
This paper is included in the Proceedings of the
23rd USENIX Conference on File and Storage Technologies.

February 25–27, 2025 • Santa Clara, CA, USA
ISBN 978-1-939133-45-8

Open access to the Proceedings
of the 23rd USENIX Conference on

File and Storage Technologies
is sponsored by

Oasis: An Out-of-core Approximate Graph System
via All-Distances Sketches

Tsun-Yu Yang, The Chinese University of Hong Kong (CUHK); Yi Li, The University of
Texas at Dallas; Yizou Chen, The Chinese University of Hong Kong (CUHK);

Bingzhe Li, The University of Texas at Dallas; Ming-Chang Yang, The Chinese
University of Hong Kong (CUHK)

https://www.usenix.org/conference/fast25/presentation/yang

Oasis: An Out-of-core Approximate Graph System via All-Distances Sketches

Tsun-Yu Yang†, Yi Li‡, Yizou Chen†, Bingzhe Li‡, and Ming-Chang Yang†

†The Chinese University of Hong Kong
‡The University of Texas at Dallas

Abstract
The All-Distances Sketch (ADS) is a powerful and
theoretically-sound sketching scheme that captures neigh-
borhood information in graphs for approximate processing. It
enables high-accuracy estimation of many useful applications
with a guarantee of accuracy and can significantly acceler-
ate the execution times by orders of magnitude. However,
ADS requires a substantial amount of space that is multiple
times larger than the graph data. More seriously, existing
studies mainly focus on managing ADSs in memory, posing
an increasing challenge for users who aim to leverage ADS
for large-scale graph processing, particularly in light of the
exponential growth of real-world graphs nowadays.

To this end, this paper introduces Oasis, an Out-of-core
Approximate graph SYStem that brings the ADS technique
into practical use by leveraging storage effectively. Specifi-
cally, Oasis offers a holistic framework that facilitates both
ADS construction and estimation. For ADS construction, it
allows users to adjust the memory usage based on the ma-
chine’s available memory and enable an efficient construction
process. For ADS estimation, Oasis provides a user-friendly
interface to easily execute the estimators while mitigating
the impact of slow storage I/O. Evaluation results show that
Oasis provides a practical graph processing solution with ex-
ceptional execution time and low memory usage, at the cost
of a slight decrease in accuracy.

1 Introduction
Graphs are a powerful data structure that can express a wide
range of real-world relationships by storing entities as ver-
tices and connections between entities as edges. The most
distinguishing feature of graphs, in comparison to other data
structures, is the concept of "neighborhood". Namely, how
a vertex is connected to other vertices in a graph is pivotal
information that has been studied in many graph theories
and applied in diverse applications. For instance, neighbor-
hood information among vertices is critical in applications
like social network analysis [33], where understanding re-

lationships between users can help identify influencers or
clusters of like-minded individuals, and in recommendation
systems [27], where finding similar items or users hinges on
shared connections. However, as graph sizes have grown ex-
ponentially in recent years, the execution time for gathering
neighborhood information with graph traversals has increased
correspondingly. In scenarios such as identifying influencers
in social networks, it often needs to perform graph traversals
for numerous vertices, or sometimes, even for all vertices.
This generally makes it unfeasible to complete these queries
within a reasonable timeframe.

In this regard, neighborhood sketching provides an ef-
fective alternative to traditional approaches for handling
neighborhood-related queries on large-scale graphs [1, 4, 10,
26]. This technique leverages approximate computation to
achieve fast execution times. Essentially, in many real-world
applications, exact answers are not always necessary [19],
which offers the opportunity to trade answer accuracy for a sig-
nificant reduction in execution time. Meanwhile, a neighbor-
hood sketch is a data structure that stores some pre-specified
and partial neighborhood information. It allows users to lever-
age approximate computations on this partial neighborhood
information to efficiently estimate various useful graph in-
sights and properties. Once constructed, the sketch can be
reused multiple times as needed. These capabilities are cru-
cial for applications that require substantial computational
workload, such as recommendations in social networks, or
those needing quick interactive responses, such as drill-down
analytics and network-aware search systems [25, 39].

All-distances sketch (ADS) has recently emerged as a
promising scheme for neighborhood sketching [9, 10]. It is
a probabilistic data structure that is defined for each vertex,
which includes capturing and sampling the neighborhood
information for each vertex in relation to the entire graph.
More precisely, an ADS of a vertex u is a summary of the
distances of u connected to other “landmark” vertices. Af-
ter constructing a raw graph into ADSs, many useful graph
properties can be estimated accurately via the constructed
ADSs during runtime by orders of magnitude faster. Accord-

USENIX Association 23rd USENIX Conference on File and Storage Technologies 523

ing to an existing study [1], ADS is the only sketching scheme
that combines the following three characteristics. (1) Multi-
Functionality: ADSs can be deployed to estimate various
critical applications. (2) Controllable and Guaranteed Ac-
curacy: ADS-based estimation offers accurate, guaranteed
error bounds, and users can adjust the parameter to control
the error bounds. (3) Scalability: The time complexity for
constructing ADSs is near-linear to the graph scale.

Despite the fact that ADS is well-developed in theory, there
is still a wide gap in its practical use in real-world cases,
mostly because of its excessively high memory consumption.
Specifically, recent efforts in this area are mainly focused
on theoretical aspects. Hence, they propose algorithms and
demonstrate their results with all-in-memory environments,
assuming a large amount of available memory and running
on relatively small graphs. Nevertheless, the state-of-the-art
scheme to efficiently construct ADSs of all vertices requires
an enormous amount of memory that can be up to 30x-60x
larger than the graph itself. For instance, if we have a large-
scale graph of 512 GB, the memory overhead of constructing
its ADSs could require 30 TB, which is unaffordable for most
machines/users nowadays. This severely hinders the use of
ADS in real-world practice.

Handling ADSs with storage is an effective approach to mit-
igate the high memory costs. However, leveraging storage is
a double-edged sword. In particular, storage I/O speed is gen-
erally slow, and managing ADSs with storage presents many
technical challenges. Moreover, although graph processing
with storage has been extensively studied [16, 20, 28, 40–42],
the complex nature of using ADSs makes existing graph pro-
cessing techniques incompatible. For example, since tradi-
tional graph processing usually handles one algorithm at a
time, the number of active vertices (i.e., the vertices participate
in a computational process in an iteration) is bounded by the
number of all vertices O(V). Conversely, the state-of-the-art
method for constructing ADSs is to perform bounded graph
traversals on all vertices, which can lead to the number of
active vertices bounded by O(V 2). Thus, applying the existing
graph processing techniques to ADS construction will lead to
either huge memory consumption for managing their vertex
attributes or an excessive amount of I/O for loading/saving
those attributes (see Section 3 for more details). Further, un-
like traditional graph processing, ADS estimation can handle
multiple queries on different vertices simultaneously, neces-
sitating the development of new interfaces and designs for
ADS estimation. All these differences make managing ADSs
with storage a new and challenging task.

To this end, this paper introduces Oasis, the first out-of-core
approximate graph system that brings the ADS technique into
practical use by leveraging storage effectively. Specifically,
Oasis offers a holistic framework that facilitates both ADS
construction and estimation through system-level optimiza-
tions, without altering the underlying ADS theory. For ADS
construction, it presents a scheme that allows users to adjust

the memory usage based on available memory of the machine.
Additionally, to address performance bottlenecks during ADS
construction, this work proposes designs such as lock-free
edge layout to prevent the thread synchronization overhead,
and active data separation and selective ADS accessing to
reduce the unnecessary I/O for loading ADSs. For estimation,
Oasis offers a user-friendly framework that allows users to
implement and execute their ADS estimators easily. Further,
to mitigate the slow storage I/O, this paper presents locality-
aware query assignment and grid-based estimation, which
can re-schedule the queries to achieve better locality of access
during estimation.

