
This paper is included in the Proceedings of the
23rd USENIX Conference on File and Storage Technologies.

February 25–27, 2025 • Santa Clara, CA, USA
ISBN 978-1-939133-45-8

Open access to the Proceedings
of the 23rd USENIX Conference on

File and Storage Technologies
is sponsored by

VectorCDC: Accelerating Data Deduplication
with Vector Instructions

Sreeharsha Udayashankar, Abdelrahman Baba,
and Samer Al-Kiswany, University of Waterloo

https://www.usenix.org/conference/fast25/presentation/udayashankar

VectorCDC: Accelerating Data Deduplication with Vector Instructions

Sreeharsha Udayashankar

University of Waterloo

s2udayas@uwaterloo.ca

Abdelrahman Baba

University of Waterloo

ababa@uwaterloo.ca

Samer Al-Kiswany

University of Waterloo

alkiswany@uwaterloo.ca

Abstract
Content-defined Chunking (CDC) algorithms dictate the

overall space savings achieved by deduplication systems.

However, due to their need to scan each file in its entirety,

they are slow and often the main performance bottleneck

within data deduplication. This paper presents VectorCDC,

a method to accelerate hashless CDC using SSE/AVX CPU

instructions. Our evaluation shows that VectorCDC achieves

21−46× higher throughput than existing vector acceleration

techniques, without affecting the space savings achieved.

1 Introduction

The amount of data generated and stored on the internet is

growing at an explosive rate [1]. Cloud storage providers

are racing to support this data growth by using novel storage

paradigms [2, 3], deploying distributed file systems [4, 5] and

caches [6, 7], using mechanisms such as data deduplication

[8, 9], and investing in data protection [10].

Previous studies by Microsoft [11] and EMC [12] show

that a large amount of redundancy exists in the data stored on

the cloud. Data deduplication [8] is used to conserve storage

space by identifying and eliminating this redundant data. Data

deduplication consists of four phases [9], of which data chunk-

ing and chunk hashing are the most compute-intensive [8,13].

In the data chunking phase, incoming data is divided into

small chunks, typically of size 1− 64 KB. Numerous data

chunking algorithms exist in current literature [14–19] and

can be broadly classified into hash-based and hashless al-

gorithms [13]. As chunking occurs whenever new data is

uploaded, this phase runs millions of times on the critical

path, making it a prime candidate for optimization.

We present VectorCDC, a technique to accelerate data

chunking algorithms using vector instructions. Vector instruc-

tions [20] are supported by most modern CPUs, and have been

previously used to accelerate mathematical operations [21,22]

and multimedia applications [23].

SS-CDC [24] has previously explored accelerating hash-

based chunking algorithms using vector instructions. Due

to the difficulties of leveraging vector instructions for hash-

based chunking, they resort to processing non-adjacent data

regions within a single vector operation, leading to relatively

small speedups (§3). Unlike SS-CDC, VectorCDC accelerates

hashless chunking algorithms. Hashless algorithms run faster

than most hash-based ones by avoiding computationally in-

tensive rolling hash functions. However, they may achieve

slightly lower space savings in certain data sets.

This paper identifies two phases common to all hashless

algorithms; Extreme Byte Searches and Range Scans. We ac-

celerate the search for extreme bytes with a novel tree-based

search, dividing the scanned region into multiple sub-regions,

processing each region using vector instructions, and using a

tree-based approach to combine their results. We accelerate

range scans with packed scanning, packing multiple adja-

cent bytes into vector registers and comparing them using a

single vector operation. Our evaluation (§5) shows that us-

ing these methods, VectorCDC achieves 21×−46× higher

chunking throughput than SS-CDC’s approach, without af-

fecting the space savings achieved by hashless algorithms.

We have made our code publicly available by integrating it

with DedupBench1 [13].

2 Background

Data deduplication consists of four phases [9]:

• Data Chunking: Data is divided into small chunks typi-

cally of size 1−64KB using chunking algorithms.

• Chunk Hashing and Comparison: These chunks are

hashed using a collision-resistant hashing algorithm such

as MurmurHash3 [25] or SHA-256 [26]. Chunk hashes

are compared against previously seen hashes to identify

duplicate chunks.

• Metadata Creation: Metadata needed to reconstruct the

original data from stored chunks i.e. recipes are created.

1https://github.com/UWASL/dedup-bench

USENIX Association 23rd USENIX Conference on File and Storage Technologies 513

https://github.com/UWASL/dedup-bench

• Metadata and Chunk Storage: Non-duplicate chunks

and recipes to recreate the original data are saved on the

storage medium.

Space savings [13] is an important metric in deduplication,

representing the overall disk space conserved. It is defined as:

Space Savings =
Original Size−Deduplicated Size

Original Size
×100

(1)

2.1 Data Chunking

Data chunking and chunk hashing are typically the most

compute-intensive phases in deduplication [8]. While chunk

hashing has been accelerated up to 53× using GPUs [27] and

faster hashing algorithms [25, 28], data chunking needs more

attention.

Dividing the data into fixed-size chunks is fast, but results

in poor space savings on most datasets [17]. Deduplication

systems in production instead use Content-Defined Chunking

(CDC) algorithms, which divide data into chunks based on its

characteristics. Numerous CDC algorithms exist in current

literature [14–19, 29] and can be broadly classified into hash-

based and hashless algorithms.

