer Science,
80:1011–1022, 2016. International Conference on Com-
putational Science 2016, ICCS 2016, 6-8 June 2016, San
Diego, California, USA.

[10] James Bornholt, Randolph Lopez, Douglas M. Carmean,
Luis Ceze, Georg Seelig, and Karin Strauss. A DNA-
based archival storage system. In Proceedings of the
Twenty-First International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’16, pages 637–649, New York, NY,
USA, 2016. Association for Computing Machinery.

[11] Anton V. Bryksin. Overlap extension PCR cloning: a
simple and reliable way to create recombinant plasmids
| BioTechniques.

[12] Eric Burgener and John Rydning. High data
growth and modern applications drive new storage
requirements in digitally transformed enterprises.
https://www.delltechnologies.com/asset/en-
my/products/storage/industry-market/h19267-
wp-idc-storage-reqs-digital-enterprise.pdf,
Jul 2022.

[13] Robert Carlson. The changing economics of dna syn-
thesis. Nature Biotechnology, 27(12):1091–1094, De-
cember 2009.

[14] George M. Church, Yuan Gao, and Sriram Kosuri. Next-
generation digital information storage in DNA. Science,
337(6102):1628, Sep 2012.

[15] Delphine Coudy, Marthe Colotte, Aurélie Luis, Sophie
Tuffet, and Jacques Bonnet. Long term conservation of
dna at ambient temperature. implications for dna data
storage. PloS One, 16(11):e0259868, November 2021.

[16] Yaniv Erlich and Dina Zielinski. DNA fountain en-
ables a robust and efficient storage architecture. Science,
355(6328):950–954, Mar 2017.

[17] Andy Extance. How dna could store all the world’s data.
Nature, 537(7618):22–24, August 2016.

[18] Nick Goldman, Paul Bertone, Siyuan Chen, Christophe
Dessimoz, Emily LeProust, Botond Sipos, and Ewan Bir-
ney. Towards practical, high-capacity, low-maintenance
information storage in synthesized DNA. Nature,
494(7435):77–80, Jan 2013.

USENIX Association 23rd USENIX Conference on File and Storage Technologies 569

https://diskprices.com
https://mesa.mosla.de/
 https://nanoporetech.com/products/sequence/promethion-24-48
 https://nanoporetech.com/products/sequence/promethion-24-48
 https://www.fujifilm.com/us/en/business/data-storage/resources/tco-tool
 https://www.fujifilm.com/us/en/business/data-storage/resources/tco-tool
 https://www.fujifilm.com/us/en/business/data-storage/resources/tco-tool
 https://www.fujifilm.com/de/en/business/data-management/datastorage/ltotape/downloads
 https://www.fujifilm.com/de/en/business/data-management/datastorage/ltotape/downloads
 https://www.fujifilm.com/de/en/business/data-management/datastorage/ltotape/downloads
https://www.twistbioscience.com/products/oligopools
https://www.twistbioscience.com/products/oligopools
 https://www.delltechnologies.com/asset/en-my/products/storage/industry-market/h19267-wp-idc-storage-reqs-digital-enterprise.pdf
 https://www.delltechnologies.com/asset/en-my/products/storage/industry-market/h19267-wp-idc-storage-reqs-digital-enterprise.pdf
 https://www.delltechnologies.com/asset/en-my/products/storage/industry-market/h19267-wp-idc-storage-reqs-digital-enterprise.pdf

[19] Matthias Grawinkel, Lars Nagel, Markus Mäsker, Fed-
erico Padua, Andre Brinkmann, and Lennart Sorth. Anal-
ysis of the ECMWF storage landscape. In 13th USENIX
Conference on File and Storage Technologies (FAST 15),
pages 15–27, Santa Clara, CA, February 2015. USENIX
Association.

[20] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar.
DFTL: a flash translation layer employing demand-
based selective caching of page-level address mappings.
In Mary Lou Soffa and Mary Jane Irwin, editors, Pro-
ceedings of the 14th International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, ASPLOS 2009, Washington, DC, USA,
March 7-11, 2009, pages 229–240. ACM, 2009.

[21] Illumina. Novaseq X Plus specifications. https://www.
illumina.com/systems/sequencing-platforms/
novaseq-x-plus/specifications.html, Aug
2023.

[22] National Human Genome Research Insti-
tute. Dna sequencing costs: data. https:
//www.genome.gov/about-genomics/fact-
sheets/DNA-Sequencing-Costs-Data.