Our evaluation results demonstrate that Oasis1 offers a
highly practical graph processing solution than other state-of-
the-art work by achieving an outstanding trade-off between
memory and performance. Specifically, in comparison to in-
memory ADS-based solution, although Oasis is slower by
around 1.8x for construction and 1.7x for estimation, it can
save a significant 13.8x of memory, which demonstrates the
high practicality of Oasis by allowing it to process much larger
graphs. Moreover, when compared with the graph system that
compute exact answer, Oasis can significantly improve the
execution time by several orders of magnitude with only a
minor loss of accuracy. Oasis offers the flexibility to control
memory overhead, enabling users to adjust memory usage
according to their machine’s capacity. We also observe that
ADS and storage synergize with each other; ADS’s excep-
tional speedup can outshine the slow I/O bandwidth, while
the huge size of ADS can reside in the cheap-and-massive
storage. These evaluation results suggest that Oasis is a supe-
rior option for graph processing, with efficient performance,
low memory usage, and high levels of flexibility.

2 Background and Motivation

2.1 Preliminaries

Let G = (V,E) be a graph where V and E denote the vertex
set and edge set of G, and |V | and |E| means the number of
vertices and edges, respectively. Vertices typically represent
the entities in real world, and edges describes the neighoring
relationship of two connected vertices. For an edge e = (u,v)
in a directed graph, v is referred to as the out-neighbor of
u, while u is referred to as the in-neighbor of v. u can also
be described as the source vertex of e, and v is the destina-
tion vertex of e. The terms out-degree and in-degree further
indicate the number of out-neighbors and in-neighbors for a
given vertex, respectively In practice, in the vertex data, each
vertex is assigned with a distinct value, called vertex ID, for
identification purpose. Edge data, on the other hand, repre-
sent all the edges in the form of edge list that enumerates the
neighbors’ vertex IDs for a specific vertex, and all the edge

1We open source Oasis at https://github.com/tsunyuyang/Oasis

524 23rd USENIX Conference on File and Storage Technologies USENIX Association

lists are further sorted by vertex IDs.

2.2 All-Distances Sketches
The workflow of using All-distance sketches (ADSs) can be
illustrated in Figure 1, which involves two main steps, namely
ADS construction and ADS estimation. ADS construction is
to produce ADSs based on its raw graph, and ADS estimation
uses the produced ADSs to estimate the approximate answers.
Please note that the ADS construction only needs to be per-
formed once per graph, and we can estimate the various graph
properties via the produced ADSs multiple times.

Figure 1: The workflow of utilizing ADSs.

ADSs are defined with a integer parameter k and a random
rank assignment function r to all vertices. The parameter
k decides the trade-off between sketch size and estimation
accuracy, and r is rank function, where r(v)→ [0,1] for any
vertex v ∈ V . For u,v ∈ V , we define N(u,v) as the set of
vertices that are closer to u than v. Thus, it is can formally
defined as follow: N(u,v) = {x ∈V | du,x < du,v}, where di, j
indicates the shortest-path distance from vertex i to j. For
a vertex subset S ⊆ V , we define the function kth

r {S} as the
k-th smallest rank value for vertices in S. If |S|< k, we define
kth

r {S} = 1. To concisely formulate the ADS Equation, we
define threshold rank value π(u,v) = kth

r {N(u,v)} for any pair
of vertices u and v. Using π(u,v), the ADS of a vertex u is
defined as follows.

ADS(u) = {(v,du,v | v ∈V,r(v)< π(u,v))} (1)

In this paper, each (v,du,v) is referred to as an ADS en-
try, and an ADS is referred to as all entries of a vertex’s
ADS. The size of an ADS can be calculated as follows [10].
For a vertex u, let nu be the number of reachable vertices
from u, and H(i) be the ith harmonic number. The expected
size of ADS(u) is k(1+H(nu)−H(k)). Because nu ≤ |V |
and H(|V |) = O(log|V |), the expected size of ADS(u) is
O(klog|V |). Thus, the total size of all ADSs is O(|V |klog|V |).

After the ADSs are produced based on Equation 1, many
types of useful graph properties and applications can be effi-
ciently estimated with the guarantee of accuracy. Since ADS
is a probabilistic data structure that has attracted much atten-
tion, existing works have proposed many methods to calculate
approximate answers via ADSs. These methods are referred
to as ADS estimators. Following, we discuss several popu-
lar and useful graph properties and applications that can be
approximated by ADS estimators [1].

Neighborhood Function [9, 10, 13]. This function nd(v) re-
turns the number of vertices that can be reached from v within
the distance d. nd(v) can be estimated by the ADS of v with
the coefficient of variation bounded by 1√

2(k−1)
.

Shortest-Path Distance [11]. The shortest path distance
from vertex u to v can be estimated by ADS(u) and ADS(v).
This estimation is O(logn)-approximation for constant k, and
(2a−1)-approximation when k = n1/a (for some a≥ 1).
Closeness Centrality [10]. Closeness centrality Cα,β(u) is
one of the most fundamental way to measure the importance
of a vertex u, with distance decay function α and vertex weight
function β. Cα,β(u) can be estimated by the ADS of u with
coefficient of variation bounded by 1√

2(k−1)
.

Closeness Similarity [11, 35]. Closeness similarity is used
to measure how similar two vertices are in terms of their
positions to the entire graph. For two vertices u,v ∈ V , the
closeness similarity between u and v can be estimated using
the ADSs of u and v with the error bounded by 1√

k
.

Average Distance and Effective Diameter [4]. These two
are the fundamental properties of a graph. They receive a
lot of interest because of their relation to the small world
phenomenon [38]. They can be accurately estimated by ADSs
with confidence intervals.
Reverse Raking and Nearest Neighbors [6]. Reverse rank-
ing measures the relevance of a vertex u to a vertex v by the
number of vertices that are closer to v than u. The approximate
reverse nearest neighbors (rNNs) of any size can be efficiently
obtained by using the neighborhood function estimation.
Continuous-Time Influence [7,12,15]. The continuous-time
influence model is an influence propagation model with time
decay property from a set of vertices X . The approximate
influence can be estimated by using the ADS of u, where
u ∈ X . Its coefficient of variation is bounded by 1√

2(k−1)
.

2.3 Motivation and Challenges
2.3.1 ADS Construction
Although there are several existing schemes that can construct
ADSs correctly, they are either slow or consume a huge mem-
ory amount. For instance, the most straightforward scheme
is to implement ADS Equation 1 directly. We refer to this
scheme as Basic. It simply runs the single-source shortest
paths (SSSP) from every vertex as root independently. For
each SSSP, the root’s ADS will be updated by the traversed
vertices based on ADS Equation 1. However, this scheme is
extremely inefficient because it requires an extensive O(V E)
edge traversals in total, which is impractical for large-scale
graphs with millions of vertices and billions of edges.

A state-of-the-art (SOTA) scheme [6] is proposed to con-
struct ADSs efficiently. The pseudocode is presented in Algo-
rithm 1. The core concept of this SOTA scheme is to perform
the pruned shortest-path algorithm on transpose graph. As
shown in Algorithm 1, it starts from the vertex of the lowest

USENIX Association 23rd USENIX Conference on File and Storage Technologies 525

rank value and then perform shortest-path algorithm. If the
condition of Line 4 is true, the traversed vertex is pruned from
the shortest-path algorithm. Otherwise, we include the root
vertex u into the ADS of v and keep traversing. This scheme
only requires O(EklogV) edge traversals during ADS con-
struction, which is significantly less than O(V E).

Algorithm 1 State-of-the-art ADS Construction Scheme
1: for each vertex u ∈V by increasing r(u) do
2: Run shortest-path algorithm from u on GT

3: for each visited vertex v do
4: if dv,u > kth{y | (x,y) ∈ ADS(v)} or |{x ∈

ADS(v) | dv,x ≤ dv,u}|> k then
5: Prune v from the shortest-path algorithm
6: else
7: ADS(v)← ADS(v)∪ (r(u),dvu)
8: end if
9: end for

10: end for

However, even though SOTA is efficient, it requires a sig-
nificant amount of memory for holding ADSs. This is because
Algorithm 1 accesses the ADSs of visited vertices that are
randomly traversed (i.e., Line 3-8), causing the access pat-
tern to ADSs also random and unpredictable. By contrast,
Basic scheme only accesses the ADS of root for each shortest-
path search. Thus, the memory cost of Basic can be better
controlled than SOTA.

