
This paper is included in the Proceedings of the
23rd USENIX Conference on File and Storage Technologies.

February 25–27, 2025 • Santa Clara, CA, USA
ISBN 978-1-939133-45-8

Open access to the Proceedings
of the 23rd USENIX Conference on

File and Storage Technologies
is sponsored by

DNA data storage: A generative tool for
Motif-based DNA storage

Samira Brunmayr, Omer S. Sella, and Thomas Heinis, Imperial College London
https://www.usenix.org/conference/fast25/presentation/brunmayr

DNA data storage: A generative tool for Motif-based DNA storage

Samira Brunmayr
Imperial College London

Omer S. Sella
Imperial College London

Thomas Heinis
Imperial College London

Abstract
DNA possesses extremely high information density and dura-
bility. In order to become a commercially viable medium such
as magnetic tape and hard disk drives, the cost per bit has to
decrease considerably, while the write bandwidth needs to
increase. Both are governed by DNA synthesis, the process of
writing data to DNA, which is currently very expensive and
slow. Assembly of DNA strands from motifs, i.e. short DNA
sequences, is an economical and faster way of representing
data using DNA. Each motif carries a letter in an alphabet.
Trading the quaternary alphabet {A,C,T,G} for longer frag-
ments, namely motifs, allows an increase in write bandwidth
and reduces cost. The success of the underlying chemistry,
specifically with the assembly of motifs into polymers that
faithfully represent the source binary data, is sensitive to the
formation of secondary structures and the correct annealing
of the motifs in a unique way. In this work, we develop a
mathematical framework and a method to generate a set of
motifs that agree with a predefined set of constraints regard-
less of the order they are combined. The set of constraints can
also be easily adjusted to align with technological advances
and their evolving requirements. We show that our approach
generates motifs that always conform to the constraints in
a more efficient manner than previous works and randomly
generated motifs.

1 Introduction

Deoxyribonucleic acid (DNA) has the potential to store large
amounts of digital data; up to 1018 bytes per mm3. Further-
more, it has a half-life of 500 years [2], which is significantly
higher than Hard Disk Drives (HDDs) and magnetic tape. In

This work is funded by DNAMIC (grant 101115389) and NEO (grant
101115317).
The authors are with the Department of Computing, Imperial College Lon-
don, SW7 2AZ London, UK (email: samira.brunmayr18@imperial.ac.uk;
o.sella@imperial.ac.uk; t.heinis@imperial.ac.uk).

addition, DNA will always be relevant to humans, and so se-
quencing methods, or in this case, a read head, will always be
available. These properties make DNA an excellent candidate
for long-term archival storage of digital data.
Representing data at the nucleotide level, where each nu-
cleotide corresponds to a pair of bits, albeit appealing from an
information density point of view, relies on DNA synthesis.
Synthesis, which refers to a variety of chemical or enzymatic
processes, is at an acceptable price point for life science ap-
plications, but still too slow and costly for DNA data storage.
The cost of writing one TB of data using state-of-the-art DNA
synthesis [1, 20] is higher than 400 million USD, assuming a
coding density of 2 bits per base. Conventional synthesis of
DNA strands is thus not a viable option for commercialisation
of DNA as a data-carrying medium. A novel approach [26]
suggests the use of predetermined strings of nucleotides, also
known as motifs [10], to form an alphabet, which in turn
encodes data bits. Concatenation of symbols in the alphabet
then corresponds to the concatenation of motifs using bridged
oligonucleotide assembly, and results in a DNA strand that
can be sequenced using one of several standard methods. This
approach leads to a cheaper writing process since the motifs
can be produced in advance on a large scale using Polymerase
Chain Reaction (PCR) which is very cost-effective. Costly
DNA synthesis is thus only used once to start a pool of mo-
tifs and is no longer required in writing data to DNA. To
carry information, motifs contain a payload subsequence P,
corresponding to a letter in an alphabet. To allow bridging
assembly, this payload is sandwiched by one or two keys, S0
and S1, as shown in Figure 1 (top left). To combine motifs
together, additional single-stranded DNA sequences, called
bridges, that depend only on the keys, i.e., their reverse com-
plements S′1 and S′2 are used, as further depicted in Figure 1.
Reverse complementarity of S1 and S2 to S′1 and S′2 leads to
annealing, which is followed by enzymatic ligation. The final
step is the addition of missing bases to make double-stranded
DNA, through Polymerase Chain Reaction (PCR), also shown
in Figure 1.
If multiple distinct keys are used in the design, then multi-

