
This paper is included in the Proceedings of the
21st USENIX Conference on File and

Storage Technologies.
February 21–23, 2023 • Santa Clara, CA, USA

978-1-939133-32-8

Open access to the Proceedings
of the 21st USENIX Conference on

File and Storage Technologies
is sponsored by

SMRstore: A Storage Engine for Cloud Object Storage
on HM-SMR Drives

Su Zhou, Erci Xu, Hao Wu, Yu Du, Jiacheng Cui, Wanyu Fu, Chang Liu, Yingni
Wang, Wenbo Wang, Shouqu Sun, Xianfei Wang, Bo Feng, Biyun Zhu, Xin Tong,

Weikang Kong, Linyan Liu, Zhongjie Wu, Jinbo Wu, Qingchao Luo, and
Jiesheng Wu, Alibaba Group

https://www.usenix.org/conference/fast23/presentation/zhou

https://www.usenix.org/conference/fast23/presentation/zhou

SMRSTORE: A Storage Engine for Cloud Object Storage on HM-SMR Drives
Su Zhou, Erci Xu*, Hao Wu, Yu Du, Jiacheng Cui, Wanyu Fu, Chang Liu, Yingni Wang, Wenbo Wang,
Shouqu Sun, Xianfei Wang, Bo Feng, Biyun Zhu, Xin Tong, Weikang Kong, Linyan Liu, Zhongjie Wu,

Jinbo Wu, Qingchao Luo, Jiesheng Wu

Alibaba Group

Abstract
Cloud object storage vendors are always in pursuit of bet-

ter cost efficiency. Emerging Shingled Magnetic Record-
ing (SMR) drives are becoming economically favorable in
archival storage systems due to significantly improved areal
density. However, for standard-class object storage, previous
studies and our preliminary exploration revealed that the ex-
isting SMR drive solutions can experience severe throughput
variations due to garbage collection (GC).

In this paper, we introduce SMRSTORE, an SMR-based
storage engine for standard-class object storage without com-
promising performance or durability. The key features of
SMRSTORE include directly implementing chunk store in-
terfaces over SMR drives, using a complete log-structured
design, and applying guided data placement to reduce GC
for consistent performance. The evaluation shows that SMR-
STORE delivers comparable performance as Ext4 on the Con-
ventional Magnetic Recording (CMR) drives, and can be up
to 2.16x faster than F2FS on SMR drives. By switching
to SMR drives, we have decreased the total cost by up to
15% and provided performance on par with the prior system
for customers. Currently, we have deployed SMRSTORE in
standard-class Alibaba Cloud Object Storage Service (OSS)
to store hundreds of PBs of data. We plan to use SMR drives
for all classes of OSS in the near future.

1 Introduction
Object storage is a “killer app” in the cloud era. Users can
use the service to persist and retrieve objects with high scal-
ability, elasticity and reliability. Typical usage scenarios of
object storage include Binary Large OBjects (BLOBs) stor-
age [10,23], datalake [2] and cloud archive [1]. Object storage
systems usually employ a large fleet of HDDs. Therefore, a
key challenge of building a competitive cloud object storage
is the cost efficiency.

Emerging Shingled Magnetic Recording (SMR) drives [5]
are economically attractive [29] but they may not serve as a
simple drop-in replacement for traditional CMR drives [12].
SMR drives, via overlapping tracks, have a higher areal
density [14] (i.e., 25% more than CMR drives) and hence
the better cost efficiency. However, shingling tracks has a

*Corresponding author. erc.xec@alibaba-inc.com

byproduct—not allowing random writes [8, 15]. This charac-
teristic in return may require the upper-level software stack,
such as storage engines, to make the corresponding adaptions.

A possible direction is to use Host Managed SMR (HM-
SMR) drives where the host OS manages the I/Os and com-
municates with HM-SMR drives via the Zoned Block Device
(ZBD) subsystem [6, 7]. There are mainly three types of ap-
proaches in designing HM-SMR-based storage systems. First,
Linux kernel can expose HM-SMR drives as standard block
devices by employing a shingled translation layer (STL),
such as dm-zoned [21]. Second, file systems with a log-
structured [28] or copy-on-write design, can directly support
HM-SMR drives(e.g., F2FS [17] and Btrfs [27]). Further,
developers can modify their applications to accommodate
HM-SMR drives (e.g., GearDB [32], SMORE [19], and SM-
RDB [26]) or directly employ them in archival-class object
storage systems such as Alibaba Archive Storage Service [1]
and Huawei Object Store [18].

Unfortunately, these existing HM-SMR solutions can not
be applied to standard-class Alibaba Cloud Object Storage
Service (OSS) . First, setting the HM-SMR drive as a block
device (i.e., via dm-zoned [21]) could suffer a significant
throughput drop due to frequent buffer zones reclaiming after
random updates (e.g., a 56.1% drop under a sustained write
workload [22]). Second, employing log-structured file sys-
tems to manage HM-SMR drives can experience throughput
variations due to GC in file systems. For example, our eval-
uation shows that the throughput of F2FS on a HM-SMR
drive can drop 61.5% due to frequent F2FS GCs triggered by
random deletions. Third, though archival-class and standard-
class OSS share the same data abstraction (i.e., object), they
have drastically different Service Level Objectives (SLOs).
Therefore, a design that works well in the archival class may
not deliver satisfying performances in the standard class.

Our benchmarks show that existing SMR translation lay-
ers or file systems could result in severe overhead possibly
due to garbage collection. Moreover, log-structured design
offers direct support to SMR drives and could achieves a high
throughput when not affected by GC. Besides, GC, which is
inevitable due to the append-only nature of SMR zones, could
be alleviated via workload-aware data placement.

In this paper, we describe SMRSTORE, a high-performance
HM-SMR storage engine co-designed with Alibaba Cloud

USENIX Association 21st USENIX Conference on File and Storage Technologies 395

Persistence Layer
(Pangu)

OSS Service Layer kvserver

OSS FrontEnd Layer

Restful Object Request/Response

chunk
server

kvserver …

chunkserver
HDD
Engine

SSD
Engine

HDD

… HDD
Engine

SSD
Engine

HDD HDD SSD SSD
Disk1

…
Disk60 Disk61 Disk62

master master …

…

Figure 1: Architecture overview of OSS (§2.1). The red shaded
HHD engines refer to traditional ext4-based storage engines. The
green shaded SSD engines refer to user-space storage engines.

standard-class OSS. There are three key features in SMR-
STORE. First, SMRSTORE is a user-space storage engine that
does not require local file system support and directly imple-
ments chunk interfaces of PANGU distributed file system.

Second, SMRSTORE strictly follows a log-structured de-
sign to organize HM-SMR on-disk layout. In SMRSTORE,
the basic building block is a variable-length customized log
format called Record. We use records to persist data, and form
various metadata structures (e.g., checkpoint and journal).