Table 1 shows the comparison between these two ADS
construction schemes, namely Basic and SOTA, with different
k values on soc-LiveJournal graph [2, 22]. The last row in
Table 1 reveals the ratio of ADS sketch size over the raw
graph size. It can be first observed that the Basic scheme
generally takes a long time to complete compared to the SOTA
scheme. Specifically, the difference can be up to 2-3 orders
of magnitude. The reason behind this is that Basic scheme
needs O(V E) edge traversals during ADS construction, while
SOTA only requires O(EklogV) traversals. This makes the
Basic scheme inefficient in ADS construction. Moreover, as
the input graph becomes larger, the Basic scheme becomes
more impractical for requiring an unbearably long time to
finish. Take Twitter graph [14] with k = 32 as an example,
the Basic scheme cannot complete this task within a year (it
will take around 472 days to complete, as estimated from the
completion time of a subset). On the other hand, the SOTA
scheme can produce its ADSs in 3.4 days, which is an efficient
time, particularly considering the scale of the graph.

2.3.2 ADS Estimation
After the ADSs are produced, many useful graph properties
and applications can be estimated accurately, as discussed
in Section 2.2. Following, we will illustrate that out-of-core
ADS estimation is an appealing and practical solution with
three relevant metrics: execution time, memory overhead, and
accuracy.

Table 1: Existing schemes for ADS construction on soc-
LiveJournal graph with different k values. The raw graph
size of soc-LiveJournal is 527 MB.

k = 4 k = 16 k = 32 k = 64
Time (Basic) 2.58 hrs 2.68 hrs 2.59 hrs 2.61 hrs

Memory (Basic) 2.7 GB 8.0 GB 14.1 GB 25.4 GB
Time (SOTA) 105 sec 326 sec 424 sec 894 sec

Memory (SOTA) 5.1 GB 17.5 GB 33.1 GB 63.4 GB

This section evaluates out-of-core graph system (i.e.,
Graphene [24]), in-memory graph system (i.e., Ligra+ [31]),
in-memory ADS estimation (abbrev. MAE), and out-of-core
ADS estimation (abbrev. OAE). Graphene is a recent out-
of-core graph system which keeps the edge data in storage.
Ligra+ is an in-memory graph system that can traverse graphs
efficiently. MAE keeps the ADSs in memory during esti-
mation, while OAE stores them in storage and on-demand
load the needed ones into memory for estimation. We use
a well-known graph application, closeness centrality, as ex-
ample to evaluate these graph processing solutions. The task
is to calculate the closeness centrality of 15,000 vertices by
random selection. For ADS estimator, we use the Historic In-
verse Probability (HIP) [10], which is an elegant and accurate
ADS-based estimator.

Table 2 shows the results of Twitter graph [14] with k = 32.
It can be first observed that Graphene performs the worst in
execution time, while Ligra+ improves this execution time
by 2.6x but requires 9.2x more memory than Graphene. As
for ADS estimation (including both MAE and OAE), their
amazing speedups significantly outperform Graphene and
Ligra+, with a minor loss of accuracy only. On the other hand,
although the MAE is slightly faster than the OAE, the mem-
ory overhead of OAE is significantly smaller than the MAE.
Moreover, compared to Ligra+, OAE is significantly faster
and even requires less amount of memory. Thus, the outstand-
ing performance of out-of-core ADS estimation inspires us to
develop the first out-of-core ADS-based graph system.

It is worth noting that the result of out-of-core ADS esti-
mation shown in Table 2 is via a naive implementation. In
Section 3.3, we explore optimizations to further improve the
performance of out-of-core ADS estimation.

Table 2: Evaluation of existing graph processing solutions.
Graphene Ligra+ MAE OAE

Exe. Time 9.2 hours 3.6 hours 0.014 sec 0.024 sec
Mem. overhead 1.2 GB 11 GB 147 GB 1.4 GB
Avg. Accuracy 100% 100% 95.4% 95.4%

3 Oasis System

3.1 Overview
Motivated by Section 2.3, this section introduces Oasis, the
first out-of-core approximate graph system based on ADSs.
The main goal of Oasis is to make the ADS technique practical

526 23rd USENIX Conference on File and Storage Technologies USENIX Association

to users. To achieve this, we aim to develop Oasis into a
holistic, ADS-based graph system that can efficiently manage
ADSs on storage.

The system architecture and workflow of Oasis are illus-
trated in Figure 2. There are two main modules, which are
ADS Construction Module (details in Section 3.2) and ADS
Estimation Module (details in Section 3.3). To begin with,
users provide two inputs, which are k value and the number
of partitions (this will be discussed shortly in Section 3.2),
to ADS Construction Module. Oasis will produce the ADSs
based on the raw graph and store them in the storage. Af-
ter ADSs are produced, users provide their ADS estimators
with the Oasis’s interface to the ADS Estimation Module.
This module will automate and optimize the process of load-
ing required ADSs and executing the estimators to get the
approximate answers efficiently and accurately.

Figure 2: The system architecture of Oasis.

3.2 Oasis ADS Construction

3.2.1 Partition-based ADS Construction with Lock-free
Layout

This section aims to propose an ADS construction scheme
that is efficient in terms of edge traversal and can also alleviate
the issue of large memory cost by using storage. Specifically,
we convert the SOTA ADS construction scheme into a scan-
and-merge approach [4, 26], which starts the shortest-path
searches of all vertices together to increase the utilization of
loaded data. The ADS construction runs in iterations until
convergence (i.e., no more searches are running).

Our ADS construction scheme is built upon partitioning
technique to effectively address the problems of insufficient
memory while achieving good locality of access. The parti-
tioning technique is widely used in many traditional out-of-
core graph systems [16, 20, 36, 42]. The idea behind partition-
ing is to divide the data into multiple disjoint partitions so that
we can execute one or two partition(s) at a time to minimize
the peak memory overhead. Since the total size of ADSs is
enormous, partitioning is a well-matching technique for Oasis
to create ADS partitions. Therefore, users can run graphs of
different scales with Oasis by controlling the number of ADS
partitions to meet the machine’s memory capacity. Please note

Algorithm 2 Oasis ADS Construction
1: Create the transpose graph GT

2: Divide GT into partitions
3: for each vertex v ∈V do
4: ADS(v)← ADS(v)∪ (v,0) ▷ Mark as active
5: end for
6: num_active = |V |
7: iteration = 0
8: while num_active > 0 do ▷ ADS Constr. w/ Partitions
9: num_active = 0

10: for each destination partition Px do
11: Load ADSs of Px into memory
12: for each source partition Py do
13: Load active ADSs of Py (Ay) into memory
14: Load edges Exy = {(a,b) | a ∈ Py,b ∈ Px}
15: for each active (c,d) ∈ ADS(u), ADS(u) ∈ Ay do
16: for each edge (u,v) ∈ Exy do
17: if rc < kth

r {(x,y) ∈ ADS(v) | y < d} then
18: ADS(v)← ADS(v)∪ (c,d +w)
19: ▷ w is the weight between edge (u,v)
20: Mark this entry active for next iteration
21: num_active+= 1
22: end if
23: end for
24: end for
25: end for
26: Write ADSs of Px into storage
27: iteration++
28: end for
29: end while
30: for each vertex u ∈V do ▷ Final adjustment
31: Sort ADS(u) by increasing distance
32: for each ADS entry (x,y) ∈ ADS(u) do
33: Create auxiliary data for ADS estimators
34: end for
35: end for

that the total size of ADSs is predictable, which is bounded
by O(V klogV). Suppose the machine’s memory capacity is
M and the number of ADS partitions is P, we should satisfy
the inequality O(V klogV)/2P < M by adjusting P.

