
This paper is included in the Proceedings of the 
23rd USENIX Conference on File and Storage Technologies.

February 25–27, 2025 • Santa Clara, CA, USA
ISBN 978-1-939133-45-8

Open access to the Proceedings 
of the 23rd USENIX Conference on 

File and Storage Technologies 
is sponsored by

PolyStore: Exploiting Combined Capabilities 
of Heterogeneous Storage

Yujie Ren, Rutgers University and EPFL; David Domingo, Jian Zhang, and 
Paul John, Rutgers University; Rekha Pitchumani, Samsung Semiconductor Inc.; 

Sanidhya Kashyap, EPFL; Sudarsun Kannan, Rutgers University
https://www.usenix.org/conference/fast25/presentation/ren



PolyStore: Exploiting Combined Capabilities of Heterogeneous Storage

Yujie Ren∗† David Domingo∗ Jian Zhang∗ Paul John∗ Rekha Pitchumani‡

Sanidhya Kashyap† Sudarsun Kannan∗

∗Rutgers University †EPFL ‡Samsung Semiconductor Inc.

Abstract
With the "non-hierarchical" trend in emerging storage media,
the philosophy of hierarchy inevitably falls short in fully lever-
aging the combined bandwidth of multiple devices. In this
paper, we propose a horizontally structured storage architec-
ture that leverages the combined capabilities of heterogeneous
devices. We introduce PolyStore, a meta layer atop storage
medium-optimized file systems that spans userspace and the
OS, allowing applications to access multiple storage devices
concurrently with transparent, fine-grained data placement.
PolyStore maximizes cumulative storage bandwidth and re-
duces hardware and software bottlenecks without compromis-
ing important properties such as sharing and security. Our
evaluations show that PolyStore achieves 1.11X- 9.38X per-
formance gains for micro-benchmarks and 1.52X- 2.02X for
real-world applications across various device configurations.

1 Introduction
Advancements in storage media have led to a diverse range

of performance characteristics, from byte-addressable low-
latency persistent memory (PM) [6] and NVMe SSDs [63]
with high bandwidth [47], to CXL-based SSDs with low la-
tency and high bandwidth [68], and massive capacity devices
like SATA SSDs. As hardware evolves, applications such as
large databases [11], data streaming [54], and graph process-
ing [39, 60], require high bandwidth from storage devices. At
this critical juncture of hardware evolution and application
demands, harnessing the collective capabilities of these hetero-
geneous storage devices (henceforth referred to as HSDs)is
critical for performance and scalability potential.

In exploring storage heterogeneity within a machine, prior
works follow the philosophy of hierarchy. We categorize them
into three broad categories: (1) caching, (2) tiering, and (3)
application-directed approaches. Caching solutions [1, 43, 44,
64] stack storage devices into a hierarchy, where updates and
frequently accessed data are cached in faster storage, backed
by slower storage on the lower level. Tiering solutions [22, 23,
38, 42, 50, 56, 62, 71] also adopt a hierarchical storage design,
but the data is maintained exclusively on faster and slower

storage tiers. They periodically assess data usage metrics (e.g.,
hotness) for deciding on data placement across tiers. Finally,
application-directed approaches [32, 42, 57, 70] use dedicated
placement policies for HSDs for application-specific logics
and requirements. Although such design philosophy is central
and common to the design of computer systems [17, 53], it
suffers from three major limitations when we consider the
"non-hierarchical" trend with modern HSDs [64].

First, the performance of those hierarchical approaches
places faster devices on top of the hierarchy, thereby inher-
ently preventing applications utilizing the combined perfor-
mance of all devices. Although state-of-the-art caching design
supports concurrent reads after saturating the faster storage
layer [64], it still performs writes in a hierarchical manner,
resulting in under-utilization of the write bandwidth.

Second, the hierarchical architecture prioritizes faster stor-
age over slower storage, which incurs contention on a single
device for multi-threaded I/O-intensive applications [4, 11]
at both the software [64] and hardware levels [67]. Moreover,
placing data eagerly on faster storage can cause excessive
cache eviction and data migration between faster and slower
devices, consuming part of the storage bandwidth.

Finally, using DRAM to cache and buffer data for hid-
ing storage latency is still important, even for faster stor-
age devices like PM [43, 74]. However, in the context of
HSDs, traditional DRAM caching (e.g., Linux page cache)
and DRAM+PM approaches [43, 74] are static as they do not
adapt to varied performance gaps across HSDs.

To address these limitations, we argue that a horizontally
structured storage architecture for HSDs has several ben-
efits in (1) exploring cumulative storage capabilities with
device bandwidth and capacity, (2) utilizing mature hardware-
optimized file systems for individual device, and (3) enriching
the DRAM cache to address the diversity of characteristics
of HSDs. To that end, we propose PolyStore, a novel meta
layer between applications and the existing OS storage stack
that arranges HSDs in a non-hierarchical layout transparently
and exploits the capability of their hardware-optimized file
systems. PolyStore distributes large and bandwidth-intensive
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files across multiple devices at a fine-grained level to ex-
ploit cumulative storage bandwidth, while maintaining small
and latency-sensitive files within a single storage. PolyStore
splits the responsibility for managing HSDs between user
and kernel space. The user-level runtime is responsible for
mapping data across HSDs, while the OS component han-
dles access protection, data sharing, and leverages mature
hardware-optimized file systems.

However, realizing a horizontal architecture for HSDs with
diverse performance and durability characteristics pose the
following challenges: The first one is squeezing the cumu-
lative bandwidth of devices while adapting to hardware and
workload changes without modifying applications. The sec-
ond challenge stems from diverse performance characteris-
tics across HSDs that complicate effective DRAM buffering
mechanisms and policies. Finally, ensuring crash consistency
and recovery across HSDs is not straightforward due to the
varying atomicity and durability guarantees of storage media.

PolyStore addresses these challenges with the following
contributions: (1) A heterogeneity-aware runtime for scal-
ing horizontally with support for concurrent indexing, file
system operations, and dynamic data placement mechanism.
The placement mechanism maps application threads and their
updates across storage devices in a dynamic way to max-
imize cumulative bandwidth and minimize contention and
data movement costs to adapt to workload changes in the long
run. (2) A heterogeneity-aware DRAM caching mechanism
that buffers data in DRAM on top of the horizontal layout of
HSDs to hide performance variations, reducing kernel traps,
lowering latency, and improving data plane throughput. (3) A
coordinated persistence mechanism that ensures data dura-
bility and crash consistency by integrating runtime and OS
components with hardware-optimized file systems.

Our evaluation shows PolyStore outperforms state-of-the-
art caching [64] and tiering [38, 43, 62] solutions by up to
9.38X on PM/NVMe and 1.87X over NVMe/SATA config-
uration. Similarly, PolyStore’s heterogeneity-aware DRAM
caching improves throughput by up to 3.18X. Additionally,
PolyStore improves throughput by up to 3.12X for metadata-
intensive Filebench [59], and up to 2.94X on three applica-
tions over state-of-the-art systems.

2 Background and Related Work
We first present an overview of hardware trends and then

discuss state-of-the-art software solutions.

2.1 Storage Hardware Trend
Modern storage devices have been evolving steadily with

varying characteristics. For instance, modern non-volatile
memory technologies [5, 6] offer lower access latency, while
the evolution of PCIe [47] and the NVMe protocol [63] have
enabled block-based SSDs to achieve high throughput.

Data growth necessitates heterogeneous storage for perfor-
mance and cost efficiency [64]. However, managing devices

HSD Properties Caching Tiering App-specific PolyStore[43, 44, 64] [38, 62, 71] [32, 57, 69]
Cumulative read

bandwidth utilization Orthus ⋆ ✗ ✗ ✓

Cumulative write
bandwidth utilization ✗ ✗ ✗ ✓

Heterogeneity-aware
DRAM caching P2CACHE ✗ ✗ ✓

Cross-device durability &
crash consistency ✗ ✓ ✓ ✓

Table 1: Existing solutions vs. PolyStore. ⋆Orthus [64] par-
tially support cumulative read bandwidth utilization for HSDs.

with varied bandwidth, asymmetric read/write speeds, and
diverse capacities complicates storage software [6, 63, 66].