Third, we design a series of workload-aware zone alloca-
tion strategies to reduce the interleaving of different types
of OSS data & metadata in zones. These effort help us to
effectively lower the overhead of GC in HM-SMR drives.

We extensively evaluate SMRSTORE under various scenar-
ios. The results show that PANGU chunkserver with SMR-
STORE achieves more than 110MB/s throughput in high con-
current write workloads, 30% higher than the previous gen-
eration design (i.e., chunkserver with Ext4 on CMR drives).
Moreover, on a storage server (60 HDDs and 2 cache SSDs),
chunkserver with SMRSTORE provides steady 4GB/s write
throughput in macro benchmarks, 2.16x higher than F2FS.
Third, in OSS deployment, the performances of the HM-SMR
cluster are comparable to the CMR cluster in all aspects.

The rest of the paper is organized as follows. We describe
standard-class OSS in Alibaba and the HM-SMR drives in §2.
Then, we analyze the pros and cons of existing solutions (§3).
Further, we demonstrate the design choices (§4), the detail im-
plementation of SMRSTORE (§5) and the evaluation (§6). We
conclude with discussions on the limitation of SMRSTORE
(§7), the related work (§8) and a short conclusion (§9).

2 Background
2.1 Alibaba Cloud OSS
Alibaba Cloud OSS offers four classes of services, including
standard, infrequent access, archive, and cold archive (prices
in descending order and retrieval time in ascending order).

Pangu File

AppendOnly

Chunk 2
(sealed)

Chunk 4
(unsealed)

Chunk 1
(sealed)

Chunk 3
(sealed)

offset 0

replica 1 replica 2 replica 3

chunkserver chunkserver chunkserver

replica 1 replica 2 replica 3

chunkserver chunkserver chunkserver

Figure 2: Semantics of PANGU file and chunk. This figure shows
a PANGU file consists of four chunks. Only chunk 4 (the last chunk)
is not sealed (writable). PANGU keeps multiple replicas for each
chunk across chunkservers to protect data against any failures.

Standard-class OSS, usually for hosting hot data, offers the
fastest SLOs with the highest economical cost.

Architecture. Figure 1 illustrates the three layers in Alibaba
Cloud standard-class OSS stack, including an OSS frontend
layer, an OSS service layer, and a persistence layer. The fron-
tend layer pre-processes users’ http requests and dispatches
them to the service layer. The service layer, consisting of mul-
tiple KV servers, has two functionalities. First, the service
layer writes the objects to PANGU files. Second, the service
layer maintains the objects’ metadata (the mapping from ob-
jects’ names to locations within the corresponding PANGU
files) using an LSM-tree based KV store [25], and writes
these metadata to additional PANGU files. The persistence
layer is our distributed file system PANGU.

PANGU overview. PANGU is a HDFS-like distributed file
system and each PANGU cluster comprises a set of masters
(handling PANGU files’ metadata, not objects’ metadata) and
up to thousands of chunkservers (storing data of PANGU
files). Each chunkserver exclusively owns a physical storage
server to operate, consisting of 60 HDDs for persistence
and two high performance SSDs for caching 1. We leverage
Linux kernel storage stack (Ext4 file system and libaio with
O DIRECT) for the HDD storage engines and build a user-
space storage file system for the SSD engines.

PANGU data abstractions. Figure 2 illustrates two levels of
abstractions in PANGU, file and chunk. Each file is append-
only and can be further split into multiple chunks. Each chunk
has a Chunk ID (a 24-byte UUID) and is replicated via copies
or erasure coding. PANGU can create, write(append), read,
delete, and seal a chunk. Similar to the “extent seal” in Win-
dows Azure Storage [13], PANGU seals a chunk when: i) the
size of chunk—including data and corresponding checksum—
reaches the limit; ii) the application closes the PANGU file
when writing is finished; iii) in the face of failures (e.g., net-
work timeout). Due to case ii) and iii), the chunks can be of
variable sizes. Note that only the last chunk of a PANGU file
can be appended (not sealed) and only sealed chunks can be

1PANGU also supports other services (e.g., block storage and big data)
and can have various modifications. In this paper, our discussion on PANGU
and corresponding software/hardware setups only apply to OSS scenario.

396 21st USENIX Conference on File and Storage Technologies USENIX Association

Pangu
Master

Pangu
Chunk
Server

KV
Server Pangu File A Offset LengthObject Foo

Pangu File A
Chunk 0 Chunk 1

Data (4048B)

Chunk1 File
Sector (4096B) …

Footer (48B)

Ext4-based Storage EngineRelated to Object Data

Chunk1 Metadata
Status SizeChunk1 ID

In Memory

In Memory

In Memory

On Disk (Ext4)

Figure 3: Dataflow with traditional storage engine (OSS (§2.1).
This figure illustrates the write path of an object in traditional CS-
Ext4 stack (red shaded). The yellow shaded area means it is related
to the object “Foo”. The data is split as a series of 4048B segments
where each is attached with a 48B footer for checksum.

flushed from cache SSDs to HDDs for persistence. Storage
engine does not provide any redundancy for failures. Instead,
we rely on PANGU providing fault tolerance for each chunk
across chunkservers by replication or erasure coding.

I/O Path. Figure 3 presents high-level write flows in OSS
with the traditional Ext4-based storage engine. We use an
example object called "Foo" to highlight the write flow. The
KV server chooses the PANGU file A for storing “Foo”. Then
the KV server uses the PANGU SDK or contacts the PANGU
master to locate the tail chunk (i.e.,chunk-1) and its respective
chunkservers. Further, the chunkserver appends the object’s
data (with checksums) to the corresponding Ext4 file. To
verify data integrity, we break the object’s data into a series
of 4048-Byte segments. We attach to each segment a 48 Byte
footer which includes the checksum and segment locations
in chunk. Note that each chunk in the chunkserver is an Ext4
file with the chunk ID as its filename.

Workloads. A KV server can open multiple PANGU files
to store or retrieve the data and metadata of objects, and
perform GC on deleted objects in PANGU files. From the
perspective of chunkservers, we define an active PANGU file
as a stream. The stream starts as the PANGU is opened by a
KV server for read or write, and ends when the KV closes the
PANGU file. Based on the operations (read or write) and types
(metadata, data or GC), we can categorize the workloads
issued by KV servers as five types of streams. Table 1 lists
the characteristic of each type of streams. The “Concurrency”
refers to the PANGU file concurrency, namely the number of
PANGU opened files on a chunkserver to append data. The
“Lifespan” refers to the expected lifespan of the data on disk
(from being persisted to deleted), NOT the duration of the
streams.