The pseudocode of Oasis ADS Construction is shown in
Algorithm 2. It begins by initializing the necessary data for
Oasis ADS construction. Line 1 creates the transposed graph
GT , and Line 2 divides GT into partitions based on the dis-
cussion in Section 3.1. Transposing a graph can be easily
achieved by a single pass over all the edges while swapping
the source and destination vertex IDs. After the initialization
(Lines 1-7), the core function of Oasis ADS construction be-
gins (Line 8-Line 29). The basic concept is to perform ADS
construction iteration by iteration. In each iteration, Oasis
goes through all the combinations of ADS partitions (i.e., Px
and Py). Line 10 selects a to-be-updated ADS partition Px, and
Line 12 goes through all other ADS partitions Py one at a time.
Lines 17-22 implement the ADS equation. If the condition
of Line 17 is true, we include this entry into the ADS(v) and

USENIX Association 23rd USENIX Conference on File and Storage Technologies 527

mark this entry active for the next iteration. This act means
that the shortest-path search keeps traversing from this vertex
in the next iteration. Otherwise, Oasis does nothing, which is
akin to the process of pruning. The Oasis ADS construction
ends if there is no more active ADS entry. Finally, Lines 30-
35 allow users to do the final adjustment for ADS entries or
create auxiliary data for their ADS estimators. Line 31 sorts
the all the entries of an ADS in increasing distance, which is
helpful for some ADS estimators.

One may wonder if the existing, well-developed out-of-core
graph systems can be utilized for ADS construction. However,
they are unsuitable for two main reasons. First, out-of-core
graph systems usually focus on reducing access to edge data
to enhance the overall processing performance, as edge data
is the largest data for graph processing. Conversely, because
the largest data for ADS construction is the ADS itself, out-
of-core graph systems are less effective in ADS scenarios.
Secondly, out-of-core graph systems typically employ an in-
memory array of size O(V) to indicate the active vertices
and distances for each shortest-path search. Nevertheless, our
ADS construction performs shortest-path searches from all
vertices simultaneously, requiring the graph systems to use
O(V 2) of memory space. This is impractical because O(V 2)
is even larger than the ADS structure O(V klogV) itself.

In contrast to traditional graph algorithms which generally
update destination vertices with low-cost operations, updating
destination ADS is much more complex, involving checking
the distances and ranks of each ADS entry (i.e., Line 17-22).
When multiple threads work on the same ADS partitions,
locks are often required to resolve conflicts if many threads
update the same destination ADS. This severely degrades the
overall processing performance. Hence, on top of partitioning
technique, we further introduce a lock-free edge layout, as
shown in Figure 3. The core idea behind this is to split an
edge grid into multiple equal-sized blocks, each containing
a disjoint set of destination vertices. Thus, when each thread
computes a different block, we can prevent two threads from
updating the same ADS, thereby avoiding the use of locks
to resolve conflicts. Creating a lock-free edge layout can be
done in two simple passes over the edge data. In the first pass,
we collect neighbor information to determine the destination
vertex ID range for each block. This process ensures that each
block is of similar size. In the second pass, we reorder the
edges by writing each edge to its corresponding block, based
on the destination vertex ID of each edge.

3.2.2 Active Data Separation

This section presents active data separation, which aims to
minimize the loading of source/active ADSs (i.e., Line 13 in
Algorithm 2). Active ADSs refer to the set of ADSs that were
added in the previous iteration and are needed for processing
in the current iteration. Since ADS is the largest data structure
during construction, how to minimize the I/O amount of load-

Figure 3: Example of lock-free edge layout.

ing ADSs is crucial for optimizing Algorithm 2. Furthermore,
the overall cost of loading source/active ADSs is substantial
and grows in proportion with the number of partitions, as
Algorithm 2 iterates through all source ADS partitions for
each destination partition.

In this scenario, we introduce active data separation to
duplicate the active ADSs and stores them in a separate
file. When constructing ADSs, we not only write the newly-
generated active ADSs in the original ADS structure but also
store them in a separate file containing the new active ADSs
only. Therefore, in the next iteration, this design allows us
to directly load active ADSs from the separate file instead
of loading and searching active ADSs from the huge origi-
nal ADS structure, thereby saving I/O. The processed active
ADSs can be deleted in bulk from the file, and the construc-
tion process will produce new active ADSs in the current
iteration. We can briefly calculate the overall I/O amounts be-
tween traditional method and active data separation. Suppose
I indicates the number of iterations and P denotes the number
of partitions, the total I/O amount of loading source/active
ADSs with traditional method is O(V klogV ·P · I). On the
other hand, the total I/O amount with active data separation is
only O(2 ·V klogV), where the value 2 means the reads and
writes to the separate file, and the total number of active ADSs
is bounded by O(V klogV).

3.2.3 Selective ADS Accessing

This section presents selective ADS accessing to reduce the
I/O load for destination ADSs (i.e., Line 11 in Algorithm 2).
The access pattern of ADS construction is fundamentally
graph traversal; it begins with a small number of active ver-
tices and rapidly increases during the early to middle itera-
tions. As ADS construction nears convergence, the working
set of ADSs becomes significantly smaller, but it is unknown
which ADSs will be required until they are actually being
processed. Naïvely loading an entire partition of ADSs into
memory wastes I/O bandwidth. Thus, selective ADS access-
ing is proposed to spend additional I/O reads for edge data to
gather neighborhood first, allowing us to identify necessary
ADSs and thus selectively load them. Notably, since the size
of edge data is typically much smaller than that of ADSs, this

528 23rd USENIX Conference on File and Storage Technologies USENIX Association

design is effective to save I/O amounts.

3.3 Oasis ADS Estimation
3.3.1 Programming Framework and Interface

The ADS estimators come in different types. Estimating dif-
ferent graph properties and applications may require different
ADS estimators. Therefore, it is important for Oasis to pro-
vide a user-friendly interface for users to express or develop
their own ADS estimators of interest.

To our knowledge, the existing ADS estimators utilize ei-
ther one ADS or two ADSs to derive an answer. We categorize
them into two types: single-ADS and dual-ADS. For instance,
closeness centrality [10] uses a single-ADS estimator to com-
pute a vertex’s centrality relative to entire graph; closeness
similarity [11] requires a dual-ADS estimator to quantify a
similarity value between two vertices’ ADSs. Although the
multi-ADS problems also exist, they are primarily extended
from single-ADS/dual-ADS estimators. An example is the
top-k centrality problem, which employs a single-ADS esti-
mator to calculate centrality scores for a vertex set and then
identifies the top-k vertices with the highest centrality.

Figure 4 shows the Oasis’s estimation framework that can
support both single-ADS and dual-ADS. The ADS estima-
tors are provided by users, and the query queue is filled by
users. Each query in the queue contains the information of
target vertex ID(s) (i.e., which ADSs should be loaded and
estimated) and pointer (i.e., point to the ADS estimator of in-
terest). Thus, during ADS estimation, Oasis can handle those
queries by loading the required ADSs into memory and using
the correct estimators to process.

Figure 4: The framework of Oasis ADS estimation.

Algorithm 3 shows the pseudocode of Oasis ADS estima-
tion framework. Users need to define ADS estimator function
and fill in Query Queue before execution. Taking closeness
centrality as an example, we first define how to use each ADS
entry for computing the centrality (Line 1-5), and specify
which vertices’ centrality is of interest (Line 35). Oasis sys-
tem will handle the remaining processes. Next, Line 38 splits
all the queries in Query Queue among multi-threads. Each
thread is responsible for a disjoint set of queries in Line 39. In
EXECUTE function, Line 14 declares a bitmap to keep track

the to-be-loaded ADSs, and Line 15 declares a buffer to hold
the loaded ADSs. Both are per-thread data structures. We set
the size of memory buffer to be 8 MB by default as a different
buffer size affects the overall performance trivially based on
our survey. Next, the while loop (Lines 17-27) will identify
the queries where the union of the required ADSs of these
queries can fit inside the memory buffer. After the required
ADSs are loaded, Oasis perform the ADS estimation via the
user-provided estimator. Algorithm 3 shows the examples of
ADS estimators, which are ADS_Estimator_1 for closeness
centrality and ADS_Estimator_2 for closeness similarity.