2.2 Managing Storage Heterogeneity
To manage HSDs in a single system, state-of-the-art ap-

proaches follow the philosophy of hierarchy by placing faster
devices above slower ones.
Caching uses faster storage to absorb writes and accelerate
reads by storing frequently accessed data on faster storage
backed by larger but slower storage [1, 13, 15, 20, 24, 27,
33, 35, 37, 45, 65]. For example, some systems [43, 44] use
PM as a caching layer over SSD. Meanwhile, Orthus [64]
considers non-hierarchical caching for HSDs. It proposes
dynamic cache admission control that concurrently reads from
slower storage and bypasses the fast caching device, but only
when the bandwidth of fast storage is saturated, limiting the
benefits of cumulative bandwidth for only read operations.
Tiering stacks HSDs as tiers, and maintain data exclusively
at one layer and only migrate it across tiers based on cer-
tain policies (e.g., hotness). The designs include file systems
[38, 42, 50, 62, 71] and user-level runtimes [22, 23, 56]. For
instance, Strata [38] uses a combination of PM and SSD, first
buffering data on PM as a log and then asynchronously di-
gesting the logs to slower SSDs. In contrast, Ziggurat [71]
writes across PM and SSD based on the access pattern, and
SPFS [62] uses a lightweight file system for PM and stacks it
on top of file systems for SSDs, such as ext4.
Application-directed data placement uses application-level
knowledge to place data across HSDs [32, 42, 57, 70]. For
example, key-value stores like NoveLSM [32] first write data
to PM, then use background threads to compact data to SSDs.
Similarly, DBMSes place write-ahead logs for faster storage
and database files to slower storage [25, 58, 74].

3 Analyzing Hierarchy Pitfalls
We analyze the limitations of hierarchical approaches in

managing HSDs. As summarized in Table 1, these approaches
often over-prioritize or restrict application threads to the fast
device at the top of the hierarchy, leaving unrealized device
bandwidth on the table. To illustrate the limitation in terms
of cumulative bandwidth utilization, we use a multi-threaded
micro-benchmark on a multi-core system with PM and NVMe
storage (Config I in Table 3), with the OS page cache disabled.
We examine three state-of-the-art systems: (1) Orthus [64], a
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Figure 1: Inefficient hardware utilization and software
design. Throughput for 32 threads (Direct I/O without DRAM
cache) with each thread accessing its private 2GB file. The red line
shows the combined device bandwidth of PM and NVMe.

non-hierarchical caching solution; (2) Strata [38], a full stack
tiering solution with an user-level file system optimized for
PM and NVMe; and (3) SPFS [62], a stackable PM file system
that could be stacked on top of ext4 for NVMe. Figure 1 shows
the extent of the failure of current approaches for utilizing
cumulative bandwidth of HSDs.

For write operations, existing caching and tiering solu-
tions force application threads to write to PM first. As the
number of threads increases, hardware contention also in-
creases, as studied in prior work [67]. For read operations,
caching approaches move data from NVMe to PM when the
data resides in NVMe. This approach not only limits appli-
cation I/O throughput but also incurs additional write to PM.
As mentioned above, writing to PM becomes a bottleneck
with increasing threads. Hybrid caching solutions like Orthus
only allow concurrent reads from PM and NVMe, but only
when PM bandwidth is saturated. This saturation typically
occurs during high cache hits to PM [64]. The tiering solution
Strata also faces the same issue. Meanwhile, SPFS does not
move frequently accessed data from NVMe to PM for read
operations until a write operation executes [62]. Hence, for
the random read workload, SPFS cannot take advantage of the
PM read bandwidth due to the absence of the OS page cache
in our configuration. Note that extending Orthus to support
non-hierarchical writes across HSDs presents fundamental
challenges, primarily due to its block-layer implementation,
which cannot guarantee atomicity or durability [19, 36, 49].

Some caching and tiering systems have attempted to en-
hance performance of HSDs by incorporating DRAM caching,
which mitigates asymmetrical read/write characteristics in
PM [43, 71, 74]. However, these systems neglect a unified
DRAM cache atop of HSDs, which could implement device-
specific cache policies by considering hardware contention,
latency, and available bandwidth across the HSDs.

4 Design and Implementation of PolyStore
We design PolyStore—a meta-layer atop device-optimized

file systems. PolyStore manages data across one or more
storage devices to utilize cumulative bandwidth without com-
promising important storage system properties.

4.1 PolyStore Design Goals
Goal 1: Attaining combined bandwidth of heteroge-

neous storage. To extract cumulative bandwidth, PolyStore
distributes data within large files and between different files
across HSDs and adapts to different workloads and storage
hardware. Two principles drive this goal:

P1: Provide heterogeneity-aware runtime to support fine-
grained data indexing and file system operations. For fine-
grained distribution of data (blocks) of large and bandwidth-
intensive files [39, 60] across multiple storage devices, a con-
current indexing mechanism and multi-storage file system
operations must support parallel read and update operations
to a file with minimal synchronization overhead.

P2: Dynamic bandwidth-aware data placement across
HSDs. Exploiting cumulative storage bandwidth requires a
dynamic data placement mechanism to the underlying HSDs
that adapts to hardware and application workload changes.
Goal 2: Achieving heterogeneity-aware DRAM caching
to lower latency. Unlike the OS page cache or existing
solutions that do not consider storage heterogeneity, PolyStore
should provide a unified DRAM cache support to address such
asymmetrical bandwidth and latency gaps across HSDs.

P3: Heterogeneity-aware DRAM caching with abstracted
HSD storage layer. The horizontal HSDs layout enables
exposing the right set of abstractions to incorporate DRAM
caching with storage-specific admission and eviction policies.
Goal 3: Providing unified durability, crash consistency,

and sharing guarantees. Spreading data across HSDs non-
hierarchically through fine-grained placement should not com-
promise atomicity, durability, crash consistency, and security
guarantees. Two principles achieve this:

P4: Coordinated persistence and recovery. Atomicity, dura-
bility, and crash-consistency guarantees require coordinated
data and metadata persistence across device-optimized file
systems and HSD runtime with minimal overhead.

P5: Secure metadata update delegation to the OS. Sharing
files across applications introduces the possibility of metadata
corruption, which requires a trusted entity (OS).

4.2 Overview
For our first goal of attaining combined storage bandwidth

across HSDs, we propose the following two components for
P1 and P2: (a) A scalable data indexing (Poly-index) compo-
nent utilizes a range-based tree structure range-tree to enable
the ability to split data across underlying physical files in
their respective storage. Poly-index enables concurrent access
across storage devices with fine-grained range-level locks. (b)
A dynamic data placement (Poly-placement) component that
maps I/O requests from application threads dynamically to
different storage, thereby preventing the over-saturation of any
single storage device. For the second goal with P3, we intro-
duce (c) a heterogeneity-aware DRAM caching (Poly-cache)
in user-space with versatile storage-specific cache admission
and eviction control policies. For ensuring durability, crash-

USENIX Association 23rd USENIX Conference on File and Storage Technologies    541



Per-file
range tree

6-8MB

2-4MB

0-2MB
8-10MB

Application

PolyStore
runtime

Poly-Index §4.3

User space

Poly-Cache §4.6

Poly-Placement §4.5

Poly-Persist §4.7

Dynamic
Thread

Mapping

Bandwidth-aware
data migration

PolyOS
OS kernelPM-optimized 

FS
Flash-optimized

FS

buf buf...

...