[23] The kernel development community. Block device
drivers — the linux kernel documentation. https:
//linux-kernel-labs.github.io/refs/heads/
master/labs/block_device_drivers.html, Aug
2023.

[24] Andy Klein. The cost of hard drives over
time. https://www.backblaze.com/blog/hard-
drive-cost-per-gigabyte/, December 2022.

[25] Bingzhe Li, Li Ou, and David Du. Dp-dna: A digital
pattern-aware dna storage system to improve encoding
density, 2021.

[26] Bingzhe Li, Nae Young Song, Li Ou, and David H.C. Du.
Can we store the whole world’s data in DNA storage? In
12th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 20). USENIX Association,
July 2020.

[27] Jinhong Li, Qiuping Wang, Patrick P. C. Lee, and Chao
Shi. An in-depth analysis of cloud block storage work-
loads in large-scale production. In 2020 IEEE In-
ternational Symposium on Workload Characterization
(IISWC), pages 37–47, 2020.

[28] Yi-Syuan Lin, Yu-Pei Liang, Tseng-Yi Chen, Yuan-Hao
Chang, Shuo-Han Chen, Hsin-Wen Wei, and Wei-Kuan
Shih. How to enable index scheme for reducing the
writing cost of DNA storage on insertion and deletion.
ACM Trans. Embed. Comput. Syst., 21(3), may 2022.

[29] Weigui Luo, Liu Huizhen, Wenxiong Lin, Md. Humayun
Kabir, and Yi Su. Simultaneous splicing of multiple
DNA fragments in one PCR reaction. Biological Proce-
dures Online, 15(1), Sep 2013.

[30] Kary B. Mullis, F Faloona, Stephen J. Scharf, Randall K.
Saiki, Glenn T. Horn, and Henry A. Erlich. Specific en-
zymatic amplification of DNA in vitro: The polymerase
chain reaction. Cold Spring Harbor Symposia on Quan-
titative Biology, 51(0):263–273, Jan 1986.

[31] Dushyanth Narayanan, Austin Donnelly, and Antony
Rowstron. Write Off-Loading: Practical power manage-
ment for enterprise storage. In 6th USENIX Conference
on File and Storage Technologies (FAST 08), San Jose,
CA, February 2008. USENIX Association.

[32] Bichlien H. Nguyen, Christopher N. Takahashi, Gagan
Gupta, Jake A. Smith, Richard Rouse, Paul Berndt,
Sergey Yekhanin, David Ward, Siena Dumas Ang,
Patrick Garvan, Hsing-Yeh Parker, Robert H. Carlson,
Douglas M. Carmean, Luis Ceze, and Karin Strauss.
Scaling DNA data storage with nanoscale electrode
wells. Science Advances, 7(48), Nov 2021.

[33] Lee Organick, Siena Dumas Ang, Yuan Jyue Chen, Ran-
dolph Lopez, Sergey Yekhanin, Konstantin Makarychev,
Miklos Z. Racz, Govinda M. Kamath, Parikshit Gopalan,
Bichlien H. Nguyen, Christopher N. Takahashi, Sharon
Newman, Hsing Yeh Parker, Cyrus Rashtchian, Kendall
Stewart, Gagan Gupta, Robert H. Carlson, John Mul-
ligan, Douglas M. Carmean, Georg Seelig, Luis Ceze,
and Karin Strauss. Random access in large-scale DNA
data storage. Nature Biotechnology, 36(3):242–248, Feb
2018.

[34] Sebastian Palluk, Daniel H Arlow, Tristan De Rond,
Sebastian Barthel, Justine S Kang, Rathin Bector,
Hratch M Baghdassarian, Alisa N Truong, Peter W Kim,
Anup K Singh, Nathan J Hillson, and Jay D Keasling.
De novo DNA synthesis using polymerase-nucleotide
conjugates. Nature Biotechnology, 36(7):645–650, June
2018.

[35] F. Ann Ran, Patrick Hsu, Jason Wright, Vineeta Agar-
wala, David Scott, and Feng Zhang. Genome engineer-
ing using the CRISPR-Cas9 system. Nature Protocols,
8(11):2281–2308, Oct 2013.

[36] Irving S. Reed and Glenn S. Solomon. Polynomial
codes over certain finite fields. Journal of the Society
for Industrial and Applied Mathematics, 8(2):300–304,
Jun 1960.

[37] Robert. On DNA and transistors. http:
//www.synthesis.cc/synthesis/category/
Carlson+Curves, Mar 2016.