Hash-based algorithms [15–17, 19] slide a fixed-size win-

dow over the data. When the hash value of the window’s

contents matches a target mask, they insert a chunk boundary.

This creates a new data chunk ranging between the current

and previous chunk boundaries. As recomputing the hash each

time the window moves is expensive [17], they use rolling

hash functions. Note that these hash-based CDC algorithms

are only used during the Data Chunking phase and do not

affect Chunk Hashing and Comparison.

Hashless CDC algorithms [14, 18, 29] instead use local

minima/maxima to insert chunk boundaries. For example,

RAM [18] inserts chunk boundaries when a byte outside the

window is at least as large as the maximum valued byte in the

window. As these do not involve rolling hashes, they are up to

2−3× faster than most hash-based CDC algorithms. While

hashless algorithms may achieve slightly lower space savings

on certain datasets (§5.1), they are still used in production

systems as the difference is small.

3 Motivation: Hash-Based CDC with AVX

SS-CDC [24] proposed using AVX-512 instructions to accel-

erate hash-based CDC algorithms. They decouple the rolling

hash and boundary detection phases, running the rolling hash

on the entire source data to identify boundary candidates in

the first phase, and determining boundaries sequentially in

the second. This allows both stages to be independently ac-

celerated with AVX instructions. However, many hash-based

0

0.5

1

1.5

4KB 8KB 16KBG
B
/s

Figure 1: SS-CDC [24] Speedups on Random Data

algorithms such as FastCDC [15] and TTTD [19] use mini-

mum chunk-size skipping to improve throughput i.e., when-

ever a chunk boundary is found, they skip scanning the next

minimum_chunk_size bytes. When SS-CDC runs the rolling

hash phase on the entire source data, the throughput benefits

of minimum chunk size skipping are eliminated.

Secondly, rolling hash algorithms rely on the hash value

matching a target value to identify chunk boundaries. The

rolling hash value at a particular byte depends on the hash

value obtained by rolling until the previous byte, compli-

cating vectorization efforts. SS-CDC [24] overcomes this

by using AVX scatter and gather instructions to load 64

non-adjacent bytes into a single vector register and roll over

them using one vector operation. However, these scatter

and gather instructions are expensive [30], limiting perfor-

mance gains.

Figure 1 shows the chunking throughput obtained by run-

ning AVX-512 accelerated versions of CRC (SS-CRC) and

Gear-based chunking (SS-Gear) [24] against their native unac-

celerated counterparts. This experiment used randomized data

and an Intel Ice Lake machine described in §5. We ran each

algorithm with chunk sizes of 4−16 KB. SS-CRC achieves

0.51 GB/s, a speedup of 1.59× over CRC. Similarly, SS-Gear

achieves 1.1 GB/s, a speedup of 1.18× over Gear. These small

speedups result from the problems described above.

VectorCDC avoids all these issues by choosing hashless

CDC algorithms. VectorCDC accelerates these algorithms

using tree-based search and packed scanning approaches.

VectorCDC does not use expensive scatters / gathers and

is compatible with minimum chunk size skipping, resulting

in higher throughput and speedups.

4 Design

Hashless CDC algorithms such as AE [14], RAM [18] and

MAXP [29] slide windows over the source data to determine

chunk boundaries. We identify two common phases across

all hashless CDC algorithms: the Extreme Byte Search and

Range Scan phases. We accelerate each of these phases using

different AVX-based techniques, discussed in detail below.

514 23rd USENIX Conference on File and Storage Technologies USENIX Association

Figure 2: Accelerating Extreme Byte Search

4.1 Tree-based Extreme Byte Search

Algorithms such as AE [14], RAM [18] and MAXP [29]

all consist of a subsequence that identifies the extreme byte

(maximum/minimum) in a fixed-size window. The size of this

window depends upon the expected average chunk size and

can be as large as 4−8KB. As this phase may need to be per-

formed more than once per chunk, we propose accelerating it

using a novel tree-based search approach. Let us consider the

search for a maximum value using 512-bit AVX instructions

(Figure 2).

We first divide the fixed-size window into smaller sub-

regions, loading all the bytes into AVX-compatible m512i

variables in Step 1. We load these bytes in a packed fashion i.e.

each m512i variable contains 64 adjacent bytes. We then use

vector mm512_max instructions to find the maximum among

packed byte pairs (Step 2). For instance, among bytes "E1"

and "21", byte value "E1" is the maximum. The resulting

pairwise maximums are packed into a destination variable (V5

in the figure).

Step 3 compares the resulting variables V5 and V6 from Step

2 using vector instructions to find the maximum among byte

pairs again. We repeat this process, building a tree of m512i

variables until we are left with a single variable V7 containing

the maximum-valued 64 bytes from across the entire region.

We scan these bytes sequentially in Step K to determine the

maximum valued byte.

4.2 Packed Scanning for Range Scans

Hashless CDC algorithms also consist of a range scan sub-

sequence, where bytes are serially compared against a target

value. We propose to accelerate this scanning process using

vector instructions. Let us consider a case where we compare

bytes sequentially to see if they are greater than or equal to a

target value (such as in RAM [18]). Figure 3 shows our pro-

posal to accelerate this using packed scanning with AVX-512

instructions.