Direct I/O Cache Eviction

epoch i

epoch i+1

Write I/O from app threads Read I/O from app threads

Device-opt admission
and eviction

TxB Poly-index Poly-inode TxE

Figure 2: PolyStore High-level Design. Figure shows the
overall flow of PolyStore when application threads perform I/O.
Poly-index specifies the location of data blocks on physical devices;
each index entry points to a DRAM buffer in Poly-cache. Poly-
placement determines the device for appended blocks by mapping
I/O threads to underlying devices to maximize combined bandwidth
utilization. Poly-persist handles crash consistency across underlying
devices. PolyOS is responsible for sharing, fairness, and security.

consistency, and sharing guarantees toward our third goal with
P4 and P5, we propose (d) a coordinated persistence and con-
sistency technique (Poly-persist), which spans across HSDs
with differing atomicity and durability guarantees. (e) A thin
OS component ensures secure sharing across applications.

We prototype PolyStore with a cross-layered design with
a user-level runtime that intercepts POSIX I/O operations
and a thin kernel component in the VFS layer (PolyOS) for
enabling file sharing across processes. PolyStore accommo-
dates a variety of storage types, along with their respective file
systems [41, 66]. For multiple devices within the same type,
PolyStore utilize its file system to scale (e.g., RAID [7, 46]).
Figure 2 illustrates a high-level flow of operations across the
components built from the techniques introduced above.

4.3 Structures for Fine-grained Placement
For utilizing the cumulative bandwidth of HSDs, PolyStore

needs to distribute data across multiple storage media with low
overhead. This requires a fine-grained placement mechanism
that abstracts the complexity of data distribution across small
files or within large bandwidth sensitive files [39, 60]. To
achieve this goal, PolyStore introduces the following key
structures with minimal locking overheads, low memory and
storage footprints, and efficient namespace management.
Poly-inode. PolyStore exposes a logical file interface to
applications, abstracting the complexity of data distribution.
Each logical file is represented by a Poly-inode, which main-
tains a mapping between the logical file and one or more
physical files in the underlying file systems. The Poly-inode

contains essential information such as open file descriptors for
per-device physical inodes and reference counters, enabling
seamless management of data across HSDs.
Poly-index. To enable fine-grained block placement and effi-
cient utilization of cumulative bandwidth, particularly crucial
for large files like databases or streaming files, we introduce
Poly-index. This scalable data indexing structure employs a
range-tree, an augmented red-black tree indexed by interval
ranges (low, high)[9], which allows for efficient look-ups and
updates of non-overlapping block ranges [50].

Each Poly-index node is a unit of locking granularity, and
covers a 2MB range by default (but configurable). We use
2MB range (1) to balance between memory capacity and con-
currency; and (2) 2MB size aligns with Linux’s maximum
block I/O size for a single request, allowing the entire range to
be evicted using a single request [21]. Each Poly-index node
has its own readers-writer lock, promoting high concurrency
and minimal locking overheads, in line with state-of-the-art
file systems [40, 50, 73]. Each Poly-index node has a 128B
memory and 96B disk footprint, resulting in only 64MB mem-
ory usage for a 1TB file (0.0064%).

As illustrated in Figure 2, Poly-index manages the logical
blocks across physical files in HSDs. Additionally, Poly-index
nodes maintain pointers to user-level DRAM cache buffers
(§4.6). Both Poly-inode and Poly-index are stored in memory-
mapped files on faster storage with the durability and crash
consistency guarantee by Poly-persist (§4.7), enabling sharing
across multiple processes with access permissions (§4.8).
Hybrid namespace management. To efficiently manage
namespaces across multiple storage devices, PolyStore imple-
ments a dual-path name resolution strategy. For data-intensive
files spread across HSDs, which require less frequent name
resolution, PolyStore uses a directory hierarchy in fast storage
and a flat-name structure on slower devices. This approach
minimizes random accesses and expedites resolution for files
spanning multiple devices. For example, a multi-storage log-
ical file (/poly f s/d1/ f 1) is mapped to a physical file on
faster storage using a conventional directory hierarchy (e.g.,
/ f ast/d1/ f 1 on PM), while the physical file on slower stor-
age adopts a flat name path on the root using the hash value
of the logical path (e.g., /slow/hash(”poly f s/d1/ f 1”)).

4.4 Heterogeneity-aware File System Ops
PolyStore ’s horizontal scaling for exploiting the combined

bandwidth of HSDs for data plane operations introduces de-
sign challenges that, when addressed, reduce overhead and
improve performance for metadata-heavy operations (e.g.,
file creation), ensure ordering (e.g., file appends), and enable
concurrent reads while preserving POSIX semantics.

4.4.1 Adaptive File Creation and Opening

Since small files rarely benefit from cumulative storage
bandwidth, PolyStore implements an adaptive, on-demand
approach to multi-storage file creation. Initially, PolyStore
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creates a physical file on one device with its file system, along
with a Poly-inode and Poly-index for the logical file. As file
size grows and storage bandwidth saturates, PolyStore dynam-
ically creates new physical files on different devices, mapping
them to the same Poly-inode and dynamically places addi-
tional blocks to the other devices. This strategy utilizes cumu-
lative bandwidth for large files while minimizing overhead
for small files (default to 2MB matching Poly-index node
size but configurable), reducing metadata overhead across
file systems. When applications create or open a file, Poly-
Store returns a logical file descriptor on which the application
performs subsequent data plane operations.

4.4.2 File Writes to Exploit Cumulative Bandwidth
To exploit cumulative storage bandwidth, PolyStore effi-

ciently manages write operations across HSDs under two
main scenarios: when application threads perform writes
concurrently on a large shared file or when each applica-
tion thread writes to its own file. These scenarios require
both concurrent write management and the flexibility to map
application threads to different storage devices.
Write indexing: When an application thread performs a
write, it traverses the Poly-index to locate nodes covering the
relevant block ranges based on offset and size. This process
addresses three key scenarios: (1) For ranges not indexed,
PolyStore creates new nodes on demand and issues I/O to the
appropriate file systems of the target device. (2) For partially
existing ranges, PolyStore performs I/O for the entire range,
adding missing nodes as necessary. (3) For fully indexed
ranges, PolyStore updates only the modified blocks in place
to reduce write amplification and improve efficiency.
Mapping write threads to HSDs: To map application threads
performing writes and distribute file blocks across HSDs,
PolyStore begins with a static approach that determines of-
fline the maximum number of threads required to saturate
the bandwidth of each storage type using widely-used bench-
mark tools [14]. PolyStore then prioritizes the assignment of
the maximum number of threads that can exploit the band-
width of the fastest storage, with any remaining application
threads assigned to slower devices, to exploit the cumulative
bandwidth. For bandwidth-intensive large files, this results
in block ranges of a file being spread across multiple storage
devices, whereas for smaller files, the writes generally end
up on a single storage device. Finally, in PolyStore, a single
write operation’s blocks are always written to a single stor-
age for ordering and crash consistency. In §4.5, we describe
our dynamic placement design for handling changes in I/O
behavior and access patterns.

4.4.3 Preserving POSIX Semantics
Appends. PolyStore tackles the challenge of maintaining
POSIX-compliant appends [8] across HSDs with a dual-
pronged approach. First, it ensures serialized appends by
opening all relevant physical files in append mode when a
logical file is accessed, enforcing ordered writes within each

device. Second, PolyStore leverages Poly-index to coordinate
appends across multiple threads and physical files, maintain-
ing global order. Timestamps in the Poly-index range tree
further optimize DRAM caching (discussed in §4.6) by en-
suring that when block blkN is evicted, all preceding blocks
(blk0 to blkN−1) are also evicted, preserving data integrity. In
case of failure, Poly-index and timestamps are used to recover
the correct order and truncate updates following an unrecov-
erable block. This ensures PolyStore provides the ordering
and consistency of traditional file systems while capitalizing
on the performance advantages of HSD.
Concurrent Reads. To efficiently utilize bandwidth and
concurrency for reads, application threads use Poly-index to
quickly identify block ranges spread across one or more files
on multiple devices, enabling concurrent read I/Os on HSDs
even during ongoing writes.