• OSS Data Write Stream. Persisting object data requires low
latency to achieve quick response. Therefore, object data

Type Latency Concur- iosize Lifespan
(ms) rency (Byte) (Day)

OSS Data W <1 ~1500 512K-1M <7
OSS Data R <20 - 512K-1M -
OSS Meta W <1 ~2000 4K-128K <60
OSS Meta R <20 - 4K-128K -
OSS GC <20 ~100 512K-1M <90
Table 1: Characteristics of streams on a chunkserver(§2.1).

are first written to SSD caches and later moved to HDDs.
Normally, hundreds of PANGU chunks are opened for writ-
ing on a chunkserver, thereby yielding high concurrency.

• OSS Data Read Stream. OSS directly reads object data
from HDDs to achieve high throughput. Due to space limits,
object data for read are not cached in the SSDs.

• OSS Metadata Write Stream. OSS metadata stream in-
cludes objects’ metadata formatted as Write-Ahead Logs
and Sorted String Table Files from KV store. The metadata
are first flushed to SSD cache and then migrated to HDDs.
The metadata accounts for around 2% of the total capacity
used (around 24TB per chunkserver).

• OSS Metadata Read Stream. The KV server maintains a
cache for object index. In most cases, the metadata read
directly hits the KV index cache and returns. If cache
misses, OSS routes to SSTFiles in PANGU.

• OSS GC Stream. The garbage collection in OSS service
layer (referred to as OSS GC) is to reclaim garbage space
in PANGU files. A PANGU file can hold multiple objects.
When a certain amount of objects are deleted in a PANGU
file, OSS would re-allocate the rest to another PANGU file,
and delete the old file. The chunks written by OSS GC
streams account for more than 80% of the total capacity
used in one chunkserver. OSS GC streams run in back-
ground and directly routed to HDDs for persistence.

2.2 Host-Managed HM-SMR
HM-SMR drives overlap the tracks to achieve higher areal
density but consequently sacrifices random write support.
Specifically, HM-SMR drives organize the address space as
multiple fixed-size zones including sequential zones (referred
to as zones) and a few (around 1%) conventional zones (re-
ferred to as czones). For example, the Seagate SMR drive
we use in this paper has a capacity of 20TB and 74508 zones
(including 800 czones). The size of each zone is 256MB, and
it takes around 20ms, 24ms and 22ms for opening, closing
and erasing a zone, respectively. Note that, for certain SMR
HDD models (e.g., West Digital DC HC650), there is a limit
on the number of zones to be opened concurrently.

Device mapper translation. A straightforward solution
is to insert a shim layer, called shingled translation layer
(STL), such as dm-zoned [21], to provide dynamic mapping
from logical block address to physical sectors and hence
achieve random-to-sequential translation. Apparently, the
major advantage of this approach is allowing the users (e.g.,

USENIX Association 21st USENIX Conference on File and Storage Technologies 397

chunkserver process) to adopt the HM-SMR drives as cost-
efficient drop-in replacement for CMR drives.

SMR-aware file systems. The log-structured design file sys-
tems (e.g., F2FS) make them an ideal match for the append-
only zone design of HM-SMR disks. For example, F2FS
started to support zoned block devices since kernel 4.10.
Users can mount a F2FS on an HM-SMR drive and utilize
the F2FS GC mechanism to support random writes. Simi-
larly, Btrfs, a file system based on copy-on-write principle,
currently provided an experimental support for zoned block
device in kernel 5.12.

End-to-End Co-design. Instead of relying on dm-zoned or
general file systems, applications that perform mostly sequen-
tial writes can be modified to adopt HM-SMR. The benefits
of end-to-end integration has been proved by several recent
works, such as GearDB [32], ZenFs [11], SMORE [19], etc.
Applications could eliminate the block/fs-level overhead and
achieve predictable performance by managing on-disk data
placement and garbage collection at application level [24, 30].

3 Evaluating Existing Solutions
We evaluate running F2FS atop HM-SMR drives with mi-
crobenchmark and macrobenchmark (i.e., simulated OSS
workloads). We compare the performances of chunkservers
with Ext4 on CMR drives (referred to as CS-Ext4) and F2FS
on HM-SMR drives (referred to as CS-F2FS).

3.1 Evaluation Configurations

CMR Server SMR Server
OS Linux 4.19.91

CPU 2*Intel(R) Xeon(R) Platinum 8331C CPU@2.50GHz
48 Physical Cores 96 Threads

SSD 2*INTEL SSDPF21Q800GB
Mem 512G

HDD

60*ST16000NM001G-
2KK103
Rand. 4KB(IOPS): 113
Seq. 512KB(MB/s):
254.8(W) 254.5(R)

60*ST20000NM001J-
2U6101
Rand. 4KB(IOPS): 121
Seq. 512KB(MB/s):
255.7(W) 255.6(R)

Table 2: Configurations of storage servers in evaluation. A SMR
server has the exact same setups with a CMR server, except the
HDDs are 20TB SMR HDDs instead. The raw performance compar-
ison with queue depth 1 random read and queue depth 32 sequential
read/write is listed in the last row.

Environment Setup. Table 2 lists the configurations of the
storage servers in the evaluation. Note that F2FS does not
support devices with a capacity larger than 16TB. Therefore,
we format the disk with 6TB capacity. Moreover, in all cases
we disable the disk write cache by hdparm [4] tool to prevent
data loss upon crashes, a mandatory setting in OSS.

Workloads. For both micro- and macro-benchmarks, we use
the Fio [3] (modified to use the PANGU SDK) as the workload

Figure 4: High Concurrency Write Throughput (§3.2). The fig-
ure shows the write throughput of CS-Ext4 and CS-F2FS in mi-
crobenchmarks.

Figure 5: F2FS Access Pattern (§3.2). The figure shows the ac-
cessed zoneIds by F2FS in a few seconds. F2FS writes all data into
one zone in a period of time and switches to the next only when the
zone is full.

generator. For microbenchmark, we start a chunkserver with
one disk, and focus on testing write throughput with different
I/O sizes in the clean state (no F2FS GC). We start a Fio with
4 numjobs, 4 iodepth, and 128 nrfiles to simulate a high write
pressure.

For macrobenchmark, we evaluate chunkserver with all
disks loaded (60 HDDs and 2 cache SSDs) and run four Fio
processes to simulate different types of write streams. Table 3
lists the detailed configurations. Note that we use two Fio
processes to simulate two kinds OSS GC streams (i.e., OSS
GC Wr 1 and 2). For OSS GC Wr 2, we use a smaller chunk
size and rate (64MB and 20MB/s) to simulate the situations
where the chunks are sealed before reaching the size limit
(due to reaching the end of PANGU file or encountering I/O
failures).

The macrobenchmark generates a stable 4GB/s throughput
to simulate a typical high pressure workload. There are two
phases in this test. In the first phase, we simply let the four
streams to fill the HDDs and there is no file deletions. In the
second phase, the utilization of capacity reaches around 80%
(around 12 hours after the first phase started) and triggers the
random deletions to maintain the utilization rate at around
80%. The average chunk deletion rate on a chunkserver
ranges from 4 operations per second (ops/s) to 15 ops/s.