Algorithm 3 Oasis ADS Estimation
1: procedure ADS_ESTIMATOR1(ads, len, idx)
2: for i = 0..len do ▷ Closeness Centrality
3: ans[idx] += HIP_weight · IMP(ads[i].id) · 1

ads[i].dist
4: end for
5: end procedure
6:
7: procedure ADS_ESTIMATOR2(ads1, len1,ads2, len2, idx)
8: Let A be the set from ads1[0] to ads1[len1−1]
9: Let B be the set from ads2[0] to ads2[len2−1]

10: ans[idx] = |A∩B|
|A∪B| ▷ Closeness Similarity

11: end procedure
12:
13: procedure EXECUTE(beg_idx,end_idx)
14: Declare a bitmap bmap to record the to-be-loaded ADSs
15: Declare a memory buffer Bu f to hold required ADSs
16: io_size = 0
17: while beg_idx < end_idx do
18: if io_size+Q[beg_idx]< buffer size then
19: Record Q[beg_idx] into bmap
20: else
21: Load the required ADSs into Bu f based on bmap
22: Call the corresponding ADS Estimators
23: Clear bmap
24: io_size = 0
25: end if
26: ++beg_idx
27: end while
28: if io_size > 0 then
29: Do Lines 21-22 again
30: io_size = 0
31: end if
32: end procedure
33:
34: procedure MAIN

35: Fill the queries in the Query Queue Q by user
36: n← number of elements in Query Queue
37: Declare an n-sized answer array: ans[.]
38: [beg_idx,end_idx]← Split all queries across multi-threads
39: Execute(beg_idx,end_idx)
40: end procedure

USENIX Association 23rd USENIX Conference on File and Storage Technologies 529

3.3.2 Locality-aware Query Assignment

Based on the framework presented in Section 3.3.1, this sec-
tion studies how to improve the execution performance of
ADS estimation. Specifically, different estimators may work
on the same set of ADSs. When we have multi-threads, it is
important to assign the same set of ADSs to the same thread
so as to enhance the utilization of loaded ADSs. In this con-
text, this section presents locality-aware query assignment.
Specifically, the query assignment among multi-threads can
largely affect the overall performance in Algorithm 3. This is
because, if a thread is assigned with many queries requiring
the same ADS(u), the thread only needs load ADS(u) once to
serve many queries, considerably improving the I/O utiliza-
tion. Based on this motivation, the proposed locality-aware
query assignment works as follow. First, it sorts all the queries
in the Query Queue with an increasing order based on the
target vertex IDs. Nevertheless, because finding the optimal
locality of assignment for dual-ADS queries can be quite com-
plex, we heuristically sort the dual-ADS queries by the first
target vertex ID only to simplify the cost spending on the
query assignment. After sorting, the good locality of access
to the required ADSs can be easily achieved by processing
the queries in the sequential order. Thus, the next step is to
split all the queries sequentially and equally to each thread.

3.3.3 Grid-based Estimation

This section introduces grid-based estimation to optimize
the execution of dual-ADS queries. Specifically, dual-ADS
queries could incur a more complex access pattern than that
of single-ADS queries. For example, suppose there is a set
of vertices, our task is to measure the closeness similarity
between every pair of vertices within this set. This scenario
cannot be easily optimized by the locality-aware query assign-
ment because an ADS will be loaded into memory multiple
times by different threads regardlessly. Thus, the grid-based
estimation is proposed to tackle this issue. In fact, after Oasis
ADS construction, our memory should be enough to hold two
ADS partitions, which can be taken advantage of by the grid-
based estimation. First, the grid-based estimation splits all the
dual-ADS queries into different query grids based on ADS
partitions, as shown in Figure 5. Following, Oasis runs one
grid at a time by loading the required ADSs into memory. It
could have good locality of ADS accesses when Oasis process
these grids in a sequential order. For example, when Oasis
moves from (P0,P0) to (P0,P1), we can hold P0 in memory to
reduce unnecessary I/O opportunistically.

4 Evaluation
4.1 Evaluation Setup

As shown in Figure 1, the process of utilizing ADSs can be
divided into two parts: ADS construction and ADS estimation.
Hence, this work also presents the evaluation of these two

Figure 5: Example of grid-based estimation.

parts separately in different sections (i.e., Section 4.2 and
Section 4.3).

Table 3: Evaluated graph datasets.
Name V E Type

Pokec [34] 1.6 M 31 M directed
soc-LiveJournal [2] 4.8 M 69 M directed

hollywood2009 1.1 M 113 M undirected
Twitter [14] 42 M 1.4 B directed

Table 3 lists the evaluated graphs. These graphs are pub-
licly available real-world graphs from the Stanford Large
Network Dataset Collection [21] and Laboratory for Web Al-
gorithms [3, 5]. The evaluated graphs involve both directed
and undirected graphs of various sizes. To handle undirected
graphs, there is a common method to convert all the undi-
rected graphs into directed graphs by replacing every undi-
rected edge with two directed edges in opposite directions
(i.e., outgoing and incoming edges) [30]. This method is also
deployed in many graph systems such as GridGraph [42],
Graphene [24], Lumos [36], etc. Oasis also follows this com-
mon method to handle undirected graphs.

To compare all types of graph processing solutions on the
same platform, all experiments are conducted on the same
server: HPE ProLiant DL560 Gen10 server with Intel Xeon
Platinum 8160 CPU and 32 x 32GB Dual Rank DDR4-2666
memory on Debian GNU/Linux 9, and 2 x 1 TB Samsung
NVMe SSD drives [32] with 6.0 GB/s sequential read band-
width in total. To restrict the computational resource, we use
taskset to confine the used cores, and the number of threads
is set to 16 for all programs because it is a reasonable cost
for most users nowadays. Oasis divides the evaluated graphs
into 16 partitions by default to restrict the memory overhead.
Section 4.4 further discusses the performances and memory
overheads under different number of partitions.

4.2 ADS Construction
This section focuses on the evaluation of ADS construction.
We implement the basic ADS construction scheme (denoted
as Basic) and the state-of-the-art ADS construction scheme
(denoted as SOTA). The SOTA scheme is referenced based
on [6]. Both of them had been elaborated in Section 2.3. Sec-
tion 4.2.1 compares these two in-memory ADS construction
schemes against Oasis version. Section 4.2.2 further shows
the design choices of Oasis ADS construction.

530 23rd USENIX Conference on File and Storage Technologies USENIX Association

(a) Construction time on soc-
LiveJournal.

(b) Construction time on Pekoc. (c) Construction time on hollywood09. (d) Construction time on Twitter.

(e) Construction memory on soc-
LiveJournal.

(f) Construction memory on Pekoc. (g) Construction memory on holly-
wood09.

(h) Construction memory on Twitter.

Figure 6: Overall comparison among Oasis’s ADS construction and other ADS construction schemes.

4.2.1 Comparison of ADS Construction

Figure 6 reveals the overall ADS construction costs of differ-
ent schemes with different k values in terms of construction
time, construction memory, and sketch space. Construction
memory indicates the memory amount needed during ADS
construction, and sketch size is the total size of final produced
ADSs. We compare Oasis against Basic and SOTA.

It can be first observed that the Basic scheme generally
requires a significant amount of time to complete. We do not
show the complete execution time results of Basic scheme in
Figure 6 because these results will make the figures visually
skewed. Instead, we provide the real execution times with text
in Figure 6. For k from 4 to 64, the execution times of Basic
scheme for soc-LiveJournal, Pokec, hollywood09 graphs are
around 2.6 days, 6.4 hours, and 5.4 hours, respectively. It is
worth noting that the different k values trivially affect the
performance of Basic scheme. This is because Basic spends
O(V E) edge traversals, independent from the value of k. On
the other hand, we terminated the Basic scheme for Twitter
since it cannot complete this task within 3 days. Regarding
the memory overhead, Basic scheme holds the entire ADSs in
memory during ADS construction, so its memory overhead is
dominated by the sketch size.

Compared to Basic, SOTA significantly improves the exe-
cution time. The improvement of SOTA over BASIC is around
hundreds to thousands of times. This great amount of improve-
ment is credited to the reduction in the number of edge traver-
sals. Specifically, Basic scheme takes O(V E) edge traversals,
while SOTA scheme only requires O(EklogV). Besides, be-

cause the number of edge traversals of SOTA depends on
k value (i.e., O(EklogV)), the execution times of SOTA in-
creases along with the k value, which is around 1.4x-2.1x
as the k value doubles. To enable SOTA to work with multi-
threads, we declare per-thread data structure during SOTA
ADS construction. Thus, the total memory overhead of SOTA
is larger than its sketch size by 2.13x on average. On the other
hand, running SOTA with a single thread could alleviate the
memory overhead at the cost of degrading execution time.
We use k = 16 as a demonstration. The memory overhead
of single-threaded SOTA is roughly the same as the sketch
size, but the execution time is 691 sec, 155 sec, 84 sec, and
23.9 hours for soc-LJ, Pekoc, hollywood, and Twitter, respec-
tively, indicating higher memory usage but potentially slower
performance compared to Oasis.