We first load the maximum value ("F4" in Figure 3) into an

AVX-compatible m512i variable V1. We then pack 64 adjacent

bytes from the scan region into another m512i variable V2. We

Figure 3: Accelerating Range Scan

compare these 2 registers using mm512_cmpge vector compare

instructions, which generate a 64-bit integer mask containing

the comparison results. If this mask has a value greater than

0, a chunk boundary exists within the scanned 64 bytes. Its

exact position is determined using the mask value. If the mask

equals 0, no boundary exists within the scanned region and

we proceed with loading the next 64 bytes into V2 to repeat

the process.

It is worth noting that our packed scanning approach is

compatible with minimum chunk size skipping. Unlike SS-

CDC’s approach, chunk boundary detection and insertion can

both occur in Range Scans i.e., whenever a chunk bound-

ary is detected, the next minimum_chunk_size bytes can be

skipped.

4.3 Putting it together: AE and RAM

RAM [18] first scans a fixed-size window at the beginning

of the chunk to find a maximum value (Figure 4a). After

this, it inserts a chunk boundary at the first byte outside the

window which is at least as large as the maximum valued

byte. In VectorCDC, RAM is a combination of an Extreme

Byte Search phase for a maximum value followed by a Range

Scan phase.

(a) RAM

(b) AE

Figure 4: AE and RAM Algorithms

USENIX Association 23rd USENIX Conference on File and Storage Technologies 515

25.00%

28.00%

31.00%

34.00%

37.00%

40.00%

(a) DEB

90.00%

93.00%

96.00%

99.00%

(b) DEV

40.00%

43.00%

46.00%

49.00%

52.00%

(c) LNX

87.00%

90.00%

93.00%

96.00%

(d) RDS

81.00%

84.00%

87.00%

90.00%

(e) TPCC

Figure 5: Space Savings with 8KB chunks

Similarly, AE [14] scans for a byte larger than all the bytes

before it i.e. a target byte (Figure 4b). Once found, a fixed-size

window after this byte is scanned to determine the maximum

valued byte within it. If the target byte is larger than the maxi-

mum valued byte, a chunk boundary is inserted, else scanning

continues for a new target byte. AE can be represented as a

combination of multiple Range Scan phases each followed by

a single Extreme Byte Search phase.

Thus, RAM requires only one Extreme Byte Search and

Range Scan phase per chunk while AE may require multi-

ple phases for each chunk. As discussed in §5.2, this causes

AE to experience a lower speedup when accelerated with

VectorCDC.

Finally, while other hashless algorithms such as MAXP

[29] can also be accelerated using VectorCDC, their native

versions are slower [14,18] than AE and RAM and have been

omitted from the rest of our paper.

5 Evaluation

This section outlines our efforts to evaluate VectorCDC

against the state-of-the-art.

Implementation. We accelerate AE [14] and RAM [18]

using VectorCDC with 700 lines of C++ code. We have made

our code publicly available with DedupBench [13].

Testbed. We run all our experiments using machines from

the Cloudlab [37] platform. We use an AMD EPYC Rome

(c6525-25g from CloudLab Utah) and an Intel Ice Lake

(sm220u from CloudLab Wisconsin) for our experiments. The

AMD EPYC consists of a 16-core AMD7302P with hyper-

threading, 128 GB of RAM, and two Mellanox 25 GBps NICs.

Dataset Size Information XC

DEB 40GB
65 Debian VM Images obtained

from the VMware Marketplace [31]
18.98%

DEV 230GB
100 backups of a Rust [32] nightly

build server
83.17%

LNX 65GB
160 Linux kernel distributions in

TAR format [33]
19.87%

RDS 122GB
100 Redis [34] snapshots with

redis-benchmark runs
33.54%

TPCC 106GB
25 snapshots of a MySQL [35]

VM running TPC-C [36].
37.39%

Table 1: Dataset Information

The Ice Lake consists of two 32-core Xeon Silver 4314 CPUs

with hyperthreading, 256 GB of RAM and a 100GBps Mel-

lanox NIC.

Note that all our runs are on the Ice Lake unless otherwise

specified. All our results are the averages of 5 runs and the

standard deviation was less than 5%.

Alternatives. We evaluate the following hash-based CDC

algorithms:

• CRC: Native (unaccelerated) version of the CRC-32

chunking algorithm from SS-CDC [24].

• FastCDC: Native version of FastCDC [15].

• Gear: Native version of the Gear-hash based chunking

algorithm [16].

• RC: Rabin’s chunking algorithm from LBFS [17].

• SS-CRC / SS-Gear: AVX-512 versions of CRC and Gear

accelerated using SS-CDC [24].

• TTTD: Two-Threshold Two-Divisor algorithm [19].

We also evaluate the following hashless CDC algorithms:

• AE: Native version of AE [14]. We use AE-Max.

• RAM: The native Rapid Asymmetric Maximum [18]

algorithm.

• VAE / VRAM: SSE-128, AVX-256 and AVX-512 ver-

sions of AE and RAM accelerated with VectorCDC.