USENIX Association 23rd USENIX Conference on File and Storage Technologies 573

S0

Motif

S1

Motif 1

S2'S1'

Bridge

PayloadX

Motif 2

Polymerase

Polymerase

Key Key

Figure 1: A payload sandwiched between two keys comprises
a complete motif (top left). A bridge (top right) comprised of
the concatenation of the reverse complements of S1 and S2.
Motif 1, which ends with key S1, and Motif 2, which starts
with key S2, anneal to the bridge (middle). Polymerase chain
reaction follows in completing missing nucleotides (bottom).

ple motifs can be joined in one reaction, thereby effectively
parallelizing, and thus accelerating the write process.
Encoding of data into motifs (rather than nucleotides) turns
the problem of writing data onto DNA into a constrained com-
binatorial problem of designing keys and payloads. Specifi-
cally, a good set of motifs maintains the following properties:

1. Payloads should be uniquely and distinctly recognizable
when the data-carrying DNA strand is sequenced

2. Keys should only anneal to designated reverse comple-
mented bridges

In addition, as with most approaches of storing data on DNA,
certain constraints on the resulting sequence should be met in
order to ensure successful storage and reading of data:

1. GC-content limitations, i.e., the ratio of G and C nu-
cleotide pairs should be bounded from above and be-
low to ensure the double strand can be separated into
single strands through denaturation such that it can be
sequenced

2. Reducing the chance of secondary substructure forma-
tion, i.e., avoiding self-complementarity which through
self-annealing can lead to hairpins and other secondary
structures which render sequencing impossible

3. Avoiding homopolymers, i.e., avoiding the repetition of
the same nucleotide for longer stretches

4. Elimination of reserved words and restriction sites which,
if not avoided, may lead to unpredictable behaviour

It might be tempting to generate keys and payloads randomly.
We show in Section 5 that this is unlikely to work. We there-
fore propose

1. A mathematical formulation of construction as a Markov
Decision Process (MDP) in Section 2, along with a
stochastic tool to generate motifs, i.e., keys and payloads,
that satisfy the aforementioned biological constraints, as
well as

2. A validation tool to check that designed motifs satisfy
the biological constraints regardless of which motifs are
joined and no matter the order in which they are joined.

As we show in Section 5, our generative tool only gen-
erates motifs that satisfy the constraints. We made the
code for the generative tool, as well as the generated
set of motifs used in this work in the following link:
https://zenodo.org/records/12575601 and the validation tool
can be found under https://zenodo.org/records/12575387.

2 Mathematical Formulation

We first assume that the set of keys, K , is given, and proceed
to construct a set of payloads P by induction starting from
the empty set. To simplify the construction, all keys are
assumed to have the same length LK and all payloads are
assumed to have the same length LP.

2.1 Formulation as a Markov Decision Process
A partial payload is constructed in steps, extending it by one
nucleotide at each step. At each step, a reward is assigned
to each nucleotide from the set {A,T,C,G} of possible ex-
tensions. The higher the reward, the more likely it is that a
payload containing the corresponding base in that position
would conform to all constraints. By normalizing the rewards,
we obtain a categorical distribution over the set {A,T,C,G}
of possible extensions. A stochastic algorithm then chooses
the next nucleotide in the sequence based on this distribution.
The higher the reward for a nucleotide, the higher the proba-
bility it is selected.
Once the number of nucleotides selected reaches the designed
length of the payload, LP, i.e., the payload reaches full length,
the payload is no longer partial and is committed by the algo-
rithm to the growing set of payloads P . Construction of a new
payload is then attempted the same way, accounting for the
new pool of payloads and starting from the empty payload,
until no more payloads that conform to the constraints can be
constructed.