4.4.4 Other Metadata Operations
PolyStore tackles complex metadata operations, such

as rename and unlink, by ensuring the same correctness
and crash-consistency guarantees as traditional OS file sys-
tems [34, 75]. For files spanning multiple devices, PolyStore
locks the Poly-inode to ensure atomicity, updates metadata for
each physical file via the underlying file system, and commits
PolyStore metadata to faster storage upon success. For small
files on a single device, PolyStore minimizes overhead by
directly updating the physical file’s metadata using the file
system. Our evaluation shows that PolyStore ’s bandwidth
gains outweigh the overhead of additional PolyStore metadata
updates for data-heavy files. Even for metadata-heavy work-
loads, PolyStore offers gains through its concurrent design.

4.5 Bandwidth-aware Placement & Migration
PolyStore must adapt to the dynamic and fluctuating I/O

behavior and changing access patterns of modern applications.
For write/update operations, as described in §4.4, the initial
simple static mapping of I/Os from application threads to
HSDs is insufficient to maximize cumulative bandwidth un-
der workload changes. However, finding the optimal solution
for this mapping across HSDs is challenging, comparable to
solving an NP-Complete knapsack problem [30, 48, 52].

Similarly, for read operations, timely migration of fre-
quently accessed "hot" data to faster devices is essential to
prevent performance degradation. PolyStore aims to achieve
these goals without compromising cumulative data placement
objectives or incurring excessive data movement.

4.5.1 Dynamic Thread Mapping for Writes
We design Poly-placement, which uses a greedy strategy

inspired by previous research [30, 48, 52]. At the beginning
of the application (first epoch), Poly-placement starts with
static placement as discussed in §4.4, mapping enough threads
to saturate each storage device bandwidth starting with the
fastest device (Dhigh), and assigning other threads to slower
storage as shown in Algorithm 1.
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Algorithm 1: Thread Mapping and Remapping in HSDs
Input: T[] is per-device thread set, M is total thread count
Input: D[] denotes device list, N is number of devices
Param: curr_state<Dlow, Dhigh> denotes thread mapping state

between a low and high bandwidth device
low_to_high: remap thread from Dlow to Dhigh (initial state)
high_to_low: remap thread from Dhigh to Dlow
STABLE: stabilized throughput yielding highest throughput

Param: Bdev/global denotes per-device/global bandwidth usage
Param: Xdev/global denotes a threshold (configurable and default to

50%) of bandwidth change for thread remapping

1 Function PolyPlacement(T [], D[], N):
2 for i = 0; i < N −1; i = i+1 do
3 DynamicPlacement(T [], D[], i)
4 end
5 End Function
6 Function DynamicPlacement(T [],D[], i):
7 high = i, low = i+1
8 if curr_state<Dlow, Dhigh> == low_to_high then
9 if Bhigh improved by Xhigh from last epoch then

10 move a thread from T [low] to T [high]
11 else if Bhigh dropped by Xhigh from last epoch then
12 move a thread from T [high] to T [low]
13 curr_state<Dlow, Dhigh> = high_to_low

14 else
15 curr_state<Dlow, Dhigh> = STABLE

16 else if curr_state<Dlow, Dhigh> == high_to_low then
17 if Bhigh improved by Xhigh from last epoch then
18 move a thread from T [high] to T [low]
19 else if Bhigh dropped by Xhigh from last epoch then
20 move a thread from T [low] to T [high]
21 curr_state<Dlow, Dhigh> = low_to_high

22 else
23 curr_state = STABLE

24 else if curr_state<Dlow, Dhigh> == STABLE then
25 if Bhigh improved by Xhigh from last epoch then
26 return
27 else if Bhigh dropped by Xhigh from last epoch then
28 curr_state<Dlow, Dhigh> = low_to_high
29 else if Bglobal dropped by Xglobal from last epoch then
30 reset to default/initial mapping
31 End Function

Poly-placement then continuously profiles I/O activities in
configurable epochs (200ms by default), tracking global and
per-device bandwidth and capacity utilization, application’s
read and write I/O throughput, and thread-level metrics like
I/O sizes. Poly-placement also uses Poly-index to keep track
of access frequencies of blocks.

After the initial epoch, Poly-placement begins in a low_-
to_high remapping state, migrating threads to saturate the
faster device (Dhigh) with higher bandwidth (line 10). If the
faster device’s throughput (Bhigh) increases beyond a thresh-
old Xhigh, more threads are mapped to continue saturation
(lines 10, 20). However, if moving threads to Dhigh decreases
throughput significantly, thread remapping moves to a high_-
to_low state, indicating threads be remapped to slower stor-
age to try and alleviate potential contention (lines 12, 18).
When remapping yields minimal improvement, the system
enters a STABLE state (lines 15, 23) where no remapping oc-

Algorithm 2: Bandwidth-Aware Data Migration
Input: D[] denotes device list, N is number of devices
Input: More[] and Less[] represent per-device hot and cold list
Input: Blk represents the data block being accessed
Input: devidx represents the device id of the data block Blk resides
Parameter: Blk.state denotes the access frequency of the

Poly-index node (2-bit states)
MORE_FREQUENT, LESS_FREQUENT (initial value)

1 Function BW_Move(D[], devidx, N):
2 if Blk.state == LESS_FREQUENT then
3 Move Blk from the Less[devidx] to More[devidx]
4 if Blk.state == MORE_FREQUENT then
5 for i = 0; i < devidx; i = i+1 do
6 if BWwrite[i] AND BWread [i] are not saturated AND

D[i].freeSpace > low_water_mark then
7 Migrate from Ddevidx to Di
8 Move Blk from the More[devidx] to Less[i]
9 return

10 end
11 if D[devidx].freeSpace < low_water_mark then
12 Launch a BG thread executing BG_Move(D[], devidx, N)
13 End Function
14 Function CAP_Move(D[], devidx, N):
15 while D[devidx].freeSpace < high_water_mark do
16 for i = devidx+1; i < N; i = i+1 do
17 if BWwritei AND BWreadi are not saturated then
18 Migrate from Ddevidx to Di
19 Move Blk from the Less[devidx] to Less[i]
20 return
21 end
22 end
23 End Function

curs unless application bandwidth significantly decreases or
falls below the cumulative HSD bandwidth (lines 29-30).

4.5.2 Bandwidth and Capacity-aware Migration

Application access patterns continuously evolve and stor-
age hardware performance and capacity vary, making data
migration inevitable. To balance migration costs and read
performance, PolyStore employs two forms of migration: a
bandwidth-aware and a capacity-aware migration.
Mechanism: The data migration includes the following
steps. (1) Append data to the target device. (2) Update the
Poly-index to point to the new data location. (3) Truncate
the source file and mark the data block migrated as garbage.
Migrating data across HSDs potentially suffers from data in-
consistency during power loss. To protect PolyStore from in-
consistency issues, PolyStore wraps the data migration into a
transaction (described shortly in §4.7). Data migration leaves
garbage data across HSDs. PolyStore performs background
garbage collection by either punching holes using fallocate
(if the file system supports) or by compacting a fragmented
file and updating the Poly-index.
Bandwidth-aware Migration (BW_Move): Thread mapping
and remapping in Poly-placement for cumulative bandwidth
utilization may result in scenarios where threads frequently
access hot data from physical files stored on slower storage. In
such cases, if the data is not stored in the DRAM cache of the
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slower device, the bandwidth of the slower device could be-
come saturated and contended, incurring the under-utilization
of read bandwidth of faster storage (the case of SPFS ana-
lyzed in §3). This necessitates moving hot data from slower
to faster storage. However, migration should only occur if the
device bandwidth is not already saturated.

PolyStore utilizes its Poly-index to track hot ranges and
blocks, and Poly-cache (to be discussed shortly in §4.6) to
determine if blocks are already cached before initiating mi-
gration. As shown in Algorithm 2, each block range must
meet a minimum access count threshold before moving
(50% by default empirically but configurable). Frequently
accessed(MORE_FREQUENT) blocks are first moved to the
fastest storage, followed by other storage devices (lines 4-
10). As an added optimization, with a unified DRAM cache
across all fast and slow devices (§4.6), data movement can be
avoided for frequently accessed data already in the cache.
Capacity-aware Migration (CAP_Move): When the capac-
ity of faster storage exceeds a watermark (a configurable 90%
of a storage capacity similar to Linux [29]), PolyStore trig-
gers a background migration, progressively evicting blocks
from faster to slower storage (lines 14-20). As showcased
in §5, BW_Move and CAP_Move are effective for applications
that are bandwidth and capacity-intensive applications (e.g.,
GraphWalker [60]) and scales when using multiple storage
devices (e.g., PM, NVMe, and SATA SSD). To further reduce
migrations, an effective optimization is to place cold blocks
below a certain access threshold to the slowest storage.