Oasis offers a practical scheme for ADS construction. Com-
pared to Basic, Oasis notably improves the execution times
by hundreds to thousands of times. Compared to SOTA, the
memory overhead of Oasis is considerably less by 13.8x on
average. Although Oasis is slower than SOTA scheme by
1.79x on average, we believe this is a worthy deal due to the
considerable amount of memory saving, which enables the
ADS technique with reasonable costs. Moreover, users can
control the memory overhead in Oasis by adjusting the num-
ber of partitions, which offers greater flexibility than SOTA.
Section 4.4 will study the impact with different numbers of
partitions in Oasis. Lastly, while existing graph systems can
technically run ADS construction, their performance is often
suboptimal because they are not designed for this task. To
illustrate, we run GridGraph [42] with k = 16. For soc-LJ,

USENIX Association 23rd USENIX Conference on File and Storage Technologies 531

(a) Executoin time on soc-LiveJournal. (b) Executoin time on Pekoc. (c) Executoin time on hollywood09. (d) Executoin time on Twitter.

Figure 7: Performance studies of different major designs in Oasis ADS construction.

Pekoc, and hollywood, the construction times are 52 min,
15.2 min, and 14.3 min, respectively. For Twitter, we termi-
nate the program as it cannot complete within 3 days. These
significant inefficiencies in existing graph systems for ADS
construction highlight the necessity of Oasis.

4.2.2 Design Choices for Oasis ADS Construction

This section demonstrates the performance impact of the ma-
jor designs in Oasis ADS construction. Specifically, we eval-
uate lock-free edge layout, active data separation, and select
ADS accessing, respectively. We compare the entire Oasis
ADS construction scheme (denoted as Oasis) against Oasis
without lock-free edge layout (denoted as Oasis-LF), Oasis
without active data separation (denoted as Oasis-DP), and
Oasis without select ADS accessing (denoted as Oasis-SA).
The results are presented in Figure 7.

Overall speaking, the design of active data separation im-
pacts performance the most. For soc-LiveJournal, Pokec, hol-
lywood09, and Twitter, Oasis averagely improves Oasis-DP
by 4.2x, 3.8x, 3.3x, and 3.7x in terms of execution times.
This amount of improvement is contributed to the I/O re-
duction in loading the active ADSs. Let P be the number of
partitions, the I/O of loading the source ADS partitions is
P×V klogV for each iteration; with active data separation,
the I/O of loading the active ADSs is 2P×V klogV for all
iterations. On the other hand, the design of lock-free edge
layout also contributes a decent amount of execution time
improvement. Specifically, for soc-LiveJournal, Pokec, hol-
lywood09, and Twitter, Oasis improves the performance of
Oasis-LF by 1.76x, 1.81x, 2.97x and 2.2x on average. This is
because, without lock-free edge layout, the utilization of multi-
threads becomes low since the locks are used to avoid the
write conflict of updating the same ADS. Lock-free edge lay-
out enables all threads to work together without locks needed.
Finally, the design of selective ADS accessing can reduce
the unnecessary ADS accessing when the ADS construction
process is close to convergence, thereby reducing I/O. For
soc-LiveJournal, Pokec, hollywood09, and Twitter graphs, Oa-
sis improves Oasis-SA by 11.3%, 12.8%, and 9.5%, 10.9%
on average in terms of execution times. It can be observed
that the improvement brought by selective ADS accessing is

less than those of the other designs. This is because the other
two designs are effective for all iterations, while the design
of selective ADS accessing is beneficial for the last several
iterations. Nevertheless, selective ADS accessing still incurs
an observable 11.1% improvement on average.

4.3 ADS Estimation
This section presents the evaluation of ADS estimation. As
discussed in Section 2.2, there are seven graph applications
that can be estimated by ADSs. However, despite the diversity
of these applications, their ADS estimators work similarly. To
process a single-ADS query, we load the required ADS into
memory, and then perform operations to compute each entry
within the loaded ADS. To process a dual-ADS query, we load
the two required ADSs into memory and calculate an answer
based on the entries from both ADSs. The main divergence
between different ADS estimators lies in which operations
are applied to calculate each ADS entry. Hence, due to the
12-page limit, this section presents the results of closeness
centrality [10] and closeness similarity [11, 35]. These two
are chosen because they are classic and well-known graph
applications from each estimator category.

Following, to demonstrate the advantage of exploiting
ADSs, Section 4.3.1 will evaluate in-memory graph system
(i.e., Ligra+), in-memory ADS estimation, and the basic ver-
sion of Oasis’s estimation framework. Section 4.3.2 further
justifies the impact of the optimizations proposed for improv-
ing Oasis’s estimation framework.

4.3.1 Comparison between Exact Processing and ADS
Estimation

Because Ligra+ is well known for being an efficient in-
memory graph system for graph traversal, this section evalu-
ates Ligra+ as the representative to compute exact answers.
We also evaluate in-memory ADS estimation and out-of-core
ADS estimation with Oasis. We conduct experiments on all
the evaluated graphs with their ADSs of k = 32. For closeness
centrality (i.e., single-ADS category), we randomly select
10% of vertices to be a set X , and calculate the centralities
of all vertices within X based on their ADSs. For closeness

532 23rd USENIX Conference on File and Storage Technologies USENIX Association

(a) Executoin time with closeness
centrality.

(b) Memory overhead with closeness
centrality.

(c) Executoin time with closeness
similarity.

(d) Memory overhead with closeness
similarity.

Figure 8: Evaluation with closeness centrality and closeness similarity on all evaluated graphs.

similarity (i.e., dual-ADS category), we use the same set of
vertices X but generate the queries in the following form:
(X [2i],X [2i+ 1]), where i ∈ [0,1,2,3, ..] and X [i] indicates
the ith vertex in the set X . Thus, with this setting, the amounts
of needed data for both applications are the same.

Figure 8 shows the overall results. Figure 8(a) and Fig-
ure 8(b) present the execution time and memory overhead
of running closeness centrality. Figure 8(c) and Figure 8(d)
reveal the outcomes of running closeness similarity. It is clear
to observe that Ligra+ generally takes a considerable time
to finish all the queries, which is significantly slower than
both in-memory and out-of-core ADS estimation by many
orders of magnitudes. When the graph scale becomes larger
(e.g., Twitter), Ligra+ cannot finish within a reasonable time.
Through the completion time of a subset of queries, we can
roughly estimate that Ligra+ will need 50 days to finish all
the queries, which is unacceptable for real-world application.
Thus, ADS estimation is proposed to tackle this issue by
trading off a minor loss of accuracy. In-memory ADS estima-
tion performs the best, at the cost of requiring a vast amount
of memory to hold the entire ADSs in memory. In contrast,
out-of-core ADS estimation (i.e., Oasis) is shown to be the
most appealing solution. It enjoys the superb ADS speedup
and requires only a small memory amount by loading the
required ADSs into memory in an on-demand style. Specif-
ically, although Oasis is averagely slower than in-memory
ADS estimation by 2.9x, memory overhead can be saved by
a significant 42x on average. It is worth noting that, using
soc-LJ as an example, ADS construction and estimation with
Oasis only take around 754.6 seconds in total for closeness
centrality, compared to 4.9 hours for exact processing. This
gap widens with more queries.

Finally, ADS estimation is proven to be theoretically accu-
rate by many existing studies. Controlling the k value during
ADS construction can increase or decrease the accuracy. Fig-
ure 9 reveals the accuracy of answer with k values from 4,
8, 16, 32, to 64 on the soc-LiveJournal graph in terms of
closeness centrality and closeness similarity. The accuracy is
measured by the normalized root-mean-square error between
the estimated values and exact values. We can observe the
accuracy of both closeness centrality and similarity basically

increase as the k value increases, as suggested theoretically.

Figure 9: The accuracy of closeness centrality and closeness
similarity on soc-LiveJournal graph with different k values.