2.2 An Integrated Reward Function
The reward, pi for choosing an action ai, i.e., extending the
current sequence by appending i ∈ {A,C,T,G} to it, is a

574 23rd USENIX Conference on File and Storage Technologies USENIX Association

https://zenodo.org/records/12575601
https://zenodo.org/records/12575387

weighted sum of individual rewards corresponding to the
various constraints that are to be avoided in this optimiza-
tion problem. We turn to define for each base i ∈ {A,C,T,G}
and each constraint, x, a non-positive number which we will
refer to as log score: ls(i,x). We could then apply positive
weights wx > 0 to each log score ls(i,x) and sum them across
constraints for each base:

ls(i) = ∑
x∈constraints

wx × ls(i,x) (1)

Since wx > 0 and ls(i,x)< 0 we have that the sum in Eq. 1 is
non-positive as well, and we can then define the reward for
choosing base i as:

pi =
els(i)

∑
j∈{A,T,C,G}

els(j)
(2)

And assure that 0 ≤ els(i) ≤ 1.
Since pi is inversly proportional to ls(i,x), we define ls(i,x)
as a function of x such that:

1. ls(i,x)≤ 0

2. ls(i,x) is monotonically increasing in "violation of con-
straint x".

Note that there is an abuse of notation and an implicit assump-
tion here, as we use x to note the type of constraint, but also
some numeric quantity relating to it. The following details
of the individual reward functions will make it clear that this
assumption holds.

2.3 Homopolymer Log Score
Let p0 be the partial payload currently being constructed, and
let P be the set of payloads already committed. We consider
the length of the longest homopolymer containing the last base
i, appended to p0, that can be found within any combination of
p0 with itself or any payload in P and denote it by homLen(i)
and depicted in Figure 2.

Figure 2: Illustration of a sequence being constructed where
the base Adenine (A) has been appended (in red). In this
example, homLen(A) = 5.

Since we are trying to avoid homopolymers as they cause
insertion, deletion and substitution errors in a sequence during
PCR [22], we can define the homopolymer log score:

ls(homLen, i) =−(hhom)
homLen(i)/maxHom +1 (3)

where hhom is a hyperparameter used to shape the reward for
homopolymers, and maxHom is the maximal allowed length
of consecutively repeated bases. The shape parameter hhom
allows us to control the sensitivity, or rate at which the score
is affected by homLen, as illustrated in Figure 3.

Figure 3: Homopolymer log score where the maximal allowed
length of consecutively repeated bases maxHom = 5 and for
shape hyperparameters hhom = 5, hhom = 15 and hhom = 30.
The closer the homopolymer length gets to the constraint
boundary, the smaller the log score gets, so the smaller the
probability is to select that base. The hyperparameter hhom
controls the slope of the function. The larger it is, the steeper
the gradient of the log score will be as the homopolymer
length gets closer to the boundary.

2.4 GC-Content Log Score
GC-content in a sequence is simply the percentage of bases
that are either Guanine (G) or Cytosine (C). While Chemical
synthesis may not be constrained by GC-content, any sub-
sequent Chemical processes (like PCR) could be adversely
affected by GC-content which is too high or low [9]. For this
reason, we require a maximum GC-content maxGC parame-
ter and a minimal GC-content parameter minGC. Ultimately,
the GC-content of any combination of motifs is required
to exist between minGC and maxGC. Consider the current
payload, p0, extended by i ∈ {A,C,T,G}, and the two quanti-
ties curMaxGC and curMinGC of current maximum GC and
minimum GC, respectively, that could be achieved using any
combination of p0 extended by i with the set of keys and the
set of payloads committed so far. Intuitively, the log score
should reflect at least the worst one of the two deviations:

(curMaxGc−maxGC),(minGC− curMinGC) (4)

We also need to consider the length of p0 and the possibility
of the current GC-content being adjusted by the nucleotides

USENIX Association 23rd USENIX Conference on File and Storage Technologies 575

added later on in the construction. As the length of p0 be-
comes close to its full potential, i.e.: LP, the log score for
GC-content becomes more critical, as there will be no more
steps of the construction to offset. That is why we calculate
the log score for GC-content as:

ls(GC, i) =−max{0, WGC × (curMaxGc−maxGC),

WGC × (minGC− curMinGc))}
(5)

where the weight WGC accounts for the length of S0:

WGC = (hgc)
|p0|/LP −1 (6)