Datasets. Table 1 shows the datasets used within our evalu-

ation as well as the space savings achieved by using fixed-size

chunking (XC) on them with 8KB chunks . By comparing

the space savings achieved by XC on these datasets to those

achieved by native CDC algorithms (Figures 5a - 5e), we note

that the datasets possess varying degrees of byte-shifting. For

instance, XC achieves a space savings of only 37.39% on the

TPCC dataset at 8KB while CDC algorithms achieve 86-87%.

We have made the DEB dataset publicly available 2 [38].

Metrics. We evaluate each alternative’s achieved space

savings, chunk size distribution, and chunking throughput on

all the described datasets.

2https://www.kaggle.com/datasets/sreeharshau/

vm-deb-fast25

516 23rd USENIX Conference on File and Storage Technologies USENIX Association

https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25
https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25

0

1

2

3

G
B

/s

24.7 GB/s

(a) DEB

0

1

2

3

G
B
/s

26.7 GB/s

(b) RDS

0

1

2

DEB RDSG
B

/s

(c) Speedups with SS-CDC [24]

0

15

30

DEB RDSG
B
/s

(d) Speedup with VectorCDC

Figure 6: Chunking Throughput with AVX-512 instructions and 8KB chunks

5.1 Space Savings

Figures 5a - 5e show the space savings achieved by all alter-

natives with 8KB chunks. We omit the results for other chunk

sizes as the trends were similar.

Hash-based algorithms exhibit space savings values close

to each other across datasets. RAM and AE achieve slightly

lower space savings than the best hash-based algorithm on

some datasets (Figure 5c). On the other hand, they slightly

outperform all hash-based algorithms on other datasets (Fig-

ure 5d). Overall, RAM and AE achieve space savings values

within 6% of hash-based algorithms on all datasets and chunk

sizes, showing that hashless algorithms remain competitive

with hash-based algorithms for data deduplication.

Note that SS-CRC, SS-Gear, VAE, and VRAM achieve the

same space savings as their native counterparts i.e. vector-

acceleration does not impact the space savings achieved by

CDC algorithms. This aligns with the results previously ob-

served for SS-CRC and SS-Gear [24]. To ensure the correct-

ness of our vector-accelerated implementations, we compared

their chunk size distributions to those of their native counter-

parts and verified that they were equal. We omit these results

from the paper due to space constraints.

5.2 Chunking Throughput

Figures 6a and 6b show the throughput achieved by all algo-

rithms on DEB and RDS with a chunk size of 8KB. Note that

we have cropped the y-axis to 3 GB/s to avoid the figure being

skewed by VRAM. The results on other datasets and chunk

sizes were similar. We have omitted them for clarity.

Throughput Comparison. The fastest among the native

hash-based algorithms are FastCDC [15], Gear [16], and CRC

[24] achieving 2 GB/s, 0.95 GB/s, and 0.4 GB/s respectively.

We have accelerated each of these using SS-CDC; SS-Gear

achieves 1.2 GB/s and SS-CRC achieves 0.53 GB/s.

The native hashless algorithms AE [14] and RAM [18]

come in at 1.5− 1.6 GB/s, much faster than most of their

hash-based counterparts. VRAM, our vector-accelerated RAM

implementation, achieves 24-26 GB/s, 21× and 46× faster

than SS-GEAR and SS-CRC respectively. The throughputs of

all algorithms do not vary significantly across datasets.

Speedup Comparison. Figures 6c and 6d show the

speedups achieved by AVX-512 accelerated algorithms over

their native counterparts. Accelerating hash-based algorithms

using SS-CDC achieves a speedup of 1.2−2×. For instance

on DEB, SS-CRC exhibits a throughput of 0.53 GB/s over CRC

at 0.4 GB/s. On the other hand, VRAM achieves a speedup

of 16× over RAM. This demonstrates that AVX instructions

can be leveraged far more efficiently to accelerate hashless

algorithms compared to hash-based algorithms.

FastCDC. We did not observe any speedup when accel-

erating FastCDC [15] with SS-CDC [24]. One of the main

optimizations used by FastCDC is minimum chunk size skip-

ping. However, as noted in §3, decoupling the rolling-hash

phase from the boundary identification phase eliminates the

throughput benefits of minimum chunk size skipping, nullify-

ing any speedup provided by vector-acceleration. VectorCDC

achieves 12× higher throughput than FastCDC.

Accelerating AE. We also accelerated AE [14] using Vec-

torCDC. Figure 7 shows the speedup achieved by VAE when

accelerated using SSE-128/AVX-256 instructions on the DEB

dataset with 8KB chunks. The results for other datasets and

chunk sizes were similar. We see that VAE-128 and VAE-256

only achieve 2.9 GB/s and 5.2 GB/s, speedups of 2× and

3.45× over AE while VRAM-128 and VRAM-256 achieve

speedups of 8.7× and 12.3× over RAM. However, note that

VAE is still faster than every other CDC algorithm.