4.3.2 Design Choices for Oasis ADS Estimations

This section aims to evaluate the effectiveness of the proposed
designs, namely locality-aware query assignment and grid-
based estimation, in optimizing the Oasis estimation frame-
work. To better assess their performance impacts, these pro-
posed designs will be tested with different input queries.
Locality-aware Query Assignment. To evaluate this design,
we conduct experiments on closeness centrality application.
We randomly select 10% of vertices to be a set X , and perform
two different types of methods to measure the centrality on
this set X . Specifically, we change the vertex weight func-
tion and distance decay function when measuring closeness
centrality [10]. In other words, there are totally 2|X | of input
queries; the front |X | queries use one ADS estimator, and the
back |X | queries use the other ADS estimator.

Figure 10 shows the results. Since in-memory graph system
is already shown to be slow in Section 4.3.1, we evaluate in-
memory ADS estimation (denoted as In-mem. ADS), the
basic Oasis’s estimation framework (denoted as Baisc Oasis),
and improved Oasis’s estimation framework with locality-
aware query assignment (denoted as Oasis w/ QA). We can
observe that the design of locality-aware query assignment
is helpful to further improve the performance of Basic Oasis.
This is because we can increase the I/O utilization of the
loaded ADSs with this design, and the average improvement
is 40.7% on average with these input queries.
Grid-based Estimation. We conduct the experiments of
closeness similarity and consider the input queries as fol-

USENIX Association 23rd USENIX Conference on File and Storage Technologies 533

Figure 10: Evaluation with locality-aware query assignment.

lows. First, we create three vertex sets, namely X1, X2, and X3
by randomly selecting 10,000 vertices respectively from each
P1, P2, and P3, where Pi indicates the vertex ID range of the
ith partition. Next, we set the queries to calculate the close-
ness similarity of vertex pairs between X1 and X2. Specifi-
cally, those queries would be the following form: (X1[i],X2[i]),
where i ∈ [1,2, ..,10,000] and Xi[j] indicates the jth vertex
in the set Xi. Then, we set another batch of queries to cal-
culate the closeness similarity between X1 and X3 as follow:
(X1[i],X3[i]), where i ∈ [1,2, ..,10,000].

Figure 11 reveals the results. The results with grid-based es-
timation are denoted as Oasis w/ GE. Specifically, compared
to Basic Oasis, Oasis w/ GE can improve the execution times
by 13.8%, 14.2%, 16.7%, and 11.8% on soc-LiveJournal,
Pokec, hollywood, and Twitter graphs, respectively. This is
because the grid-based estimation can exploit the locality
between processing the consecutive query grids. Thus, it per-
forms better than the Basic Oasis.

4.4 Memory Scalability
This section studies the performance impact of applying dif-
ferent numbers of partitions to the graph for Oasis ADS con-
struction. Specifically, we conduct ADS construction exper-
iments on soc-LiveJournal graph with k = 32 as example,
and divide the graph into 4, 8, 16, 32, and 64 partitions. Fig-
ure 12 reveals the results of execution time, memory overhead,
and the sketch size (i.e., the horizontal dashed red line). It
can be observed that the execution time and memory over-
head present an inverse relationship. When P = 64, Oasis can
perform ADS construction with only 668 MB, but it needs
1236 sec to complete. At the other end, when P = 4, Oasis
needs 8638 MB memory overhead to finish the ADS con-
struction process in 676 sec. This outcome is because a fewer
number of partitions leads to a smaller amount of I/O involved
in loading active ADSs. Further, the work balancing between
threads can also be improved if a partition has a larger amount
of work to do. Therefore, to achieve high performance, it is
recommended that users minimize the number of partitions
P under the constraint that the memory overhead does not
exceed the available memory capacity of machine.

5 Related Work
Approximation has gained significant attention in graph pro-
cessing due to the ability to trade accuracy for efficiency. Each
scheme possesses unique advantages and assumptions for spe-

Figure 11: Evaluation with grid-based estimation.

Figure 12: Evaluation on soc-LiveJournal graph with different
number of partitions, k = 32, for ADS construction.

cific scenarios. One notable example is graph sparsification,
which reduces the size of a graph by retaining only a subset
of its vertices and edges so as to improve run time. Its goal
is to preserve as many graph properties as possible based on
different metrics [8, 17, 29]. For approximate graph mining
tasks, both ASAP [18] and Arya [43] exploit neighborhood
sampling method to estimate target pattern occurrences. [23]
and [37] introduce approximate algorithms for shortest path
and Pragerank, respectively. In contrast, Oasis does not pro-
pose a new approximate scheme. Instead, it builds upon a
promising existing scheme, ADS. By incorporating storage
devices and system-level optimizations, Oasis aims to make
ADS practical and efficient for real-world applications.

6 Conclusion
This work introduces Oasis, the first out-of-core approximate
graph system based on ADSs to manage ADSs with low
memory and high efficiency. First, this work studies how to
construct ADSs with a small memory amount, and proposes
various system-level optimizations to decently improve its
construction time. Next, an ADS estimation framework is
presented, allowing users to implement their estimators eas-
ily and provides efficient runtime estimation. The evaluation
results indicate that Oasis is outstanding for its efficient exe-
cution time, low memory usage, and high flexibility.

Acknowledgements
We sincerely thank our shepherd and all the anonymous re-
viewers for their valuable comments. This work is partially
supported by The Research Grants Council (RGC) of Hong
Kong SAR (Project No. CUHK14208521) and NSF 2413520.
Any opinions, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the RGC and NSF.

534 23rd USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Takuya Akiba and Yosuke Yano. Compact and scal-
able graph neighborhood sketching. In Proceedings of
the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 685–694,
2016.

[2] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and
Xiangyang Lan. Group formation in large social net-
works: membership, growth, and evolution. In Proceed-
ings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 44–54,
2006.

[3] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebas-
tiano Vigna. Layered label propagation: A multireso-
lution coordinate-free ordering for compressing social
networks. In Sadagopan Srinivasan, Krithi Ramam-
ritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and
Ravi Kumar, editors, Proceedings of the 20th interna-
tional conference on World Wide Web, pages 587–596.
ACM Press, 2011.

[4] Paolo Boldi, Marco Rosa, and Sebastiano Vigna. Hyper-
anf: approximating the neighbourhood function of very
large graphs on a budget. In Proceedings of the 20th In-
ternational Conference on World Wide Web, WWW ’11,
page 625–634, New York, NY, USA, 2011. Association
for Computing Machinery.

[5] Paolo Boldi and Sebastiano Vigna. The WebGraph
framework I: Compression techniques. In Proc. of the
Thirteenth International World Wide Web Conference
(WWW 2004), pages 595–601, Manhattan, USA, 2004.
ACM Press.

[6] Eliav Buchnik and Edith Cohen. Reverse ranking by
graph structure: Model and scalable algorithms. In Pro-
ceedings of the 2016 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer
Science, pages 51–62, 2016.

[7] Wei Chen, Yifei Yuan, and Li Zhang. Scalable influence
maximization in social networks under the linear thresh-
old model. In 2010 IEEE international conference on
data mining, pages 88–97. IEEE, 2010.

[8] Yuhan Chen, Haojie Ye, Sanketh Vedula, Alex Bron-
stein, Ronald Dreslinski, Trevor Mudge, and Nishil Ta-
lati. Demystifying graph sparsification algorithms in
graph properties preservation. Proc. VLDB Endow.,
17(3):427–440, November 2023.

[9] Edith Cohen. Size-estimation framework with applica-
tions to transitive closure and reachability. Journal of
Computer and System Sciences, 55(3):441–453, 1997.

[10] Edith Cohen. All-distances sketches, revisited: Hip esti-
mators for massive graphs analysis. In Proceedings of
the 33rd ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 88–99, 2014.

[11] Edith Cohen, Daniel Delling, Fabian Fuchs, Andrew V.
Goldberg, Moises Goldszmidt, and Renato F. Werneck.
Scalable similarity estimation in social networks: close-
ness, node labels, and random edge lengths. In Pro-
ceedings of the First ACM Conference on Online Social
Networks, COSN ’13, page 131–142, New York, NY,
USA, 2013. Association for Computing Machinery.