2.5 Hairpin Log Score
Hairpins are formed when a DNA strand contains a subse-
quence S followed by its reverse complementary S′, with some
subsequence L between them as depicted in Figure 4. This
may lead subsequence S to align and anneal to its reverse
complementary S′ forming a stem, with the subsequence L
forming a loop. Hairpins, like any secondary substructures,
make the accessing and sequencing of DNA sequences more
difficult. The length of L, i.e., the number of nucleotides be-
tween S and S′, as well as the length of the subsequence S are
factors that influence the stability of the hairpin formed by
S, L and S′ as they increase the chances of the subsequences
annealing to their reverse complements [15, 24]. The more
stable the hairpins are, the more energy is required to unfold
them [16]. So in the context of DNA storage, the aim is to
avoid hairpins altogether or at least ensure they are unstable
enough to be easily unfolded. Reduced stability is achieved
by reducing the length of such subsequences S and S′. Given a
range [loopSizeMin, loopSizeMax], we force all hairpins with
a loop size in that range to have a stem less than maxHairpin.

Figure 4: A hairpin is characterized by a stem and a loop.

Let s0 be the sequence being currently constructed with
added base i at the end, and let S be the set of sequences
that have already been generated. Consider an index, j such
that j ∈ [|s0|−maxHairpin, |s0|]. Let |s0| be the length of s0,
and let h be the length of the longest hairpin stem for hair-
pins with loop sizes between loopSizeMin and loopSizeMax,
which stem starts at position l for l ∈ [|s0|−maxHairpin, |s0|].
|s0| ≤ maxHairpin is the longest window size of consecutive
positions starting from the last added base, such that all bases
have been used at least once in all motifs.

lshairpin(i) =
[

∑
hstart

−(hhairpin)
hstart/maxHairpin +1

]
(7)

where hstart is the length of the longest hairpin stems of
all hairpins with a loop size between loopSizeMin and
loopSizeMax, and with the stem starting at position start for
any hhairpin is a shape hyperparameter.

start ∈ [|s0|−maxHairpin, |s0|] (8)

However, one of our motifs design choices is that we want
to be able to combine any payload with any other payload.
This means that if we are trying to avoid forming a hairpin
with stems s1 and s2, where s2 is in the current motif we are
generating and s1 is in a different motif, we would have to
avoid forming a hairpin with a stem s1 for every single motif
in the motifs set (illustrated in Figure 5).

Figure 5: On the left are the previously generated motifs, and
on the right is the motif that is being currently generated. In
this example, a hairpin of size 2 cannot be avoided since the
next base (red question mark) cannot be A, T, C nor G.

To reduce the chances of the problem mentioned before from
happening, we wish to avoid a scenario in which all four
bases A, T, C, G are used at the same position across all
motifs within a window of maxHairpin bases.
We consequently introduced a log score on the similarity of
each motif:

lssimilarity, i =−(hsimilarity)
s/maxHairpin +1

where hsimilarity is the shape hyperparameter associated to the
similarity between motifs. s ≤ maxHairpin is the longest
window size of consecutive positions starting from the last
added base such that all bases have been used at least once in
all motifs.
Combining the two log scores mentioned above, the final
hairpin log score is:

lshairpin, i =

[
∑

hstart

−(hhairpin)
hstart/maxHairpin +1

]
+ lssimilarity, i

(9)

2.6 No Key in Payload Log Score
The correct assembly of motifs is based on the annealing
of keys to their reverse complement. The appearance of a
key in a payload may lead to unintended annealing, which
may lead to data corruption. Moreover, key-payload collisions

576 23rd USENIX Conference on File and Storage Technologies USENIX Association

reduce DNA storage capacity [25]. Therefore, avoiding the
appearance of keys in the payload is a good design choice.
We define the log score associated to a set of keys as:

lsnoKeyInPayload(i) =−(hkey)
seqLen/Lk +1 (10)

Where LK is the uniform length of the keys, and where, as
usual, hkey is a shape hyperparameter. The variable seqLen is
the length of the largest substring of the key that is present
in the payload beginning from the last added base i to the
sequence.

3 Methods

Given a set of constraints, we are able to produce a set of
conforming Motifs using a stochastic tool that accepts: a set
of constraints, a set of positive shape hyperparameters, and
a set of positive weight hyperparameters.