Unlike RAM, the rolling window in AE has a target con-

dition depending on all the bytes before it (§4.3). The byte

at the head of the window must be greater than all the bytes

before it. The target byte is found using a Range Scan. Each

time such a byte is discovered, Extreme Byte Search is run to

find the maximum value in the window following the target

byte. To insert a chunk boundary, this maximum valued byte

must be smaller than the target byte. If not, the Range Scan

begins again. Thus, AE requires multiple iterations of Range

Scan and Extreme Byte Search per chunk while RAM only

requires one iteration of each, causing the lower speedup seen

in Figure 7. This demonstrates that RAM is inherently more

vector friendly than AE.

USENIX Association 23rd USENIX Conference on File and Storage Technologies 517

0

10

20

30

AMD EPYC Rome Intel Ice LakeG
B
/s

Figure 7: VectorCDC on DEB with SSE-128/AVX-256 instruc-

tions and 8KB chunks

5.2.1 Speedups with AVX-256 and SSE-128 instructions

AVX-512 instructions are currently only supported by a hand-

ful of Intel CPUs. A large number of Intel and AMD CPUs

do not support AVX-512 but support SSE-128 and AVX-256

instructions. While §4 discusses VectorCDC’s design using

AVX-512 instructions, the same methods can be applied to

AVX-256 and SSE-128 instructions as well. Figure 7 shows

the throughput achieved by VRAM implemented using these

instructions (VRAM-128 and VRAM-256). We use the DEB

dataset and 8KB chunks for this experiment, running it on

both Intel and AMD machines.

VRAM achieves similar throughputs on both platforms,

achieving 13.3 GB/s and 19.5 GB/s with SSE-128 and AVX-

256 instructions respectively. This demonstrates that Vector-

CDC is compatible with a large range of CPUs while retain-

ing its throughput benefits over hash-based AVX algorithms.

5.2.2 Throughput breakdown

Figure 8 shows the individual impact of accelerating Extreme

Byte Search and Range Scan in VRAM using SSE-128 instruc-

tions. We use the DEB and LNX datasets for this experiment and

run VRAM with an 8KB chunk size. VRAM-EBS represents

RAM running with only Extreme Byte Search acceleration

while VRAM-128 accelerates both phases.

In DEB, we see that VRAM-EBS achieves a throughput of

10 GB/s. Accelerating Range Scan provides an additional

speedup of 3 GB/s. On the other hand, VRAM-EBS only

achieves 5.7 GB/s on LNX while accelerating Range Scan

provides an additional speedup of 11 GB/s.

This is related to the datasets’ characteristics and the RAM

algorithm. On average, RAM finds chunk boundaries faster

on DEB than LNX once the Extreme Byte Search is complete.

RAM’s actual average chunk size on DEB is 1KB smaller than

that on LNX. Thus, RAM spends more time in Range Scan on

LNX than DEB, explaining Figure 8. Thus, accelerating both

phases using vector instructions is crucial to performance, as

the impact of each phase depends on dataset characteristics.

0

10

20

DEB LNXG
B
/s

RAM VRAM-EBS VRAM-128

Figure 8: VRAM Throughput Breakdown with SSE-128

6 Related Work

Deduplication optimizations. Several other efforts exist

to optimize the remaining phases of data deduplication.

StoreGPU [39] accelerates chunk hash computation using

GPUs, SiLo [40] and Sparse Indexing [41] target hash com-

parison, and HYDRAStor [42] targets chunk and metadata

storage. These are orthogonal to our efforts as we accelerate

the data chunking phase.

Chunking optimizations. RapidCDC [43] uses chunk lo-

cality to accelerate chunking throughput. MUCH [44] and

P-Dedupe [45] use multiple threads to accelerate chunking.

All these techniques implement their optimizations on top

of existing CDC algorithms and VectorCDC is compatible

with all of them. Our previous work [46] that examines the

impact of low-entropy on CDC algorithms is orthogonal as

vector-acceleration does not impact algorithm characteristics.

Secure deduplication systems. Several efforts build end-

to-end deduplication systems for encrypted data [47]. They

mainly target encryption schemes [48, 49] for the underlying

data or focus on reducing attacks on the system [50]. Vector-

CDC is compatible with all these approaches.

7 Conclusion

We present VectorCDC, a methodology for accelerating

content-defined chunking using vector instructions. Vector-

CDC avoids the pitfalls of previous work that accelerates

CDC algorithms by choosing hashless CDC instead. Vec-

torCDC accelerates these algorithms using novel tree-based

search and packed scanning methods. Our evaluation shows

that VectorCDC achieves 21−46× higher throughput than

existing AVX-based CDC techniques. We have made our code

publicly available by integrating it with DedupBench [13].

8 Acknowledgments

We thank the anonymous reviewers and our shepherd, Avani

Wildani, for their feedback. We thank Lori Paniak for helping

us enable our experiments. An NSERC Discovery Grant and

an Acronis Research Grant supported this work. Sreeharsha

is supported by an Ontario Graduate Scholarship.

518 23rd USENIX Conference on File and Storage Technologies USENIX Association

A Artifact Appendix

Abstract

We have made the code for VRAM-128, VRAM-256 and

VRAM-512 publicly available on GitHub as a part of Dedup-

Bench3 [13].