398 21st USENIX Conference on File and Storage Technologies USENIX Association

Stream Type #Fio Target numjobs iodepth iosize nrfiles chunk size rate
OSS GC Wr 1 1 HDDs 8 32 1MB 25 256MB 400MB/s
OSS GC Wr 2 1 HDDs 8 32 1MB 25 64MB 20MB/s
OSS Data Wr 1 SSDs 3 32 1MB 300 256MB 200MB/s
OSS Meta Wr 1 SSDs 1 8 4KB-128KB 500 4MB 80MB/s

Table 3: Macro benchmark setups (§3.1). OSS GC Wr 1 refers to OSS GC streams with large chunks. OSS GC Wr 2 refers to OSS GC
streams with small chunks. OSS Data Wr refers to OSS object data write streams. OSS Meta Wr refers to OSS metadata write streams.

Figure 6: CS-Ext4 vs CS-F2FS in macrobenchmark (§3.2). The
test starts on empty disks and with steady 4GB/s throughput. At
hour 12, the capacity utilization reaches 80% and random deletions
occur.

3.2 Performance Comparison

Microbenchmark Performance. Figure 4 shows that CS-
F2FS on HM-SMR drives achieves 1.3x - 12.9x higher
throughput compared to CS-Ext4 on CMR drives. This is
because F2FS writes from different streams to one zone at
a time and thus always performs sequential writes. Figure 5
shows the accessing distribution of SMR ZoneIDs from the
CS-F2FS. We can see F2FS fills up one SMR zone at a time
(e.g., Zone 233 from second 0). This allocation strategy avoid
overhead from jumping between zones.

Macrobenchmark performance. Figure 6 shows the
throughput performances of CS-F2FS and CS-Ext4 along
time. Initially, we can observe that both maintain stable
throughput from hour 0 to 12. Then, after 12 hours, the CS-
F2FS quickly drops and remains a low throughput for the rest
of the time. This is because the random deletion starts and GC
in F2FS kicks in to handle the increasing amount of obsolete
data (see Figure 7). Note that F2FS puts chunks from differ-
ent types of streams into one zone. Due to random deletions,
severe F2FS GC can be frequently triggered and influence the
OSS metadata/data streams, resulting in a performance drop.

We are aware that F2FS provides multi-head logging to
separate streams on disk, but this technique cannot separate
chunks from the same type of streams. In practice, PANGU
file concurrency in each type of OSS stream can range from
tens to hundreds, and F2FS would write all the chunks from
the same type of stream into one zone. Therefore, random
deletions on those chunks (a common scenario in standard-
class OSS) still trigger severe F2FS GCs.

Figure 7: F2FS GC related metrics (§3.2.) This figure illustrates
the status of F2FS. The dirty segment count on the left axis reflects
the generation of garbage space. The increasing accumulated GC
count (right Y axis) indicates the continuing GC activities which are
the immediate causes of the performance drop.

4 SMRSTORE Design Choices
No local file system. We build SMRSTORE to support
chunk semantics (including chunk_create, chunk_append,
chunk_read, chunk_seal, and chunk_delete) on SMR
zoned namespace. There are three functionalities in SMR-
STORE to support this feature. First, SMRSTORE directly
manages the disk address space for persisting metadata (i.e.,
checkpoints and journalings) and data (i.e., the chunks). Sec-
ond, SMRSTORE manages a mapping table between chunks
and SMR zones to translate logical range in chunks (via
chunkId, offset, and length) to the physical locations on disk
(i.e., zoneId, offset, and length). Third, SMRSTORE orches-
trates the lifecycle of zones and data placement strategies in
the zones.

Everything is log. SMRSTORE stores both metadata and
data as logs in SMR sequential zones. Specifically, SMR-
STORE uses a basic structural unit, called record, to form
different types of metadata and data. To avoid wasting space,
record is of variable-length and enforces 4KB alignment with
disk physical sector.

Guided data placement. Since SMR zones are append-only
(except a few czones), and chunks from different PANGU files
can be interleaved in SMR zones, deleting PANGU chunks can
leave zones with obsolete data. This requires SMRSTORE
to migrate valid data from old zones to new ones, termed as
SMR GC in this paper. SMRSTORE reduces SMR GC by: i)
only allowing chunks to be mixed in a zone if they are from
the same type of streams (i.e., similar lifespans); ii) trying to
allocate an exclusive zone for each large chunk if possible.

Note that SMR GC is different from the OSS GC. In OSS
GC, after objects deleted by users, the corresponding PANGU

USENIX Association 21st USENIX Conference on File and Storage Technologies 399

Pangu Clients

SSD CMR
HDD

Chunkserver

Pangu Clients

Chunkserver

Ext4

Block
Layer

SPDK

SSD SMR
HDD

…

Zoned
Block
Layer

CS-Ext4
Stack

CS-SMRSTORE
Stack

Data
Index

On-disk
Layout

Garbage Collection

Zone Management

Recovery

SMRSTORE

SMRSTORE
Functionality

SSD
Engine

HDD
Engine …

SMR
STORE
Engine

SSD
Engine

SPDK

Figure 8: Overview of CS-EXT4 and CS-SMRSTORE (§5.1).
SMRSTORE is integrated in chunkserver, runs in the user space
and communicates with HM-SMR drives directly by ZBD interface.

files can be partially filled with obsolete objects. KV servers
would create new PANGU files to store the valid objects
collected from old PANGU files (i.e., generating OSS GC
streams).

5 SMRSTORE Design & Implementation
5.1 Architecture Overview
Figure 8 shows a side-by-side comparison between running
chunkserver with Ext4 on CMR disks (CS-Ext4), and with
SMRSTORE on SMR disks (CS-SMRSTORE). The main
difference is the addition of SMRSTORE to the chunkserver,
sitting in the user space, and communicating with the SMR
disks via Zoned Block Device (ZBD) subsystem. Next, we
discuss the key functionalities of SMRSTORE:

• On-disk data layout. SMRSTORE divides an HM-SMR
drive into three fixed-size areas, namely the superzone,
the metazones, and the datazones. The SMRSTORE uses
“record” as the basic unit for metazone and datazone.

• Data index. SMRSTORE employs three levels of in-
memory data structures, including chunk metadata, index
group, and record index, to map a chunk to a series of
records on the disk.

• Zone Management. SMRSTORE uses a state machine to
manage the lifecycle of zones, and keeps metadata (e.g.,
status) of each zone in the memory. Further, SMRSTORE
adopts three workload-aware zone allocation strategies to
achieve low SMR GC overhead.

• Garbage Collection. SMRSTORE periodically performs
SMR GC to reclaim area with stale data at the granularity of
zones. There are three steps in SMR GC procedure: victim
zone selection, data migration, and metadata update.