4.6 Heterogeneity-aware DRAM Caching
Existing solutions of adapting DRAM caching to the

storage hierarchy in HSDs mainly focus on mitigating the
read/write performance asymmetry for PM [43, 71, 74]. How-
ever, with the horizontal layout for HSDs in PolyStore, these
approaches lack the ability of providing device-specific cache
admission and eviction policies in a holistic way.

To address these limitations, we propose Poly-cache, a
heterogeneity-aware DRAM caching component for HSDs.
Poly-cache improves scalability through parallel cache admis-
sion and eviction, leveraging cumulative storage bandwidth,
and hardware-specific cache admission and eviction policies.
We outline the Poly-cache mechanisms, followed by its flexi-
bility to support hardware-specific caching policies.

4.6.1 Userspace Caching with Concurrent Poly-index

Poly-cache adopts a user-level design for performance and
flexibility [28]. It bypasses the OS page cache, eliminating
redundant caching and reducing kernel trap overhead for I/O
operations when cache hits. It implements a unified DRAM
cache for logical files placed across one or more devices with
fine-grained concurrency control. Furthermore, the user-level
cache makes it easier to employ device-specific cache admis-
sion and eviction policies, allowing dynamic optimization
based on storage characteristics and workload patterns.

To ensure Poly-cache is scalable and highly concurrent,
we utilize Poly-index, where each tree node contains per-
range metadata and links to a DRAM buffer of same size
to the configurable range size, which is configurable but set
to 2MB by default, using a maximum of 512 DRAM pages
of 4KB. In memory-rich systems, to reduce allocation costs,
Poly-cache uses huge pages (e.g., 2MB page) for each range.
For file writes, using Poly-index, the DRAM cache buffers
corresponding to one or more ranges are updated, followed
by updating the node’s metadata with dirty block information.
For reads and overwrite operations spanning multiple ranges,
on a cache miss, missing blocks are first loaded into Poly-
cache, and then updated as necessary for overwrites.

4.6.2 Cache Evictions Exploiting Combined Bandwidth
Efficient cache eviction is critical given the limited memory

available for caching. PolyStore uses cgroups to limit the
maximum cache budget per application, preventing impact on
other applications. Poly-cache employs a timestamp-based,
two-level least-recently-used (LRU) eviction policy. Each
Poly-index node is marked with a timestamp when its blocks
are added to the cache. When flushing the cache during file
commits (fsync), these timestamps dictate the order in which
data ranges are committed to the disk. The two-level LRU
consists of a file-level LRU that evicts inactive files, and a
per-file range LRU that evicts LRU blocks within each file.

Cache evictions are performed by background threads main-
tained in a thread pool. Initially, Poly-cache allocates one
eviction thread for each storage type. For files with blocks
stored on multiple storage devices, multiple threads concur-
rently write back (for dirty blocks) and evict blocks to their
respective underlying files. To further accelerate cache evic-
tion and flushing, and utilize the cumulative bandwidth of
multiple storage devices, our bandwidth monitoring mecha-
nism profiles the bandwidth use and increases the number of
eviction threads based on available CPUs and bandwidth.

Finally, the horizontal layout of HSDs in PolyStore with
Poly-cache opens the opportunity of evicting (i.e., migrating)
blocks to different storage devices regardless of their physical
file location, further enabling dynamic optimization of data
placement as described in §4.5.

4.6.3 Hardware-specific Poly-cache Policies
The user-level design of Poly-cache offers flexibility in

implementing new caching policies. We present two simple-
but-effective policies that address hardware performance vari-
ations across different storage types:
Bypassing Cache for PM Reads: PM reads provide sub-
stantially higher bandwidth and lower latency compared to
writes. Introducing a DRAM cache layer for reads, unlike for
writes, increases data copy overheads without yielding perfor-
mance gains [18, 32, 66] (§3). To address this performance
disparity, we implement a policy where blocks/ranges are ex-
clusively read from PM, bypassing Poly-cache, and directly
memory-mapped until a write modifies the range. This ap-
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proach reduces PM to DRAM data copy overheads for reads
while accelerating slower PM writes with DRAM caching.
Dynamic Adjustment of Cache Ratio for SSDs: Consid-
erable bandwidth and latency variations exist among similar
storage media with the same access granularity but different
interfaces and vendors (e.g., NVMe SSD vs. SATA SSD). To
narrow this performance gap when using HSDs with horizon-
tal scaling, we implement a flexible admission control policy
that dynamically adjusts cache ratios between devices, assign-
ing a higher cache ratio to slower storage based on hardware
and software metrics (e.g., device bandwidth and latency) and
the ratio of data access between faster and slower storage.

4.7 Coordinated Persistence
Spreading data blocks of a logical files to HSDs in Poly-

Store introduces challenges of maintaining atomicity, crash-
consistency and durability across HSDs with their file systems.
Varying atomicity and durability guarantees across file sys-
tems [31] complicate satisfying these properties.

To address the challenges, PolyStore develops Poly-persist
with a split design: it ensures the atomicity and durability of
its runtime states, such as Poly-index nodes and Poly-inode
by leveraging the durability guarantee provided by the under-
lying OS file systems in PolyStore.
Atomicity: To ensure atomicity for complex file system op-
erations like rename, link, and truncate, PolyStore augments
the underlying physical file systems’ atomicity capabilities
with its own journaling mechanism. This journal comprises
of a global log of uncommitted files, per-file metadata, and
an operational log detailing operations and their commit sta-
tus. A commit operation involves a transaction that first seri-
ally commits to the storage-specific file system, then updates
PolyStore metadata in Poly-inode and Poly-index nodes. For
example, during an atomic file rename, PolyStore initiates
a transaction and executes the operation on the underlying
file system, updating the operational log. In case of a crash
or transaction abort, PolyStore uses the operational log for
recovery, attempting to retry the transaction. If recovery fails
(e.g., file system corruption), PolyStore marks the affected
files as inaccessible. These files can then be repaired using
tools like fsck [2], similar to OS file system.
Crash-consistency and Recovery: PolyStore journals its
runtime metadata (Poly-inode and Poly-index) to a dedicated
partition on faster storage, similar to state-of-the-art multi-
device storage systems [38, 71]. When using Persistent Mem-
ory (PM) as fast storage, we optimize the Poly-inode log en-
tries to fit in one cache line, committing them through atomic
PM writes. Poly-index’s range nodes are optimized to fit in
two cache lines, committed in a transaction using clflush
and memory barriers [31, 66]. Without PM, PolyStore stores
metadata in memory-mapped files on block storage and uses
msync to persist log entries. During recovery, PolyStore first
waits for the underlying file systems to complete their recov-
ery during mount, and then uses the global log to identify all

uncommitted files. Finally, it examines the metadata journal
and operational log to checkpoint committed updates to the
underlying file systems, excluding uncommitted ones.
Common Minimal Multi-Storage Durability: File sys-
tems and storage devices have different levels of durability.
For example, PM file systems like NOVA offer robust meta-
data and data durability, while block-based ext4 disables data
journaling by default to reduce overhead. Due to the precise
placement of blocks and files in PolyStore, durability levels
may vary within the same file or across files. To address this
variability, PolyStore establishes a uniform baseline durabil-
ity level across file systems, even if it is less stringent than
the strongest level offered by any individual file system. For
example, in configurations using multiple file systems such
as NOVA for PM and ext4 for NVMe, PolyStore maintains
metadata-only durability.