Scope

DedupBench [13] allows for the quick and easy comparison

of numerous CDC algorithms on any dataset. It reports met-

rics such as the deduplication space savings and chunking

throughput for each algorithm. Using DedupBench, the fol-

lowing claims in our paper can be verified:

• Space Savings: Accelerating hashless algorithms with

VectorCDC does not affect the space savings they ex-

hibit.

• Chunking Throughput: VRAM, powered by Vector-

CDC, achieves 16×–42× higher chunking throughput

than alternative CDC algorithms. VRAM-512 achieves a

16× speedup over RAM.

Contents

We have bundled the following CDC algorithms into the

DedupBench repository:

• AE: The hashless Asymmetric Extremum [14] algo-

rithm.

• CRC: The native CRC-32 based chunking algorithm

from SS-CDC [24].

• FastCDC: FastCDC [15] with chunk size normalization.

• Gear: Gear-based chunking [16].

• Rabin: Rabin’s chunking algorithm from LBFS [17].

• RAM: Rapid Asymmetric Maximum [18] algorithm.

• SeqCDC: The hashless SeqCDC [51] algorithm.

• TTTD: Two-Threshold Two-Divisor Algorithm [19].

• VRAM: SSE-128, AVX-256 and AVX-512 versions of

VRAM.

For ease of use, we have also provided scripts to run all

algorithms on any user-defined dataset and plot graphs. The

repository README file contains further details and usage

instructions.

3https://github.com/UWASL/dedup-bench

Hosting

The code for VRAM is hosted on Github within the Dedup-

Bench [13] public repository. It can be obtained from the

main branch via the git [52] framework. Commit 17c5209 or

later contains all the code used within this paper.

The DEB dataset used in our evaluation is publicly hosted

on Kaggle 4 [38]. It can be downloaded and used with Dedup-

Bench to obtain some of the results from our paper.

Requirements

The machines used to develop DedupBench were obtained

from CloudLab [37]. The details can be found in §5.

All of the native (unaccelerated) CDC algorithms in Dedup-

Bench are universally compatible with all processors. VRAM-

128, VRAM-256 and VRAM-512 require CPUs with SSE-128,

AVX-256 and AVX-512 instruction set support respectively.

References

[1] Statista. Worldwide data created from 2010 to 2025,

2024.

[2] Mark Carlson, Alan Yoder, Leah Schoeb, Don Deel, Car-

los Pratt, Chris Lionetti, and Doug Voigt. Software De-

fined Storage. Storage Networking Industry Association

Working Draft, pages 20–24, 2014.

[3] Peter M Chen, Edward K Lee, Garth A Gibson, Randy H

Katz, and David A Patterson. RAID: High-performance,

reliable secondary storage. ACM Computing Surveys

(CSUR), 26(2):145–185, 1994.

[4] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,

and Robert Chansler. The Hadoop distributed file sys-

tem. In 2010 IEEE 26th Symposium on Mass Storage

Systems and Technologies (MSST), pages 1–10. Ieee,

2010.

[5] Sage Weil, Scott A Brandt, Ethan L Miller, Darrell DE

Long, and Carlos Maltzahn. Ceph: A scalable, high-

performance distributed file system. In Proceedings of

the 7th Conference on Operating Systems Design and

Implementation (OSDI’06), pages 307–320, 2006.

[6] Brad Fitzpatrick. Distributed caching with memcached.

Linux Journal, 2004(124):5, 2004.

[7] Nathan Bronson, Zach Amsden, George Cabrera, Prasad

Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony

Giardullo, Sachin Kulkarni, Harry Li, et al. TAO: Face-

book’s distributed data store for the social graph. In

2013 USENIX Annual Technical Conference (USENIX

ATC 13), pages 49–60, 2013.

4https://www.kaggle.com/datasets/sreeharshau/

vm-deb-fast25

USENIX Association 23rd USENIX Conference on File and Storage Technologies 519

https://github.com/UWASL/dedup-bench
https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25
https://www.kaggle.com/datasets/sreeharshau/vm-deb-fast25

[8] Dutch T Meyer and William J Bolosky. A study of

practical deduplication. ACM Transactions on Storage

(ToS), 7(4):1–20, 2012.

[9] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip

Shilane, Yu Hua, Min Fu, Yucheng Zhang, and Yukun

Zhou. A comprehensive study of the past, present, and

future of data deduplication. Proceedings of the IEEE,

104(9):1681–1710, 2016.

[10] Deyan Chen and Hong Zhao. Data security and privacy

protection issues in cloud computing. In 2012 Interna-

tional Conference on Computer Science and Electronics

Engineering, volume 1, pages 647–651. IEEE, 2012.

[11] Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi Ottean,

Jin Li, and Sudipta Sengupta. Primary Data Deduplica-

tion — Large scale study and system design. In 2012

USENIX Annual Technical Conference (USENIX ATC

12), pages 285–296, 2012.

[12] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shi-

lane, Stephen Smaldone, Mark Chamness, and Windsor

Hsu. Characteristics of backup workloads in production

systems. In USENIX Conference on File and Storage

Technologies (FAST), volume 12, pages 4–4, 2012.

[13] Alan Liu, Abdelrahman Baba, Sreeharsha

Udayashankar, and Samer Al-Kiswany. Dedup-

Bench: A Benchmarking Tool for Data Chunking

Techniques. In 2023 IEEE Canadian Conference on

Electrical and Computer Engineering (CCECE), pages

469–474. IEEE, 2023.