• Recovery. Upon crashes, SMRSTORE restore through four
steps: recovering meta zone table, loading the latest check-
point, replaying journals, and completing the chunk meta-
data table by scanning opened data zones.

CS-SMRSTORE I/O Path. When replacing the storage en-

Pangu
Chunk
Server

In MemoryChunk1 Metadata

Index Group 3

Record 1 Index

Datazone Record 1···

Header Payload Padding

Slice 0 Data
(4096B)

Slice 0 FT
(32B)

Slice 1 Data
(4096B)

Slice 1FT
(32B) ··

·

Index Group …

Status Size Index Group List PtrChunk1 ID

Record 0 Index Record 2 Index

Record 2
On Disk (SMR)

In Memory

Figure 9: Dataflow in SMRSTORE engine. (§5.1). Compared to
Figure 3, the storage engine is SMRSTORE (green shaded) and the
disk is an HM-SMR drive. FT: slice footer.

Superzone Metazone ··· ···

Journal
Record

Checkpoint
Record

ZoneHead
Record

PaddingPayloadHeader

ZoneHead
Record

PaddingPayloadHeader

··· ···

On-disk Layout

Datazone Layout

Data Record Layout

Data Payload Layout

Metazone Layout

Meta Record Layout

DatazoneDatazone

Data
Record

Metazone

Slice FooterSlice Data ···

Figure 10: On-disk Data Layout of SMRSTORE (§5.2). SMR-
STORE divides a disk into three partitions. Both metadata and data
are implemented based on the unified data structure called record.
The record can be of variable in length and have different type. The
payload of a data record is divided into several slices to support
partial read.

gine with a SMRSTORE engine, the KV server and PANGU
master follow the same procedures shown in Figure 3. As
illustrated in Figure 9, SMRSTORE no longer relies on local
system support and uses an in-memory chunk metadata table
for mapping. SMRSTORE first locates the table entry and
its index group linked list by using the chunk ID as index.
SMRSTORE further identifies the targeted index group or
creates a new one. Then, SMRSTORE appends data to the
datazone (indicated by the targeted index group) as record(s),
and updates the record index(es) in the corresponding index
group.

5.2 On-Disk Data Layout

Overview. Figure 10 shows the three partitions of an HM-
SMR drive under the SMRSTORE, including one superzone,
multiple metazones, and multiple datazones. All partitions
are fixed-sized and statically allocated. In other words, we
place the superzone on the first SMR zone, the metazones oc-
cupy the next 400 SMR zones, and the rest of SMR zones are
assigned as datazones. We do not allow metazones and data-
zones to be interleaved along disk address space to facilitate

400 21st USENIX Conference on File and Storage Technologies USENIX Association

··· ······

··· ···
2 MB Chunk X-Ptr

Index Group

···
Size Ptr_AddrChunk ID

Chunk Table
In Memory

Chunk X

Zone ID

Chunk ID
Location in Chunk

Index
Group

Record
Index

Record
Index

Zone ID
Record Index

Location in Zone

Figure 11: Data Index of SMRStore (§5.3). In the chunk metadata
table, each chunk has a pointer to an index group list. Each index
group can have multile record indexes in a zone. The index groups
and records are all sorted by the offset to the chunk.

the metazones scanning during recovery.

Superzone. The superzone stores the information for initial-
ization, including the format version, the format timestamp,
and other system configurations.

Metazone. Inside the metazone, there are three types of
metadata: the zonehead, checkpoint , and journal. Note that
the metazones only store metadata of SMRSTORE not the
metadata of OSS (i.e., data from OSS metadata stream). The
metadata are composed by different types of records. The
zonehead record stores the zone-related information, such as
the zone type and the timestamp of zone allocation (used for
recovery). The checkpoint is a full snapshot of in-memory
data structures while the journals contain key operations of
chunk and zone which we further introduce in §5.6.

Inside each record, there are also three fields: the header,
the payload, and the padding. The header specifies the type
of records (i.e., zonehead, checkpoint, or journal record), the
length of the record and the CRC checksum of the payload.
The payload contains the serialized metadata. An optional
padding is appended at the end of the record as the SMR drive
is 4KB-aligned.

Datazone. The datazones occupy the rest of the disk. In each
zone, there are two types of records, the zonehead record and
data record. The zonehead record is similar to the metazone
zonehead record except the zone type.

Data record & slice. The payload of data record hosts user’s
data (i.e., a proportion of the chunk). The padding at the tail
of a data record is used to bring it a multiple of 4096 bytes
(i.e., 4KB-aligned). However, the payload field of data record
is different from other types of records (see bottom right of
Figure 10). To avoid read amplification, the payload is further
divided into 4096-Byte slices, with a 32-Byte slice footer
appended to each slice. The slice footer contains the chunk
ID (24 bytes), the logical offset to chunk (4 bytes) and the
checksum of slice data (4 bytes). Without payload slicing,
reading a 4KB from a 512KB record would require SMR-
STORE to fetch the whole record for verifying the payload
with the record’s checksum. Now, with slices, reading a 4KB
only needs to read at most two slices, and SMRSTORE can
use the footer in the slice for checksum verification.

5.3 Data Index
SMRSTORE uses an in-memory data structure, called record
index, to manage the metadata of each record. The record
index includes Chunk ID, the logical location of user’s data
in the chunk (i.e., chunk offset and size of user’s data) and
record’s physical location in the datazone (i.e., offset in the
datazone and size of the record).

A chunk usually can have multiple records that are dis-
tributed among several datazones. Note that SMRSTORE
appends the data of a chunk to only one datazone at a time
until that datazone is full. This guarantees two properties: i)
the records in each datazone together must cover a consecu-
tive range of the chunk; ii) the covered chunk ranges in each
datazone are not overlapped with each other.

Therefore, we group the record indexes of a chunk in each
datazone as an index group. Based on i), inside each index
group, we can sort record indexes based on their chunk offsets.
The index group also includes the corresponding datazone ID.
Moreover, due to property ii), we can further sort the index
groups of a chunk, based on the chunk offset of first record
index in each group, as a list.

Then, SMRSTORE organizes the metadata of chunks as
a table (see the left of Figure 11). Each entry of the table,
indexed by the Chunk ID (a 24 byte UUID), contains the
chunk size (the total length of the chunk on this disk), the
chunk status (sealed or not, not illustrated in the figure), and
the corresponding sorted list of index groups.

When receiving a read request (specified by the chunk
ID, the chunk offset, and the data length), SMRSTORE can
locate the chunk metadata with the ChunkID, find the target
index group in the sorted list with chunk offset, and locate
corresponding record index(es) with the chunk offset and data
length.

For a write request, SMRSTORE always locates the last
index group of the target chunk. If there are enough space
left on the corresponding datazone, SMRSTORE appends the
data to the datazone as a new record and adds the new record
index to the index group. If not, SMRSTORE allocates a new
datazone, appends the data, and adds the record index to the
new index group.