3.1 Generation of keys
Generation of keys is similar to the generation of payloads.
The states of the Markov Chains used in the generation of
keys consist of:

1. the set of constraints which we wish the motifs to con-
form to,

2. the list of already generated distinct keys, and

3. the key being currently generated,

Each state can transition to 4 different states each containing
the same elements as the previous state, except that the key
being currently generated has an additional base (A, T, C, G -
a different one for each state) appended to it, as described in
Figure 6.
This means that given a fixed set of constraints C, the maxi-
mum number of states SK , and maximum number of transi-
tions TK that the Markov Chain contains is:

SK = TK = 4keySize×keyNum (11)

where keySize is the key size and keyNum is the maximum
number of keys, both defined in C.

3.2 Generation of payloads
Similarly, the states of the Markov Chains used in the pay-
loads generation consist of:

1. the set of constraints which we wish the motifs to con-
form to,

2. the list of previously generated distinct keys,

3. the set of already generated payloads, and

4. the payload being currently generated.

Each state may transition to one of four states containing the
same elements as the previous state, except that the payload
being currently generated has an additional base (A, T, C, G -
a different one for each state) appended to it.

Figure 6: Example of a Markov Chain used to generate pay-
loads with constraints C and list of keys K. The transition
probabilities to choose a base A, T, C or G as the next base
are pA, pT , pC, pG respectively.

This means that given a fixed set of constraints C, the maxi-
mum number of states SP, and maximum number of transi-
tions TP that the Markov Chain contains is:

SP = TP = 4palyoadSize×payloadNum (12)

where payloadSize is the payload size and payloadNum is
the maximum number of payloads, both defined in C.

4 Related Work

After more than a decade of research into DNA as a digi-
tal data storage medium [8, 12], it is mainly the sequencing
side that saw considerable breakthroughs. In contrast, DNA
synthesis is still costly and slow, making an end-to-end, DNA-
based, storage system previously envisioned, [5,6] unrealistic.
This could be why some research groups turned their atten-
tion to methods that either rely on a synthesis process not
suited for molecular biology [3, 28], or avoid DNA synthe-
sis altogether [7, 27]. Our use of MDPs to generate a set of
motifs generally falls into the category of Constraint Pro-
gramming [19], and has some similarity to text completion
methods [4,17,18]. The main difference, is the option to score
all possible options and choose from them. Another similar
task is that of constructing molecules based on physical con-
straints in three-dimensional space [23]. In our work, however,
we consider a relatively small set of constraints, and reward
has to be calculated for only four bases. If the calculation of
reward becomes too extensive, or if more than four bases are
considered, it may become more sensible to train a model to
generate Motifs. For a full survey on DNA data storage we
refer the reader to Heins et al. [14].

USENIX Association 23rd USENIX Conference on File and Storage Technologies 577

5 Validation and evaluation

5.1 Pass / fail validation tool
Independent of the method a set of keys and payloads is gen-
erated, we implemented a pass / fail validation tool. This tool
takes as input:

• Maximal allowed length of consecutive identical bases.
• Hairpin stem maximal length.
• Hairpin loop maximal size.
• Hairpin loop minimal size.
• GC content maximal and minimal bounds.
• A list of distinct keys with a fixed length
• A set of payloads with a fixed length

A motif M is said to violate a constraint from the above list if
either:

1. Motif M violates a constraint, or
2. A combination of motif M with other motifs (possibly

with itself) violates a constraint.

5.2 Evaluation Against a Single Constraint
To evaluate our work, we compared the Motif Generation Tool
with other existing encoding tools, namely DNA Fountain by
Erlich et al. [11], Euclid by Sella et al. [21], the shortmer
combinatorial encoding scheme by Preuss et al. [17], as well
as randomly generated DNA sequences. This comparison was
carried out by determining the time taken to generate a motif
set consisting of only 1 motif (i.e., a single payload and key),
conforming to each constraint separately. This procedure was
performed on a quad-core Intel processor machine and was
repeated for motifs with lengths between 3 and 100 bases.
The results are illustrated in Figure 7. The tools by Erlich et
al. and Sella et al. allow for sequence generation, conform-
ing to constraints related to homopolymers and GC-content.
However, none of the tools takes hairpins into account. It
can be observed that, even though it is faster to generate a
set of motifs that conform to the constraints by randomly
generating them, as the length of the motifs increases, the
Motif Generation Tool outperforms random generation. The
only exception to this trend is when evaluating against the
GC-content constraint, since the expected GC-content of ran-
domly generated sequences is 50%. For the tool by Preuss et
al., the minimum time taken across all constraints is 377ms,
while for the Euclid tool, it is above 8 minutes, which are
both far greater than the maximum time taken by the Motif
Generation Tool, which is 25ms. Similarly for the DNA Foun-
tain tool, the values have also been observed to be greater
than those of the Motif Generation Tool. Moreover, due to
design choices, the motif sizes were limited to a minimum
of 60 bases, and not all motif sizes were achievable in our
chosen test range.