4.8 Sharing and Security
PolyStore’s split design ensures security and multi-process

file sharing guarantees similar to state-of-the-art user-level file
systems [31, 38, 50, 72]. When multiple applications share
the devices, PolyOS utilizes Linux’s I/O throttling mecha-
nism in Linux [51] to ensure the fairness of I/O bandwidth.
The access control guaranteed by the OS kernel ensures Poly-
Store updates data and metadata (e.g., Poly-index) in a secure
manner. However, PolyStore must address a potential vulner-
ability with the user-level Poly-cache design. If a malicious
or buggy process with read-only permission for the physical
file attempts to update Poly-inode by adding a cache buffer in
user space, it could corrupt Poly-index.

To mitigate potential corruption and security risks inher-
ent in most user-level designs, especially when sharing files,
PolyStore leverages its split design to delegate Poly-index
updates from user space to the PolyStore OS component. For
instance, when a shared file is opened with read permissions
by multiple processes, the PolyStore OS component imple-
mented in the VFS layer is notified and revokes permission
to the memory-mapped Poly-index file for all processes by
raising an interrupt like state-of-the-art approach [72]. Con-
sequently, all subsequent accesses and updates to Poly-index
are exclusively handled by the OS component of PolyStore.

5 Evaluation
We evaluate PolyStore by addressing the following.
• How effective is Poly-placement in utilizing cumulative

storage bandwidth of HSDs and its consequent impact
in reducing I/O latency?

• How does Poly-cache compare to existing DRAM
caches for HSDs and traditional OS page caches?

• Are PolyStore techniques beneficial in improving perfor-
mance for macrobenchmarks and real applications?

• Can PolyStore quickly recover from failures?
Methodology: We evaluate PolyStore using three configu-
rations described in Table 2. Config I uses PM and NVMe
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Storage Config I Config II Config III
Faster 256GB Optane PM ITB NVMe SSD 256GB Optane PM
Slower 1TB NVMe SSD 2TB SATA SSD 1TB NVMe SSD
Slowest - - 2TB SATA SSD

Table 2: Experimental Configurations.

Approach Description
PM-only (NOVA [66]) PM-only that uses mature and scalable NOVA [66]
NVMe-only (ext4) uses NVMe SSD only with deployed ext4
SATA-only (ext4) uses SATA SSD only with ext4
Orthus (Caching) [64] fast storage as cache and slow as backend device
Strata (Tiering) [38] PM as fast tier and NVMe as backend device
SPFS (Tiering) [62] PM as fast tier and NVMe as backend device
P2CACHE [43] uses DRAM to mitigate performance degrade in PM
PolyStore-static PolyStore using naive static data placement
PolyStore-dynamic PolyStore w/ dynamic data placement
PolyStore PolyStore w/ dynamic placement and Poly-cache

Table 3: PolyStore and alternatives evaluated.

SSD, while Config II uses NVMe SSD and SATA SSD. We
use the state-of-the-art NOVA [66] as the file system for PM
and ext4 for both SATA and NVMe SSDs. The maximum
write and read bandwidths are 4.6GB/s and 13.2GB/s for
PM [67], 1.2GB/s and 1.2GB/s for NVMe [26], and 560MB/s
and 530MB/s for SATA SSD [55], respectively.

We compare PolyStore against single storage configura-
tions (PM-only, NVMe-only, and SATA-only), state-of-the-
art caching (Orthus [64]), tiering (Strata [38], SPFS [62]),
and DRAM+PM designs (P2CACHE [43]) as listed in Ta-
ble 3. For PolyStore, we use the mature and well-tested
NOVA [66] for PM and ext4 for the rest. Strata, SPFS, and
P2CACHE are explicitly designed for using PM; hence, we
excluded them from Config II. None of those approaches
support more than two types of devices; therefore, we only
use PolyStore to showcase horizontal scaling in Config III
with three devices. We evaluate PolyStore on data-intensive
microbenchmarks, metadata-heavy macrobenchmarks with
smaller files (Filebench [59]), and real-world applications
(RocksDB [11], Redis [10], and GraphWalker [60]).

5.1 Cumulative Storage Bandwidth
We evaluate PolyStore’s efficacy in maximizing cumula-

tive bandwidth of HSDs via a microbenchmark that bypasses
the OS page cache with O_DIRECT flag. We contrast two
methods: PolyStore-static, initially distributing threads evenly
and statically across faster and slower storage (§4.4.2), and
PolyStore-dynamic, featuring dynamic data placement (§4.5).
We evaluate various access patterns and in-depth analyses,
employing 4KB I/O sizes for a total workload size of 64GB
on both Config I (Figure 3) and Config II (Figure 6).
Write througput and latency. Figure 3a shows the through-
put for sequential write using append operation. First, single
storage designs like PM-only and NVMe-only show poor
throughput. PM-only’s bandwidth saturates at 8 threads after
which it degrades due to contention (discussed in §3). NVMe-
only shows only marginal gains with higher threads from
SSD’s internal parallelism. State-of-the-art Orthus, a hybrid

Sequential Write Sequential Read
Orthus 150.4 54.3
Strata 144.1 73.2
SPFS 123.2 121.4

PolyStore-static 85.2 84.1
PolyStore-dynamic 23.5 22.9

Table 4: Microbenchmark with direct I/O on PM/NVMe
(Config I) average latency (µs) of 32 threads.

caching approach, and tiering solutions Strata and SPFS all
fail to utilize multi-storage bandwidth for writes.

PolyStore-static employs fine-grained static placement of
I/O requests, maximizing cumulative HSD bandwidth. It out-
performs PM-only by 2.16X, NVMe-only by 3.25X, and Or-
thus by 4.23X. PolyStore-dynamic further optimizes band-
width use through I/O remapping, saturating 92.3% of com-
bined bandwidth with 32 threads. It achieves up to 1.48X
gains over PolyStore-static and 9.38X over other approaches.

For random writes in Config I (Figure 3c), PolyStore-
dynamic gains are marginal over PolyStore-static, for which
the thread mapping is already configured to maximize band-
width, which is also reflected in Config II (Figure 6a). As
shown in Table 4, PolyStore also reduces the write latency
by up to 6.38X through the effective use of HSDs. Existing
approaches, which place PM at the top of the hierarchy, suffer
from high write latency spikes at higher thread counts due to
contention, aligning with observations in prior studies [67].
Dynamic data placement analysis. To gain additional in-
sights into the benefits of dynamic data placement (PolyStore-
dynamic) compared with baseline (PolyStore-static), in Fig-
ure 4a, we show per-epoch (200ms) I/O bandwidth (y-axis)
analysis for sequential write with 32 threads in Figure 3a. The
x-axis shows the increasing epoch tics. PolyStore-dynamic
converges around 8–10 threads that saturate PM bandwidth,
while the rest use NVMe. Unlike PolyStore-static, as some
PM threads complete (at epochs 80 and 124, marked with
blue dotted lines), PolyStore-dynamic is able to remap some
or all running threads from NVMe to PM to maintain PM
bandwidth saturation, leading to faster completion.
Read performance. Figure 3b shows sequential read results.
PM-only shows stable throughput after 16 threads due to the
saturation of PM’s bandwidth. Orthus is 1.26X better than
Strata before 8 threads, however it is not able to scale beyond
because Orthus needs to admit data from NVMe to PM in
random read workload, incurring concurrent PM writes as
analyzed in §3. The breakdown shown in Figure 4b also indi-
cates such data movement in Orthus. In contrast, PolyStore-
dynamic outperforms PM-only at 32 threads by 1.11X, ben-
efiting from the cumulative read bandwidth of both PM and
NVMe. In addition, the performance breakdown shown in
Figure 4b indicates the extra cost from using multiple file sys-
tems in PolyStore is balanced out by its benefits. In Table 4,
PolyStore shows slightly higher read latency over PM-only
because some reads require NVMe access. However, it still
outperforms other approaches.
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Figure 3: Microbenchmark with direct I/O (without DRAM cache) on PM/NVMe (Config I). Red dotted lines show maximum
combined PM + NVMe write and read bandwidth. Threads access their individual files.
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Figure 5: Parameters and File Systems Sensitivity Study.
(a) Epoch interval and Poly-index node size study in Config II.
(b) File systems sensitivity study in Config I.