5.4 Zone Management

Zone state machine. SMRSTORE employs a state machine
to manage the status of datazones as shown in Figure 12.
SMRSTORE maintains a pool of opened zones (55 zones
by default) for fast allocation. SMRSTORE only resets the
GARBAGE zones to FREE zones when the amount of FREE
zones are not enough. Metazone follows the similar state
machine except there is no pool of opened metazones.

Zone table. SMRSTORE maintains a zone table in the mem-
ory. Each entry of the zone table includes the zone ID, the
zone status (OPENED, CLOSED, etc.), a list of live index
groups, and a write pointer. We further introduce the usage

USENIX Association 21st USENIX Conference on File and Storage Technologies 401

FREE ACTIVATED

GARBAGE

OPENED

CLOSED

Opened in BG Allocated for writes

Filled

All data become stale

Reset

Figure 12: Zone State Transition of SMRStore (§5.4). SMR-
STORE maintains a pool of opened zones for fast allocation. When a
zone is assigned to a new chunk, it transitions to ACTIVATED status.
If a zone is closed, it will not be reopened for write before reset.

zone 1
(closed)
zone 2
(closed)

zone 3
(opened)

(a) No optimization

Chunk A
(OSS GC)

Chunk B
(OSS GC)

Chunk C
(OSS Data)

Chunk D
(OSS Meta)

zone 1
(closed)

zone 2
(closed)
zone 3
(opened)
zone 4
(opened)

(b) With SMRstore strategies

Figure 13: The effectiveness of SMRSTORE zone allocation
strategies. (§5.4). Chunk A-D come from four different OSS
streams and shaded with corresponding colors, respectively. Sub-
figure(a) represents a possible scenario under the random allocation
(no optimization) and (b) illustrates a possible layout with SMR-
STORE strategies enabled. Each data block may be composed of one
or more records.

of per-zone live index groups list when discussing SMR GC
(§5.5) and recovery (§5.6)

Zone allocation. Earlier in F2FS (see §3), we showed that
allocating chunks from different types of OSS streams to the
same datazone can result in high overhead led by frequent
F2FS GC. One can allocate a single datazone for each chunk
to reduce such GC. However, this can in return waste con-
siderable space. For example, chunks from OSS metadata
stream are usually just several megabytes large, much smaller
than the size of a datazone (256MB).

Hence, a more practical solution is to only pursue the “one
chunk per zone” for large chunks and let the small chunks
with similar lifespans to be mixed together. A challenge here
is that the size of a chunk is only determined after it is sealed.
In other words, when allocating datazones for incoming OSS
streams, SMRSTORE does not know the sizes of the chunks.
Therefore, we design the following zone allocation strategies.

• 1© Separating streams by types. Note that different OSS
types of streams can have disparate characteristics (see
Table 1). Therefore, we modify the OSS KV store to embed
the types of the OSS streams (i.e., OSS Metadata, OSS
Data or OSS GC) along with the data. SMRSTORE only
allows chunks from the same type of streams to share a
datazone.

• 2© Adapting chunk size limit for datazone. Recall that a
chunk is sealed when it reaches the size limit, the end of
PANGU file or I/O failures. Hence, we configure the size
limit of a chunk (including its checksum) to match the size
of one datazone (256MB). A chunk may still be sealed
well under 256MB (e.g., due to I/O errors). In that case,
the left space would be shared with other chunks from the
same type of streams if necessary. Note that we still use the
default size limit (64MB) for chunks from OSS metadata
stream as the corresponding PANGU files are usually small
(several to tens of MBs each).

• 3© Zone pool & round-robin allocation. SMRSTORE pre-
opens and preserves zones for different types of OSS
streams. Specifically, we prepare 40, 10 and 5 opened
zones for OSS GC, Data and Metadata stream, respectively.
The rationale is that OSS GC stream is the main contributor
of the I/O traffic. The OSS Metadata and Data streams have
high PANGU file concurrency but can be throttled by the
cache SSDs. Moreover, SMRSTORE allocates zones for
new chunks in a round-robin fashion to reduce the chances
of chunks to be mixed together.

In Figure 13, we use an example to showcase the effective-
ness of our strategies. Consider there are four OSS streams—
two OSS GC streams (green and red), one OSS Data stream
(yellow) and one OSS Metadata stream (blue). If we do not
enable any strategies, SMRSTORE would allocate datazones
one by one for the incoming chunks. As a result, we can
expect datazones to be interleaved as shown in Figure 13 (a),
similar to the F2FS scenario in §3. In this case, for example if
chunk A is deleted, all three datazones would have chunk A’s
stale data and require further SMR GC to reclaim the space.

Now, in Figure 13(b), due to Strategy 1©, chunks from
different types of streams are no longer mixed together. More-
over, since we reconfigure the size limit of chunks (Strategy
2©) and use round-robin allocation (Strategy 3©), we can see
that chunk A and B can both own a zone exclusively and
fill the entire zone. The three strategies achieve our goal by
allocating large-sized chunks with exclusive zones. Now, if
chunk A is deleted, SMRSTORE can directly reset zone 1 (i.e.,
no SMR GC needed).

5.5 Garbage Collection
SMRSTORE performs garbage collection in three steps:

Victim zone selection. The SMRSTORE first choose a victim
zone among the CLOSED ones to perform SMR GC. We use
greedy algorithm to select a zone with most garbages.

Data migration. For the selected victim zone, by scan-
ning live index group list from the zone table, SMRSTORE
can identify valid data in this zone and migrate them to an
available zone which is activated only for garbage collec-
tion. Moreover, SMRSTORE enables a throttle module that
dynamically limits the throughput of SMR GC to alleviate
interference to the foreground I/O.

402 21st USENIX Conference on File and Storage Technologies USENIX Association

Metadata update. During migration, SMRSTORE creates
index groups with new record indexes for migrated data. Af-
ter SMR GC finished, SMRSTORE replaces the old index
groups in the linked list with the new ones. Finally, SMR-
STORE updates the zone table by marking the victim zone as
GARBAGE.

5.6 Recovery
SMRSTORE relies on journals and checkpoints to restore the
in-memory data structures. In this section, we first introduce
the detailed design of journal and checkpoint. Then, we
discuss the four steps of recovery.

Checkpoint design. The checkpoint of SMRSTORE is a
full snapshot of the in-memory data structures including the
chunk metadata table (§5.3) and zone table (§5.4). SMR-
STORE periodically creates a checkpoint and persists it into
the metazones as a series of records. The zone table is usually
small and can be stored in one record. The chunk metadata
table is much larger (including all the index groups and record
indexes, see Figure 11) and requires multiple records to store.
Therefore, we also use two records to mark the start and end
of a checkpoint, called checkpoint start/end record.