570 23rd USENIX Conference on File and Storage Technologies USENIX Association

 https://www.illumina.com/systems/sequencing-platforms/novaseq-x-plus/specifications.html
 https://www.illumina.com/systems/sequencing-platforms/novaseq-x-plus/specifications.html
 https://www.illumina.com/systems/sequencing-platforms/novaseq-x-plus/specifications.html
 https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
 https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
 https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
 https://linux-kernel-labs.github.io/refs/heads/master/labs/block_device_drivers.html
 https://linux-kernel-labs.github.io/refs/heads/master/labs/block_device_drivers.html
 https://linux-kernel-labs.github.io/refs/heads/master/labs/block_device_drivers.html
https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/
https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/
 http://www.synthesis.cc/synthesis/category/Carlson+Curves
 http://www.synthesis.cc/synthesis/category/Carlson+Curves
 http://www.synthesis.cc/synthesis/category/Carlson+Curves

[38] Puru Sharma, Cheng-Kai Lim, Dehui Lin, Yash Pote,
and Djordje Jevdjic. Efficiently enabling block seman-
tics and data updates in dna storage. In Proceedings of
the 56th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO ’23, pages 555–568, New
York, NY, USA, 2023. Association for Computing Ma-
chinery.

[39] Statista. Total installed base of data stor-
age capacity in global datasphere 2020-2025.
https://www.statista.com/statistics/
1185900/worldwide-datasphere-storage-
capacity-installed-base/, Sep 2022.

[40] Statista. Amount of data created, consumed,
and stored 2010-2020, with forecasts to 2025.
https://www.statista.com/statistics/871513/
worldwide-data-created/, Aug 2023.

[41] Karin Strauss. Wo2020131588a1 - selec-
tively controllable cleavable linkers - google
patents. https://patents.google.com/patent/
WO2020131588A1/en.

[42] Ferdinand Von Eggeling and H Spielvogel. Applications
of random pcr. PubMed, 41(5):653–70, July 1995.

[43] Qiuping Wang, Jinhong Li, Patrick P. C. Lee, Tao
Ouyang, Chao Shi, and Lilong Huang. Separating data
via block invalidation time inference for write ampli-
fication reduction in Log-Structured storage. In 20th
USENIX Conference on File and Storage Technologies
(FAST 22), pages 429–444, Santa Clara, CA, February
2022. USENIX Association.

[44] James D. Watson and Francis Crick. Molecular structure
of nucleic acids: A structure for deoxyribose nucleic
acid. Nature, 171(4356):737–738, Apr 1953.

[45] Yixun Wei, Bingzhe Li, and David H. C. Du. An en-
coding scheme to enlarge practical dna storage capacity
by reducing primer-payload collisions. In Proceedings
of the 29th ACM International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, Volume 2, ASPLOS ’24, page 71–84,
New York, NY, USA, 2024. Association for Computing
Machinery.

[46] S. M. Hossein Tabatabaei Yazdi, Yongbo Yuan, Jian Ma,
Huimin Zhao, and Olgica Milenkovic. A rewritable,
random-access DNA-based storage system. Scientific
Reports, 5(1), Sep 2015.

USENIX Association 23rd USENIX Conference on File and Storage Technologies 571

 https://www.statista.com/statistics/1185900/worldwide-datasphere-storage-capacity-installed-base/
 https://www.statista.com/statistics/1185900/worldwide-datasphere-storage-capacity-installed-base/
 https://www.statista.com/statistics/1185900/worldwide-datasphere-storage-capacity-installed-base/
 https://www.statista.com/statistics/871513/worldwide-data-created/
 https://www.statista.com/statistics/871513/worldwide-data-created/
https://patents.google.com/patent/WO2020131588A1/en
https://patents.google.com/patent/WO2020131588A1/en

	Introduction
	Background and Motivation
	DNA Basics
	Rapid Development of DNA Storage
	Block Device
	Out-of-Place Update

	A Naïve DNA Block Device
	DNA Storage Hardware
	The Design of Naïve DNA Block Device
	Problems and Challenges

	LiqSD
	Dual DTL
	Symbiotic Metadata
	Delayed Invalidation
	Garbage Collection
	Cache

	Read/Write Workflow
	Crash Consistency
	The Implications of SSD's Short Lifespan
	Discussion

	Implementation
	Evaluation
	Setup
	General Performance & Overhead
	GC Overhead
	Delayed Invalidation
	Performance of Different Block Size
	Latency Analysis

	Conclusion
	Future Work