[12] Edith Cohen, Daniel Delling, Thomas Pajor, and Re-
nato F Werneck. Sketch-based influence maximization
and computation: Scaling up with guarantees. In Pro-
ceedings of the 23rd ACM international conference on
conference on information and knowledge management,
pages 629–638, 2014.

[13] Edith Cohen and Haim Kaplan. Summarizing data using
bottom-k sketches. In Proceedings of the Twenty-Sixth
Annual ACM Symposium on Principles of Distributed
Computing, PODC ’07, page 225–234, New York, NY,
USA, 2007. Association for Computing Machinery.

[14] Twitter dataset from WebGraph. http://law.di.
unimi.it/webdata/twitter-2010/ , 2010.

[15] Nan Du, Le Song, Manuel Gomez Rodriguez, and
Hongyuan Zha. Scalable influence estimation in
continuous-time diffusion networks. Advances in neural
information processing systems, 26, 2013.

[16] Nima Elyasi, Changho Choi, and Anand Sivasubrama-
niam. Large-scale graph processing on emerging storage
devices. In Proceedings of the 17th USENIX Confer-
ence on File and Storage Technologies, FAST’19, page
309–316, USA, 2019. USENIX Association.

[17] Wai Shing Fung, Ramesh Hariharan, Nicholas J.A. Har-
vey, and Debmalya Panigrahi. A general framework
for graph sparsification. In Proceedings of the Forty-
Third Annual ACM Symposium on Theory of Computing,
STOC ’11, page 71–80, New York, NY, USA, 2011. As-
sociation for Computing Machinery.

[18] Anand Padmanabha Iyer, Zaoxing Liu, Xin Jin, Shiv-
aram Venkataraman, Vladimir Braverman, and Ion Sto-
ica. ASAP: Fast, approximate graph pattern mining
at scale. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
745–761, Carlsbad, CA, October 2018. USENIX Asso-
ciation.

[19] Anand Padmanabha Iyer, Aurojit Panda, Shivaram
Venkataraman, Mosharaf Chowdhury, Aditya Akella,

USENIX Association 23rd USENIX Conference on File and Storage Technologies 535

http://law.di.unimi.it/webdata/twitter-2010/
http://law.di.unimi.it/webdata/twitter-2010/

Scott Shenker, and Ion Stoica. Bridging the gap: towards
approximate graph analytics. In Proceedings of the 1st
ACM SIGMOD Joint International Workshop on Graph
Data Management Experiences & Systems (GRADES)
and Network Data Analytics (NDA), GRADES-NDA
’18, New York, NY, USA, 2018. Association for Com-
puting Machinery.

[20] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
Graphchi: Large-scale graph computation on just a PC.
In 10th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 12), pages 31–46, Hol-
lywood, CA, October 2012. USENIX Association.

[21] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

[22] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and
Michael W Mahoney. Community structure in large
networks: Natural cluster sizes and the absence of large
well-defined clusters. Internet Mathematics, 6(1):29–
123, 2009.

[23] Jason Li. Faster parallel algorithm for approximate
shortest path. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC
2020, page 308–321, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery.

[24] Hang Liu and H. Howie Huang. Graphene: Fine-grained
IO management for graph computing. In 15th USENIX
Conference on File and Storage Technologies (FAST
17), pages 285–300, Santa Clara, CA, February 2017.
USENIX Association.

[25] Silviu Maniu and Bogdan Cautis. Network-aware search
in social tagging applications: instance optimality ver-
sus efficiency. In Proceedings of the 22nd ACM In-
ternational Conference on Information & Knowledge
Management, CIKM ’13, page 939–948, New York, NY,
USA, 2013. Association for Computing Machinery.

[26] Christopher R Palmer, Phillip B Gibbons, and Christos
Faloutsos. Anf: A fast and scalable tool for data min-
ing in massive graphs. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 81–90, 2002.

[27] Iván Palomares, Carlos Porcel, Luiz Pizzato, Ido Guy,
and Enrique Herrera-Viedma. Reciprocal recommender
systems: Analysis of state-of-art literature, challenges
and opportunities towards social recommendation. In-
formation Fusion, 69:103–127, 2021.

[28] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel.
X-stream: Edge-centric graph processing using stream-
ing partitions. In Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles,
SOSP ’13, page 472–488, New York, NY, USA, 2013.
Association for Computing Machinery.

[29] Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan.
Local graph sparsification for scalable clustering. In Pro-
ceedings of the 2011 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’11, page
721–732, New York, NY, USA, 2011. Association for
Computing Machinery.

[30] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin,
Ligang He, Bo Liu, and Qiang-Sheng Hua. Graph pro-
cessing on gpus: A survey. ACM Comput. Surv., 50(6),
jan 2018.

[31] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch.
Smaller and faster: Parallel processing of compressed
graphs with ligra+. In 2015 Data Compression Confer-
ence, pages 403–412, 2015.

[32] Samsung 970 PRO SSD. https://www.samsung.
com/semiconductor/minisite/ssd/product/
consumer/970pro/.

[33] Shazia Tabassum, Fabiola SF Pereira, Sofia Fernan-
des, and João Gama. Social network analysis: An
overview. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 8(5):e1256, 2018.

[34] Lubos Takac and Michal Zabovsky. Data analysis in
public social networks. In International scientific con-
ference and international workshop present day trends
of innovations, volume 1, 2012.

[35] Mikkel Thorup and Uri Zwick. Approximate distance
oracles. J. ACM, 52(1):1–24, jan 2005.

[36] Keval Vora. LUMOS: Dependency-driven disk-based
graph processing. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 429–442, Renton,
WA, July 2019. USENIX Association.

[37] Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei,
and Yin Yang. Fora: Simple and effective approximate
single-source personalized pagerank. In Proceedings
of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17, page
505–514, New York, NY, USA, 2017. Association for
Computing Machinery.

[38] Duncan J Watts. Networks, dynamics, and the small-
world phenomenon. American Journal of sociology,
105(2):493–527, 1999.

[39] Sihem Amer Yahia, Michael Benedikt, Laks V. S. Laksh-
manan, and Julia Stoyanovich. Efficient network aware
search in collaborative tagging sites. Proc. VLDB En-
dow., 1(1):710–721, aug 2008.

536 23rd USENIX Conference on File and Storage Technologies USENIX Association

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970pro/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/970pro/

[40] Tsun-Yu Yang, Yizou Chen, Yuhong Liang, and Ming-
Chang Yang. Seraph: Towards scalable and efficient
fully-external graph computation via on-demand pro-
cessing. In 22nd USENIX Conference on File and
Storage Technologies (FAST 24), pages 373–387, Santa
Clara, CA, February 2024. USENIX Association.

[41] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vo-
gelstein, Carey E. Priebe, and Alexander S. Szalay.
Flashgraph: Processing billion-node graphs on an ar-
ray of commodity ssds. In 13th USENIX Conference on
File and Storage Technologies (FAST 15), pages 45–58,
Santa Clara, CA, February 2015. USENIX Association.

[42] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Grid-
graph: Large-scale graph processing on a single machine
using 2-level hierarchical partitioning. In 2015 USENIX
Annual Technical Conference (USENIX ATC 15), pages
375–386, Santa Clara, CA, July 2015. USENIX Associ-
ation.

[43] Zeying Zhu, Kan Wu, and Zaoxing Liu. Arya: Arbi-
trary graph pattern mining with decomposition-based
sampling. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
1013–1030, Boston, MA, April 2023. USENIX Associ-
ation.

USENIX Association 23rd USENIX Conference on File and Storage Technologies 537

	Introduction
	Background and Motivation
	Preliminaries
	All-Distances Sketches
	Motivation and Challenges
	ADS Construction
	ADS Estimation

	Oasis System
	Overview
	Oasis ADS Construction
	Partition-based ADS Construction with Lock-free Layout
	Active Data Separation
	Selective ADS Accessing

	Oasis ADS Estimation
	Programming Framework and Interface
	Locality-aware Query Assignment
	Grid-based Estimation

	Evaluation
	Evaluation Setup
	ADS Construction
	Comparison of ADS Construction
	Design Choices for Oasis ADS Construction

	ADS Estimation
	Comparison between Exact Processing and ADS Estimation
	Design Choices for Oasis ADS Estimations

	Memory Scalability

	Related Work
	Conclusion