Journal design. In SMRSTORE, only the create, seal, delete
operations of chunk, and the resetting of the zone need to be
recorded by journals. Note that SMRSTORE does not jour-
nal write operation (i.e., chunk append) as this can severely
impact the latency. Instead, we can restore the latest data loca-
tions by scanning the previously opened zones. SMRSTORE
journals the zone reset operation to handle the case where
the same zone may be opened, closed and reused multiple
times between two checkpoints. Note that the checkpoint of
SMRSTORE is non-blocking, hence the journal records and
checkpoint records can be interleaved in the metazones.

Recovery process. The four steps of recovery are as follows:

• Identifying the latest valid checkpoint. The first step is
to scan zonehead record of each metazone. Recall that,
when opened, each metazone is assigned with a timestamp
and stored in the zonehead record. Now, by sorting the
timestamps, we can scan the metazones from the latest
to the earliest to locate the most recent checkpoint end
record and further obtain the corresponding checkpoint
start record.

• Loading latest checkpoint. By scanning records between
the checkpoint start and end record, SMRSTORE can re-
cover zone table and chunk metadata table (including index
groups and record indexes) from the most recent check-
point.

• Replaying journals. Next, after the checkpoint start record,
SMRSTORE replays each journal record till the checkpoint
end record to update the zone table, and chunk metadata
table.

• Scanning datazones. Recall that the journals do not log
the write (i.e., chunk_append()) operations in order to

reduce impacts on the write latency. Therefore, the last step
of recovery is to check the datazones that have not been cov-
ered by the checkpoint and journals for yet-to-be-recovered
writes. SMRSTORE checks the validity (i.e., allocated for
writes before crash) of datazones by reading their zonehead
records. For each valid datazone, SMRSTORE verifies the
data record one by one with the per-record checksums. Fi-
nally, SMRSTORE updates the in-memory chunk metadata
table (including index groups and record indexes).

6 Evaluation

Software/Hardware setup. We evaluate the end-to-end
performance of three types of candidates, including the
chunkserver with CMR drives (i.e., CS-Ext4), the chunkserver
with F2FS on SMR drives (i.e., CS-F2FS), and SMRSTORE
as the storage engine for chunkserver on SMR drives (i.e.,
CS-SMRSTORE). Additionally, we setup two alternative ver-
sions of CS-SMRSTORE. The CS-SMRSTORE-20T shows
the performance with full-disk 20TB capacity and the CS-
SMRSTORE-OneZone imitates the data placement strategy of
F2FS (i.e., mixing data from different streams into one zone).
Our node configurations are listed in Table 2.

Workloads setup. We use Fio (modified to use the PANGU
SDK) to generate workloads. Our experiments evaluate the
following aspects of SMRSTORE.

• High concurrency micro benchmark. We extend the mi-
crobenchmark in §3 to further evaluate the candidates under
highly concurrent random read workloads.

• OSS simulation macro benchmark. We also repeat the
multi-stream OSS simulation in §3 to evaluate the candi-
dates with multiple write streams, random file deletion and
high disk utilization rate.

• Garbage collection performance. We evaluate the SMR
GC overhead in SMRSTORE and further examine the ef-
fectiveness of data placement strategies by comparing cor-
responding SMR GC overheads under different strategy
setups.

• Recovery. To evaluate the recovery performance, we restart
chunkserver on 20TB SMR drives with 60% capacity uti-
lization, then analyze time consumption in recovery.

• Resource consumption. We compare the resources, such
as CPU and memory usage, between CS-Ext4 and CS-
SMRSTORE (i.e., the two generations of storage stack for
standard-class OSS), under a similar setup.

• Field deployment. Both CS-Ext4 and CS-SMRSTORE are
currently deployed in standard-class OSS. We summarize,
demonstrate, and compare key performance statistics of a
CS-Ext4 cluster and a CS-SMRSTORE cluster in the field.

6.1 High Concurrency Microbenchmark
In this microbenchmark, we evaluate the candidates on one
disk (SMR or CMR) with two types of workloads: High
Concurrency Write (HC-W) and High Concurrency Rand

USENIX Association 21st USENIX Conference on File and Storage Technologies 403

Figure 14: High Concurrency Write Throughput (§6.1). This
figure presents the comparison of write throughput between different
storage engines. CS-F2FS (green) and CS-SMRSTORE-OneZone
(black) achieve rather high throughputs as they place all incoming
chunks onto the same zones, which can incur high F2FS/SMR GC
overhead later.

Figure 15: SMRSTORE Access Pattern (§6.1). The figure
presents the distribution of accessed zones under SMRSTORE dur-
ing a few seconds. Each red dot represents the corresponding zone
is accessed (zone ID on the Y axis). This shows the effectiveness of
the round-robin allocation, rendering a clear contrast to the zone
accessing in CS-F2FS (Figure 5).

Read (HC-RR). Note that in this experiment, the disk is in
the clean state and thus would not trigger F2FS or SMR GC.

Figure 14 shows the HC-W throughput of each candidate
under different I/O sizes (from 4KB to 1MB). We can see that
CS-SMRSTORE-OneZone and CS-F2FS always have much
higher throughput. As discussed in §3.2, flushing data from
different streams to enforce the “one zone at a time” policy
can significantly benefit the throughput during the clean state
(no deletion and F2FS/SMR GC).

For the rest three, their performance gradually increase
with I/O size. We notice that, for small I/O size (i.e., <32KB),
SMRSTORE shows low throughput. This is caused by the
round-robin zone allocation strategy which tends to allocate
a new zone for each new chunk to avoid mixed placement,
thereby generating random writes for the disk (see Figure 15).
As I/O size increases, the throughput of SMRSTORE grad-
ually catches up at 128KB, finally reaches 110MB/s and
exceeds CS-Ext4 by 30% at 1MB I/O size. This is acceptable
as most writes in standard-class OSS are larger than 128KB
(see Table 1).

Figure 16 shows the performance comparison of candidates

Figure 16: High Concurrency RandRead Throughput (§6.1).

Figure 17: Throughput Comparison of Multi-Stream Bench-
mark (§6.2).

with HC-RR. We can see CS-SMRSTORE manages to deliver
comparable performance to the CS-Ext4. Moreover, in both
HC-W and HC-RR experiments, we can observe that the
full-disk version (i.e., CS-SMRSTORE-20T) does not suffer
severe performance drops.

6.2 Multi-Stream Benchmark

Next, same as the multi-stream experiment in §3.2, we evalu-
ate the candidates under a more realistic setup with multiple
data streams, random deletion, and subsequent F2FS/SMR
GC. We reuse the set of parameters as Table 3. In Figure 17,
all candidates begin with a stable throughput of around 4GB/s.
After reaching 80% capacity, random deletion starts, and then
the GC kicks in. Recall our discussion in §3.2, CS-F2FS expe-
riences a considerable performance drop due to frequent F2FS
GC led by mixed data allocation. CS-Ext4 is hardly affected
by the random deletion as Ext4 does not incur GC. Finally,
CS-SMRSTORE continues to offer high throughput under
random deletion. The main reason is that CS-SMRSTORE
adopts several strategies to reduce the frequency and overhead
of SMR GC.