Figure 7: Time taken to generate a set of motifs consisting of 1
motif of varying lengths conforming to 3 separate constraints:
a) GC-content between 25% to 65%, b) having no homopoly-
mers with more than 2 bases, and c) having no hairpins with
stem size greater than or equal to 2 bases and loop size of 1.
Any times greater than 250ms are not shown. When evaluated
against the homopolymer and hairpin constraints, the Motif
Generation Tool always outperforms the DNA fountain [11]
and the shortmer combinatorial encoding [17]. When com-
pared against the random generation, while the Motif Genera-
tion Tool initially performs worse, its performance is better
as the motif length increases. For the GC-content constraint,
the Motif Generation Tool also outperforms the other tools,
except for randomly generated sequences which are observed
to have linear performance, as the expected GC-content of
randomly generated sequences is 50%.

5.3 Evaluation Against a Set of Constraints

In this section we review the performance of the tool for
biological and technological constraints shared with us by

578 23rd USENIX Conference on File and Storage Technologies USENIX Association

Parameter Value Description
keySize 20 Size of the keys (in bp)
keyNum 8 Maximum number of keys desired to be generated
payloadSize 60 Size of the payloads (in bp)
payloadNum 15 Maximum number of payloads desired to be generated
maxHom 5 Maximum allowed length of consecutively repeated

bases
maxHairpin 1 maxHairpin is the maximum allowed hairpin

stem length for hairpins with loop size in range
[minLoopSize, maxLoopSize]

minLoopSize 6
maxLoopSize 7
minGC 25 Minimum allowed GC-content (in %)
maxGC 65 Maximum allowed GC-content (in %)

Table 1: Summary of parameters used to determine constraints.

a commercial DNA provider, Integrated DNA Technologies
(IDT) [1] and can be found in full in prior works [20].
A summary of these constraints can be found in Table 1. Be-
low, we will give a brief explanation as to why they were
chosen.
Homopolymers of length up to 20 base pairs can be synthe-
sised, but homopolymers of length 5 or smaller can be se-
quenced with better accuracy, leading us to set maxHom = 5.
Hairpins with loop sizes of 6 to 7 bases tend to be most
stable, leading us to set loopSizeMin= 6 and loopSizeMax=
7. No data was shared on exact stem sizes which increase
hairpin stability have been provided, so to avoid any hairpin,
we choose maxHairpin = 1.
GC-Content of 25% to 65% are commonly cited leading us
to set minGc = 25 and maxGc = 65.
Keys were selected to have a size of 20 base pairs. To provide
at least 60% of data content from the total DNA, we set the
payload uniform size to 60 since:

p
2×20+ p

≥ 0.6 =⇒ p ≥ 60 (13)

where p is the payload size.

This places the maximum size of a motif at 2×20+60 = 100
base pairs, well within a range that could be synthesised and
sequenced.
To tune hyperparameters, we used two rounds of grid search.
We then used those hyperparameters, to run the Motif Gen-
eration Tool for the constraints given in Table 1 for a total
of 5 minutes on a quad-core Intel processor machine, and
determined the average time taken to generate a set of mo-
tifs successfully. To compare the performance of the Motif
Generation Tool, we tried to generate motifs using the same
constraints with DNA Fountain by Erlich et al. [11], Euclid
by Sella et al. [21], shortmer combinatorial encoding scheme
by Preuss et al. [17], and by randomly generating sequences.
The results are depicted in Table 2. It can be seen that only
the Motif Generation Tool managed to generate a set of mo-
tifs conforming to the constraints within a time frame of 5
minutes.