Performance on systems without PM. To understand the
reusability and effectiveness of PolyStore beyond a PM-based
system, we evaluate PolyStore on Config II. The faster NVMe
SSD is used for persisting PolyStore metadata on a memory-
mapped file. As shown in Figure 6a, the aggregate use of
NVMe and SATA SSDs in PolyStore provides 1.87X gains
over NVMe-only. For reads, shown in Figure 6b, PolyStore
outperforms Orthus by up to 2.23X.
Shared file access. We now study how PolyStore performs
when threads share a file. 32 threads (16 readers and 16 writ-
ers) perform random 4KB I/O operations on a shared 64GB
file. Figure 6c shows that Poly-index mitigates per-inode
rw-lock overhead by distributing logical files across multi-
ple physical files. This boosts performance by up to 2.95X
for writers and 3.04X for readers compared to NVMe-only.
Scaling beyond 2 Devices. We use three devices (Config
III) to showcase the ability of PolyStore to scale beyond two
devices. As shown in Figure 6d, PolyStore utilizes up to
91.7% of the combined bandwidth of three devices.

5.2 Parameter Sensitivity
We study the parameter sensitivity in Poly-placement

shown in Figure 5a to justify the default selection in PolyStore
described in design sections. For the Poly-index node size,
the smaller it is, the better bandwidth utilization of HSDs,
but with the higher the Poly-index memory footprint. For the
epoch interval, the trade-off lies in the bandwidth utilization
efficiency and the profiling overhead in Poly-placement.

We also study the impact of file systems selected for Poly-
Store with different combinations for PM and NVMe in Con-
fig I. We use the following two configurations. (1) NOVA [66]
for PM, F2FS [41] for NVMe. (2) ext4-DAX for PM, ext4
for NVMe. Figure 5b shows that using storage-optimized file
systems gives better performance in all workloads. NOVA’s
per-CPU data structures and scalable log-structured design
enables higher concurrency [66], thereby outperforms ext4-
DAX. On the other hand, F2FS’s zone-aware concurrent log-
ging and flash-friendly file system layout makes it a superior
choice over ext4 for flash-based storage [41]. As a result,
PolyStore-dynamic using NOVA/F2FS provides up to 1.63X
compared with using ext4-DAX/ext4.

5.3 Scalable DRAM Cache atop HSDs
We evaluate the benefits of scalable user-level DRAM Poly-

cache and compare against PM-only without any DRAM
caching [61], and NVMe-only with OS page cache. Orthus
enables OS page cache for slower storage, and Strata with only
metadata cache in DRAM [38]. Lastly, P2CACHE adopts a
PM+DRAM design to serve legacy storage, using PM as a
cache for write durability with DRAM cache for reads.

In Figure 7a and Figure 7b, we show the throughput for ran-
dom write and read for PM/NVMe, with working set size fit-
ting in the DRAM cache. At higher thread count, P2CACHE’s
write performance faces PM’s scalability bottlenecks. In con-
trast, Poly-cache, with flexible cache admission that only
buffers write but not read requests, shows up to 6.31X gains
against baseline systems. In Figure 7c and Figure 7d, we
assess PolyStore’s performance across different DRAM avail-
ability scenarios by varying the working set to memory size
ratio on the x-axis. For example, a 16:1 ratio indicates a work-
load size 16 times larger than the available cache memory.
In this configuration (16:1), when the cache is full, unlike
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Figure 6: Microbenchmark with direct-I/O on NVMe/SATA (Config II) and three devices (Config III).
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Figure 7: DRAM Caching Impact and Sensitivity on PM/NVMe (Config I). (a) and (b) show random write and read performance
with Poly-cache. (c) and (d) show the sensitivity to DRAM cache size for 32 threads. (* denotes systems using the DRAM cache).
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Figure 8: Metadata-heavy Filebench Performance. X-axis
shows the thread count and the y-axis shows the throughput.

P2CACHE which uses PM as a write cache that leads to
contention to PM, PolyStore’s concurrent evictions to HSDs
alleviates memory pressure, reducing stalls when waiting for
available DRAM space. Consequently, for random write work-
loads, PolyStore improves 3.18X over PM-only and 2.21X
over NVMe-only with OS page cache.

5.4 Impact on Metadata-heavy Workloads
To evaluate PolyStore with metadata-heavy workloads

and small files, we use the widely-used Filebench [59] with
the Varmail and Fileserver workloads. These workloads are
metadata-heavy (e.g., file create, delete), constituting 69%
(Varmail) and 63% (Fileserver) of the overall I/O. File sizes
are small (512KB and 1MB), with data read-to-write ratios
of 1:1 and 1:2 in Varmail and Fileserver, respectively.

In Figure 8, even for metadata-heavy workloads, PolyStore
outperforms single-storage file systems, achieving 3.12X
gains over PM-only (without DRAM cache) for write-heavy
Fileserver. Note that PolyStore’s on-demand physical file
creation (§4.4.1) allows small files to be placed on a single
storage device without the file creation cost of two file sys-
tems. The marginal throughput gains over other approaches

stem from PolyStore’s user space DRAM cache (Poly-cache)
that reduces system calls for data-plane operations [50].

5.5 Real-world Applications
We select three applications: RocksDB [11], Redis [10],

and GraphWalker [60] to evaluate PolyStore. RocksDB is an
LSM-based key-value store with diverse read and write ac-
cess patterns, including compaction, file commits, and rename
operations. Redis is a storage-backed, in-memory key-value
database that performs I/O for logging state to append-only-
files (AOF) and asynchronously checkpoints in-memory key-
values to backup files. GraphWalker is a state-of-the-art graph
processing framework designed for fast and scalable random
walks, targeting large graphs on storage in a single-machine.
We first evaluate RocksDB as stand-alone for the horizontal
scaling impact on HSD. Next, we analyze PolyStore’ perfor-
mance when handling multiple applications: RocksDB and
Redis. Then, we investigate PolyStore’s resilience in failure
recovery. Finally, we study the performance of GraphWalker
and insights of data migration footprints.
Horizontal scaling benefits with YCSB. We utilize YCSB,
a set of real-world access patterns widely used in evalua-
tions [16]. YCSB encompasses six access patterns, A-F, with
varying read/write ratios following a Zipfian distribution. Our
setup includes a value size of 512B, 10M keys, and 32 threads.
RocksDB stores data in 128MB SST files.

As shown in Figure 9a, PolyStore harnesses cumulative
PM and NVMe bandwidth in write-heavy workloads A and F,
achieving significant gains over state-of-the-art approaches:
up to 1.52X and 2.02X, respectively. In workload F, with a
50% read-modify-write pattern, Poly-cache, as discussed in
§4.6, plays a crucial role. It evicts blocks in DRAM cache ini-
tially placed on slower NVMe to faster PM (space permitting),

USENIX Association 23rd USENIX Conference on File and Storage Technologies    549



A B C D E F
workloads

0

1

2

3

4

5

6

7

T
h

ro
u

g
h

p
u

t 
(x

1
0

0
 k

o
p

s
/s

)

PM-only (NOVA)

NVMe-only (ext4)*

Orthus (Caching)*

SPFS (Tiering)*

P2CACHE (PM+DRAM)*

PolyStore*

(a) RocksDB YCSB

50 100 150 200 250 300
Time (second)

0

2

4

6

D
B

 F
ile

s
 D

is
tr

ib
u
ti
o
n
 (

G
B

)

PM (total DB file sizes)

NVMe (total DB file sizes)

flushing compaction

(b) PolyStore’s Placement Trace

PM-only

NVMe-only*

Orth
us*

SPFS*

P2CACHE*

PolyStore*
0

2

4

6

T
h
ro

u
g
h
p
u
t 
(x

1
0
 k

o
p
s
/s

) RocksDB-YCSB_F (16 threads)

Redis-SET (16 instances)

(c) Multi-Application

PM-only

NVMe-only

Orth
us

PolyStore
0

2

4

6

T
h
ro

u
g
h
p
u

t 
(x

1
0
 k

o
p
s
/s

)

0

2

4

6

8

10

12

T
im

e
s
 t
o
 r

e
c
o
v
e
r 

(s
e
c
)Before Crash

After Recovery

Recover Time

(d) Failure Recovery

Figure 9: RocksDB and Redis on PM/NVMe (Config I). Figures show (a) throughput of YCSB workloads with 32 threads, 10M keys
with 512B; (b) HSD data placement trace for YCSB-A; (c) throughput for running RocksDB and Redis at the same time; (d) random-write
throughput after recovering from failure, with right y-axis showing the recovery time. (* denotes systems using DRAM for caching.)