[14] Yucheng Zhang, Hong Jiang, Dan Feng, Wen Xia, Min

Fu, Fangting Huang, and Yukun Zhou. AE: An asym-

metric extremum content defined chunking algorithm

for fast and bandwidth-efficient data deduplication. In

2015 IEEE Conference on Computer Communications

(INFOCOM), pages 1337–1345. IEEE, 2015.

[15] Wen Xia, Yukun Zhou, Hong Jiang, Dan Feng, Yu Hua,

Yuchong Hu, Qing Liu, and Yucheng Zhang. FastCDC:

A fast and efficient content-defined chunking approach

for data deduplication. In 2016 USENIX Annual Tech-

nical Conference (USENIX ATC 16), pages 101–114,

2016.

[16] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu,

and Yukun Zhou. Ddelta: A deduplication-inspired fast

delta compression approach. Performance Evaluation,

79:258–272, 2014. Special Issue: Performance 2014.

[17] Athicha Muthitacharoen, Benjie Chen, and David

Mazieres. A low-bandwidth network file system. In Pro-

ceedings of the Eighteenth ACM Symposium on Operat-

ing Systems Principles (SOSP), pages 174–187, 2001.

[18] Ryan NS Widodo, Hyotaek Lim, and Mohammed

Atiquzzaman. A new content-defined chunking algo-

rithm for data deduplication in cloud storage. Future

Generation Computer Systems, 71:145–156, 2017.

[19] Kave Eshghi and Hsiu Khuern Tang. A framework

for analyzing and improving content-based chunking

algorithms. Hewlett-Packard Labs Technical Report TR,

30(2005), 2005.

[20] James E Smith, Greg Faanes, and Rabin Sugumar.

Vector instruction set support for conditional opera-

tions. ACM SIGARCH Computer Architecture News,

28(2):260–269, 2000.

[21] Somaia A Hassan, Mountasser MM Mahmoud,

AM Hemeida, and Mahmoud A Saber. Effective im-

plementation of matrix–vector multiplication on Intel’s

AVX multicore processor. Computer Languages, Sys-

tems & Structures, 51:158–175, 2018.

[22] Shay Gueron and Vlad Krasnov. Fast quicksort im-

plementation using AVX instructions. The Computer

Journal, 59(1):83–90, 2016.

[23] Robert L Bocchino Jr and Vikram S Adve. Vector LLVA:

a virtual vector instruction set for media processing. In

Proceedings of the 2nd International Conference on

Virtual Execution Environments, pages 46–56, 2006.

[24] Fan Ni, Xing Lin, and Song Jiang. SS-CDC: A two-

stage parallel content-defined chunking for deduplicat-

ing backup storage. In Proceedings of the 12th ACM

International Conference on Systems and Storage, pages

86–96, 2019.

[25] Jingwei Li, Zuoru Yang, Yanjing Ren, Patrick PC Lee,

and Xiaosong Zhang. Balancing storage efficiency and

data confidentiality with tunable encrypted deduplica-

tion. In Proceedings of the Fifteenth European Confer-

ence on Computer Systems, pages 1–15, 2020.

[26] Dian Rachmawati, JT Tarigan, and ABC Ginting. A

comparative study of Message Digest 5 (MD5) and

SHA256 algorithm. In Journal of Physics: Conference

Series, volume 978, page 012116. IOP Publishing, 2018.

[27] Kiatchumpol Suttisirikul and Putchong Uthayopas. Ac-

celerating the cloud backup using GPU based data dedu-

plication. In 2012 IEEE 18th International Conference

on Parallel and Distributed Systems, pages 766–769.

IEEE, 2012.

[28] Chunlin Song, Xianzhang Chen, Duo Liu, Jiali Li, Yu-

juan Tan, and Ao Ren. Optimizing the Performance

of Consistency-Aware Deduplication Using Persistent

Memory. IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, 2023.

520 23rd USENIX Conference on File and Storage Technologies USENIX Association

[29] Nikolaj Bjørner, Andreas Blass, and Yuri Gurevich.

Content-dependent chunking for differential compres-

sion, the local maximum approach. Journal of Computer

and System Sciences, 76(3-4):154–203, 2010.

[30] Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason

Riedy, Aaron Vose, and Daniel Ernst. Evaluating Gather

and Scatter Performance on CPUs and GPUs. In Pro-

ceedings of the International Symposium on Memory

Systems, MEMSYS ’20, page 209–222, New York, NY,

USA, 2021. Association for Computing Machinery.

[31] VMWare. VMWare marketplace. https://

marketplace.cloud.vmware.com/services, 2023.

[32] Rust. GitHub - rust-lang/rust: Empowering everyone to

build reliable and efficient software. https://github.

com/rust-lang/rust, 2023.

[33] Linux. The Linux Kernel Archives. https://www.

kernel.org/, 2023.

[34] Redis. Redis. https://redis.io/, 2023.

[35] MySQL. MySQL. https://www.mysql.com/, 2023.

[36] Transaction Processing Council. TPC-C Overview.

https://www.tpc.org/tpcc/detail5.asp, 2023.