6 Conclusions

Using DNA Motifs to represent data, as presented by Yan
et al. [26], opens a cheaper alternative to representing data

Motif
Generation

Tool

DNA
Fountain [11] Euclid [21] Preuss et

al. [17]
Randomly
generated

Time taken to generate a set of
motifs without any constraints

(seconds)
2.3×10−2 1.22×10−1 >5min 5.30×10−1 2.1×10−3

Time taken to generate a set of
motifs conforming to the

constraints in Table 1 (seconds)
2.54 >5min >5min >5min >5min

Table 2: Tools comparison on time taken to generate a set of motifs run on a quad-core Intel processor machine. >5min means
that no motif has been generated within a 5-minute time frame.

USENIX Association 23rd USENIX Conference on File and Storage Technologies 579

using DNA as a medium. In this work, we presented a genera-
tive tool for sets of DNA motifs that conform to a prescribed
set of constraints. Our approach relies on a Markov Decision
Process (MDP) [13] to produce sets of motifs, based on a para-
metric reward function. The reward function we presented
takes into account a set of constraints on homopolymers, hair-
pins and GC-content. When comparing the Motif Generation
Tool to existing tools, namely DNA Fountain by Erlich et
al. [11], Euclid by Sella et al. [21], the shortmer combina-
torial encoding scheme by Preuss et al. [17], and randomly
generated sequences, it can be observed that the Motif Gener-
ation Tool outperformed the other tools as motif length and
number of constraints increased. When testing the Motif Gen-
eration Tool on all constraints concurrently in Section 5.3, the
tool managed to produce a set of motifs conforming to current
technological and biological constraints, shared with us by a
commercial DNA synthesis provider and reported by Sella et
al. [20]. On the other hand, we were not able to generate such
sets of motifs on any of the other previously mentioned tools.
The motif generation tool we present here, is a first step in
the automation of reliable DNA sequence generation for data
storage, which can adapt to the technological advances which
come with evolving constraints.

References

[1] Integrated dna technologies.
https://eu.idtdna.com/pages. Accessed: 2025-01-
17.

[2] Morten E Allentoft, Matthew Collins, David Harker,
James Haile, Charlotte L Oskam, Marie L Hale, Paula F
Campos, Jose A Samaniego, M Thomas P Gilbert, Eske
Willerslev, et al. The half-life of dna in bone: measuring
decay kinetics in 158 dated fossils. Proceedings of the
Royal Society B: Biological Sciences, 279(1748):4724–
4733, 2012.

[3] Leon Anavy, Inbal Vaknin, Orna Atar, Roee Amit, and
Zohar Yakhini. Data storage in dna with fewer synthesis
cycles using composite dna letters. Nature biotechnol-
ogy, 37(10):1229–1236, 2019.

[4] Steffen Bickel, Peter Haider, and Tobias Scheffer. Learn-
ing to complete sentences. In Machine Learning: ECML
2005: 16th European Conference on Machine Learn-
ing, Porto, Portugal, October 3-7, 2005. Proceedings
16, pages 497–504. Springer, 2005.

[5] James Bornholt, Randolph Lopez, Douglas M Carmean,
Luis Ceze, Georg Seelig, and Karin Strauss. A dna-
based archival storage system. In Proceedings of the
Twenty-First International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 637–649, 2016.

[6] James Bornholt, Randolph Lopez, Douglas M Carmean,
Luis Ceze, Georg Seelig, and Karin Strauss. Toward a
dna-based archival storage system. IEEE Micro, (3):98–
104, 2017.

[7] Kaikai Chen, Jinbo Zhu, Filip Boskovic, and Ulrich F
Keyser. Nanopore-based dna hard drives for rewritable
and secure data storage. Nano Letters, 20(5):3754–3760,
2020.

[8] George M Church, Yuan Gao, and Sriram Kosuri. Next-
generation digital information storage in dna. Science,
337(6102):1628–1628, 2012.

[9] Clara Delahaye and Jacques Nicolas. Sequencing
dna with nanopores: Troubles and biases. PloS one,
16(10):e0257521, 2021.

[10] Patrik D’haeseleer. What are dna sequence motifs?
Nature biotechnology, 24(4):423–425, 2006.

[11] Yaniv Erlich and Dina Zielinski. Dna fountain enables
a robust and efficient storage architecture. science,
355(6328):950–954, 2017.

[12] Nick Goldman, Paul Bertone, Siyuan Chen, Christophe
Dessimoz, Emily M LeProust, Botond Sipos, and
Ewan Birney. Towards practical, high-capacity, low-
maintenance information storage in synthesized dna.
Nature, 494(7435):77–80, 2013.