Orth
us

SPFS
PolyStore

0

1

2

3

4

5

R
u

n
n

in
g

 T
im

e
 (

x
1

0
0

 s
e

c
o

n
d

)

Preprocessing

Graph Processing

Read Graph and Walk Info from Disk

Write Walk Info to Disk

(a) Run Result

Orth
us

SPFS
PolyStore

0

1

2

3

4

5

D
a

te
 M

ig
ra

te
d

 (
x
1

0
0

 G
B

) Migration (PM read)

Migration (PM write)

Migration (NVMe read)

Migration (NVMe write)

I/O by App

(b) Data Migration
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speeding up their reaccess. This allows PolyStore to achieve
its best throughput gains in YCSB F workload compared to
others. Figure 9b illustrates the DB files’ footprint as a time
series on PM and NVMe, showcasing PolyStore’s ability to
utilize the combined bandwidth of both storage types.
Multi-application performance. We study the performance
impact in running multiple applications simultaneously with
RocksDB and 16-instance multi-instance Redis. We do not re-
strict the bandwidth of these applications using the PolyStore
OS component. As shown in Figure 9c, PolyStore achieves
throughput gains over P2CACHE by 1.96X without degrad-
ing the performance for Redis. PolyStore OS layer, uses
Linux’s fair I/O sharing to dynamically adjust and throttle the
bandwidths utilization across different applications (§4.8) .
Performance under failure. To demonstrate the correctness
and efficient recovery under failures, we use the fillrandom
workload in RocksDB’s db_bench [12]. We randomly inject
failures and measure recovery time and total throughput (Fig-
ure 9d). Leveraging Poly-persist’s coordinated runtime and
OS durability, RocksDB successfully recovers and continues
execution. PolyStore prioritizes physical file recovery across
multiple storages before Poly-inodes and Poly-trees, slightly
extending recovery time. However, by utilizing cumulative
bandwidth, it outperforms other systems by up to 2.91X.
Graph Processing with Large Graph. To study the data
migration across HSDs in a long run with a large real-world
dataset [3] that cannot fit into DRAM, we use the state-of-the-
art graph processing framework GraphWalker with MS-PPR
(multi-source personalize page rank) algorithm. We limit the
DRAM size to 16GB and PM size to 32GB to fully trigger

read/write to the graph data going through storage devices.
Orthus follows the hierarchy with traditional caching, and

it can only reap the cumulative bandwidth of both PM and
NVMe when the hit rate of PM is high. So, when the hit rate
of PM is low, it needs to migrate data from NVMe to PM,
thereby incurring concurrent PM write. SPFS, in the shortage
of DRAM capacity for buffering data from NVMe, cannot
proactively migrate hot data from NVMe to PM because SPFS
can only migrate data from NVMe to PM when a write access
happens [62]. Hence, its read performance is limited to using
NVMe though with less data migration overheads compared
with Orthus. In contrast, PolyStore can dynamically monitor
whether the PM read and write bandwidths are saturated or
not; to be specific, when the PM write bandwidth is saturated,
PolyStore does not migrate data from NVMe to PM, and
performs a direct NVMe read. Therefore, PolyStore incurs
2.46X less PM writes than Orthus, and presenting 1.84X and
1.62X shorter time to load the graph and intermediate walk
info from disk compared to Orthus and SPFS respectively.

6 Conclusion

To conclude, we propose PolyStore, a horizontally arranged
heterogeneous storage design to exploit the cumulative band-
width of multiple storage devices without throwing away the
virtues of mature and well-tested hardware-optimized file
systems. PolyStore’s techniques of scalable data indexing,
dynamic thread and data placement, storage heterogeneity-
aware DRAM caching, and durability contribute to high-
performance gains, improving performance by up to 9.38X
against state-of-the-art caching and tiering systems.
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A Artifact Appendix

Abstract
PolyStore artifact is the practical implementation of the whole
system design presented in this paper aimed at capitalizing
the cumulative storage bandwidth of HSDs with their mature
and hardware-optimized OS-level file systems with different
hardware configurations. To use our artifact and reproduce
the main experiments, we provide instructions to build the
PolyStore runtime and PolyOS kernel module, and run experi-
ments Appendix A. Though the scripts to run the experiments
in the Testbed I (Table 2), readers can change them for other
configurations of HSDs on other hardware platforms.

Scope
The artifact of PolyStore aims to demonstrate the method-
ologies to utilize the cumulative storage bandwidth of HSDs
proposed, designed, and implemented in this paper. This ar-
tifact is intended not only to validate the main claims in this
paper but also to enable researchers and open-source devel-
opers to extend and explore new ideas, methodologies, and
practices of managing HSDs. The artifact of PolyStore is li-
censed under Apache License 2.0, and the copyright is held by
Rutgers University. There is no warranty and merchantability
for commercial purposes.

Contents
The PolyStore artifact comprises user-level PolyStore runtime,
the PolyOS kernel module, and the necessary bash and python
scripts to set up the environment, systems, and experiments.
Here is the complete list:

• Source code of PolyStore runtime and PolyOS kernel
module.

• Source code of necessary third-party libraries.
• Source code of benchmark and application workloads.
• Scripts for setting up environment and compilation.
• Scripts for running experiments.

Hosting
The artifact of PolyStore is hosted on Github with the
README file for documentation in the following public link:
https://github.com/RutgersCSSystems/PolyStore.

Requirements
The artifact of PolyStore is based on Linux kernel 5.1.0 with
the NOVA file system. The hardware platform is specified in
Table 2 and §5. The current scripts for setting up the environ-
ment and desired libraries are developed for Ubuntu 20.04.5
LTS and the specific storage devices on the testbed in eval-
uating PolyStore. Porting to other Linux distributions and
hardware platforms would require some script modifications.

Evaluation
We provide comprehensive step-by-step instructions on
GitHub to reproduce the major experiments in the paper. Us-
ing different hardware platforms and storage devices may
output similar or divergent results observed from the paper.
Hence, we welcome researchers and open-source developers
to contact us on our Github repository for any issues and sug-
gestions. As a brief overview of the evaluation, we illustrate
how to execute the "Hello world" example with PolyStore.

Before starting, we assume the current work directory is in
the root directory of the Github repository of PolyStore.

Build and install the desired Linux kernel
$ cd $BASE
$ source ./scripts/setvars.sh
$ ./scripts/compile_kernel.sh
$ sudo reboot

Mount the file systems
After reboot, go to the work directory is in the root directory

of the Github repository of PolyStore.
$ cd $BASE
$ ./scripts/mount_pmem_nova.sh
$ ./scripts/mount_nvme_ext4.sh
Please modify the above two scripts with the actual devices

in the target testbed.

Compile and build PolyStore runtime and PolyOS kernel
module
$ source ./scripts/setvars.sh
$ cd $BASE/polylib
$ make clean && make
$ cd $BASE/polylib/src/polyos
$ make clean && make
$ cd $BASE/tools
$ make clean && make

Compile and build the microbenchmark
$ cd $BASE/benchmarks/microbench
$ make clean && make

Run a quick test with the microbenchmark
$ cd $BASE/experiments/microbench
$ ./run_polystore_dynamic.sh

Expect output will be similar to "aggregated thruput
7072.90 MB/s, average latency 32.08 us".
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