[37] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-

icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh

Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya

Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-

ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,

Snigdhaswin Kar, and Prabodh Mishra. The design

and operation of CloudLab. In 2019 USENIX Annual

Technical Conference (USENIX ATC 19), pages 1–14,

Renton, WA, July 2019. USENIX Association.

[38] Sreeharsha Udayashankar, Abdelrahman Baba, and

Samer Al-Kiswany. VM Images for Deduplication.

https://www.kaggle.com/dsv/10561721, 2025.

[39] Samer Al-Kiswany, Abdullah Gharaibeh, Elizeu Santos-

Neto, George Yuan, and Matei Ripeanu. StoreGPU:

Exploiting Graphics Processing Units to Accelerate Dis-

tributed Storage Systems. In Proceedings of the 17th

International Symposium on High Performance Dis-

tributed Computing, HPDC ’08, page 165–174, New

York, NY, USA, 2008. Association for Computing Ma-

chinery.

[40] Wen Xia, Hong Jiang, Dan Feng, and Yu Hua. Similar-

ity and Locality Based Indexing for High Performance

Data Deduplication. IEEE Transactions on Computers,

64(4):1162–1176, 2015.

[41] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat,

Vinay Deolalikar, Greg Trezis, and Peter Camble. Sparse

indexing: Large scale, inline deduplication using sam-

pling and locality. In USENIX Conference on File and

Storage Technologies (FAST), volume 9, pages 111–123,

2009.

[42] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal

Kaczmarczyk, Wojciech Kilian, Przemyslaw Strzelczak,

Jerzy Szczepkowski, Cristian Ungureanu, and Michal

Welnicki. HYDRAstor: A scalable secondary storage. In

USENIX Conference on File and Storage Technologies

(FAST), volume 9, pages 197–210, 2009.

[43] Fan Ni and Song Jiang. RapidCDC: Leveraging Du-

plicate Locality to Accelerate Chunking in CDC-Based

Deduplication Systems. In Proceedings of the ACM Sym-

posium on Cloud Computing, SoCC ’19, page 220–232,

New York, NY, USA, 2019. Association for Computing

Machinery.

[44] Youjip Won, Kyeongyeol Lim, and Jaehong Min.

MUCH: Multithreaded Content-Based File Chunking.

IEEE Transactions on Computers, 64(5):1375–1388,

2015.

[45] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and

Zhongtao Wang. P-Dedupe: Exploiting Parallelism in

Data Deduplication System. In 2012 IEEE Seventh

International Conference on Networking, Architecture,

and Storage, pages 338–347, 2012.

[46] Mu’men Al Jarah, Sreeharsha Udayashankar, Abdel-

rahman Baba, and Samer Al-Kiswany. The Impact of

Low-Entropy on Chunking Techniques for Data Dedu-

plication. In 2024 IEEE 17th International Conference

on Cloud Computing (CLOUD), pages 134–140, 2024.

[47] Youngjoo Shin, Dongyoung Koo, and Junbeom Hur.

A Survey of Secure Data Deduplication Schemes for

Cloud Storage Systems. ACM Computing Surveys,

49(4), Jan 2017.

[48] Mihir Bellare, Sriram Keelveedhi, and Thomas Risten-

part. Message-locked encryption and secure deduplica-

tion. In Annual International Conference on the Theory

and Applications of Cryptographic Techniques, pages

296–312. Springer, 2013.

[49] Jian Liu, N. Asokan, and Benny Pinkas. Secure Dedu-

plication of Encrypted Data without Additional Indepen-

dent Servers. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security,

CCS ’15, page 874–885, New York, NY, USA, 2015.

Association for Computing Machinery.

USENIX Association 23rd USENIX Conference on File and Storage Technologies 521

https://marketplace.cloud.vmware.com/services
https://marketplace.cloud.vmware.com/services
https://github.com/rust-lang/rust
https://github.com/rust-lang/rust
https://www.kernel.org/
https://www.kernel.org/
https://redis.io/
https://www.mysql.com/
https://www.tpc.org/tpcc/detail5.asp
https://www.kaggle.com/dsv/10561721

[50] Danny Harnik, Benny Pinkas, and Alexandra Shulman-

Peleg. Side Channels in Cloud Services: Deduplication

in Cloud Storage. IEEE Security and Privacy, 8(6):40–

47, 2010.

[51] Sreeharsha Udayashankar, Abdelrahman Baba, and

Samer Al-Kiswany. SeqCDC: Hashless Content-

Defined Chunking for Data Deduplication. In Proceed-

ings of the 25th International Middleware Conference,

pages 292–298, 2024.

[52] Diomidis Spinellis. Git. IEEE software, 29(3):100–101,

2012.

522 23rd USENIX Conference on File and Storage Technologies USENIX Association

	Introduction
	Background
	Data Chunking

	Motivation: Hash-Based CDC with AVX
	Design
	Tree-based Extreme Byte Search
	Packed Scanning for Range Scans
	Putting it together: AE and RAM

	Evaluation
	Space Savings
	Chunking Throughput
	Speedups with AVX-256 and SSE-128 instructions
	Throughput breakdown

	Related Work
	Conclusion
	Acknowledgments
	Artifact Appendix