[13] Brian Hayes et al. First links in the markov chain. Amer-
ican Scientist, 101(2):252, 2013.

[14] Thomas Heinis, Roman Sokolovskii, and Jamie J Al-
nasir. Survey of information encoding techniques for
dna. ACM Computing Surveys, 56(4):1–30, 2023.

[15] Dafa Li, Hongtao Huang, Xinxin Li, and Xiangrong Li.
Hairpin formation in dna computation presents limits
for large np-complete problems. Biosystems, 72(3):203–
207, 2003.

[16] Thijs Nieuwkoop, Max Finger-Bou, John van der Oost,
and Nico J Claassens. The ongoing quest to crack the
genetic code for protein production. Molecular cell,
80(2):193–209, 2020.

[17] Inbal Preuss, Michael Rosenberg, Zohar Yakhini, and
Leon Anavy. Efficient dna-based data storage using
shortmer combinatorial encoding. Scientific reports,
14(1):7731, 2024.

[18] Nathaniel Roquet, Swapnil P Bhatia, Sarah A Flickinger,
Sean Mihm, Michael W Norsworthy, Devin Leake, and
Hyunjun Park. Dna-based data storage via combinato-
rial assembly. bioRxiv, pages 2021–04, 2021.

580 23rd USENIX Conference on File and Storage Technologies USENIX Association

[19] Francesca Rossi, Peter Van Beek, and Toby Walsh.
Handbook of constraint programming. Elsevier, 2006.

[20] Omer Sella. Coding for emerging archival storage me-
dia. PhD thesis, University of Cambridge, 2024.

[21] Omer S Sella, Amir Apelbaum, Thomas Heinis, Jasmine
Quah, and Andrew W Moore. Dna archival storage, a
bottom up approach. In Proceedings of the 13th ACM
Workshop on Hot Topics in Storage and File Systems,
pages 58–63, 2021.

[22] Deepali Shinde, Yinglei Lai, Fengzhu Sun, and Norman
Arnheim. Taq dna polymerase slippage mutation rates
measured by pcr and quasi-likelihood analysis:(ca/gt)
n and (a/t) n microsatellites. Nucleic acids research,
31(3):974–980, 2003.

[23] Gregor Simm, Robert Pinsler, and Jose Miguel
Hernandez-Lobato. Reinforcement learning for
molecular design guided by quantum mechanics. In
Hal Daumé III and Aarti Singh, editors, Proceedings
of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine
Learning Research, pages 8959–8969. PMLR, 13–18
Jul 2020.

[24] Alexander Vologodskii. Biophysics of DNA. Cambridge
University Press, 2015.

[25] Yixun Wei, Bingzhe Li, and David HC Du. An encoding
scheme to enlarge practical dna storage capacity by re-
ducing primer-payload collisions. In Proceedings of the
29th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 2, pages 71–84, 2024.

[26] Yiqing Yan, Nimesh Pinnamaneni, Sachin Chalapati,
Conor Crosbie, and Raja Appuswamy. Scaling logical
density of dna storage with enzymatically-ligated com-
posite motifs. Scientific Reports, 13(1):15978, 2023.

[27] Yiqing Yan, Nimesh Pinnamaneni, Sachin Chalapati,
Conor Crosbie, and Raja Appuswamy. Scaling logical
density of dna storage with enzymatically-ligated com-
posite motifs. Scientific Reports, 13(1):15978, 2023.

[28] Meng Yu, Xiaohui Tang, Zhenhua Li, Weidong Wang,
Shaopeng Wang, Min Li, Qiuliyang Yu, Sijia Xie, Xi-
aolei Zuo, and Chang Chen. High-throughput dna syn-
thesis for data storage. Chemical Society Reviews, 2024.

USENIX Association 23rd USENIX Conference on File and Storage Technologies 581

	Introduction
	Mathematical Formulation
	Formulation as a Markov Decision Process
	An Integrated Reward Function
	Homopolymer Log Score
	GC-Content Log Score
	Hairpin Log Score
	No Key in Payload Log Score

	Methods
	Generation of keys
	Generation of payloads

	Related Work
	Validation and evaluation
	Pass / fail validation tool
	Evaluation Against a Single Constraint
	Evaluation Against a Set of Constraints

	Conclusions