Now, we take a closer look to understand the reason behind
CS-SMRSTORE performance. In Figure 18, we plot the CDF
of zone utilization under SMRSTORE. We can see that most
zones are 100% used (i.e., the 100 on the X axis) and only a
few zones are occupied with small chunks, thereby indicating
less frequent SMR GC.

404 21st USENIX Conference on File and Storage Technologies USENIX Association

Figure 18: Zone utilizations (CDF) of CS-SMRSTORE (§6.2).

Figure 19: Throughput with different data placement strategies
(§6.3). No optimization: no separating, 64MB chunk size, random
allocation on 55 opened zones. Strategy 1: separating streams by
types. Strategy 2: adapting chunk size limit for datazone. Strategy 3:
zone pool & round-robin allocation.

6.3 Effectiveness of Placement Strategy
The concentrated distribution of high utilization zones is a
joint effort of different data placement strategies. Figure 19
shows the various combinations of individual strategies and
corresponding effectiveness on write throughput. Here, we
run the same multi-stream experiment with four different
combinations.

From Figure 19, when only ‘separating streams by types’
is enabled, the SMR GC overhead is quite obvious and the
performance is close to that of no optimization on alloca-
tion. Moreover, ‘adapting chunk size limit’ or ‘zone pool &
round-robin allocation’ each contributes around half of the
speedup and such phenomenons are also reflected by the zone
utilizations CDFs in Figure 20.

6.4 Recovery Performance
In this experiment, we measure the time consumption in the
recovery of a 20TB SMR drive with 60% capacity occupied.
Figure 21 shows that CS-Ext4 with a 16TB CMR drive costs
less than 20 seconds. CS-Ext4 only has two steps in recov-
ery, loading checkpoint (which takes 3.27 seconds) and data
scanning (which takes 16.3 seconds). CS-SMRSTORE com-
pletes the recovery with 94.4 seconds which takes around 19
seconds to load the checkpoint, less than 1 second to replay a
few journals, and the remaining 75 seconds are for scanning

Figure 20: Zone Space Utilizations (CDF) Comparison (§6.3).
The results show that SMRSTORE can maintain a high space effi-
ciency by enabling three end-to-end data placement strategies.

Figure 21: Recovery Performance (§6.4). The figure shows the
breakdown of recovery time. CS-SMRSTORE-INIT refers to the
initial version of SMRSTORE without fixed metazone partition.
Recovering zone table refers to the step “Identifying the latest valid
checkpoint (§5.6)”. Replaying journals is negligible and not shown.

the previously opened zones.
Note we also include a previous implementation, the CS-

SMRSTORE-INIT which takes more than 4 minutes to re-
cover. The major reason is that in this version, the on-disk
layout is dynamic, meaning the metazones and datazones
can be interleaved. As a result, SMRSTORE needs to scan
all zone headers (both metazone and datazone) for recovery.
Therefore, we switch to static zone allocation.

6.5 Resource Consumption

Memory. In a single server (60 HDDs and 2 SSD caches),
the CS-SMRSTORE occupies 49.3GB of memory, around
two times more than CS-Ext4. Memory growth is mainly
contributed by the in-memory data structures of SMRSTORE.
Specifically, the metadata of each chunk occupies around 200
bytes, and each record index in memory needs 8 bytes. The
record indexes can be further compressed and we decide not
to discuss in this paper due to space limit.

CPU. The CS-SMRSTORE uses around 19 cores which are
26.7% more than CS-EXT4. We use 8 cores for 8 partitions
of the two cache SSDs (polling with spdk). We use another
4 cores for user-space network threads. SMRSTORE uses
another 7 cores for processing requests, memory copy, check-
sum calculation, and background GC tasks of 60 SMR drives.
With increasing areal density and comparable performance,

USENIX Association 21st USENIX Conference on File and Storage Technologies 405

Figure 22: Performance comparison in OSS benchmark (§6.6).
Figure(a) compares key metrics of KV servers, including throughput
of object write, object read and OSS GC. Figure(b) compares the
corresponding read and write throughput of chunkservers.

the extra overhead on CPU and memory usage is acceptable.

Space efficiency. Apart from persisting data, SMRSTORE
further requires extra space for record headers, record
paddings, and slice footers. For large IOs (512KB-1MB)—a
common scenario in SMRSTORE (i.e., OSS GC/data stream,
see Table 1)—SMRSTORE requires another 1-2% space of
the IO size. The percentage increases for smaller writes but
they are rather uncommon for HDDs due to IO merging in
cache SSDs.

6.6 Field Deployment
In the OSS full stack benchmark, all of the key metrics
in the SMR cluster are on par with the CMR cluster. The
two clusters are both deployed with 13 KV store servers, 13
chunkservers, and 780 HDDs in total. Figure 22 shows that,
at OSS service layer, each KV server in the SMR cluster
achieves 374.2MB/s object write throughput, 227.7MB/s ob-
ject read throughput, and 394.8MB/s OSS GC throughput.
Each chunkserver in the SMR cluster provides 1898.6MB/s
write throughput and 752.8MB/s read throughput. Similarly,
in the CMR cluster, each chunkserver provides 1888.3MB/s
write throughput and 723MB/s read throughput. This sug-
gests, from an end-to-end perspective, we are able to replace
CMR drives in standard-class OSS with SMR drives with no
performance penalty thanks to SMRSTORE.

7 Limitation & Future Work

CZone. SMRSTORE follows a strictly log-structured design
and thus does not require random writes support from czones.
The use of the czones is under discussion. We could use
czones as szones by maintaining a writer pointer in memory
and a sequence number for each czone. The sequence number
is used to identify valid records when the czone is reused.

Ad hoc to Alibaba standard OSS. At the moment, SMR-
STORE is dedicated to serve standard-class OSS in Alibaba
Cloud. However, SMRSTORE can easily adopt other zoned
block devices , such as ZNS SSD. In fact, adapting SMR-
STORE to ZNS SSD devices is in progress and will serve other
services (e.g., Alibaba EBS).

Garbage collection. The expected on-disk lifespans of OSS
data, OSS metadata and OSS GC are different from one OSS

cluster to another. Certain clusters can have regular patterns
on object creations and deletions while others perform more
randomly. Currently, we are exploring more efficient SMR
GC algorithms to better serve a variety of OSS workloads
based on the accumulated statistics.

8 Related Work
Enabling HM-SMR drives. There are mainly three fashions
of solutions in enabling HM-SMR, including adding a shim
layer between the host and the ZBD subsystem [20,21], adopt-
ing local file systems to provide support [16, 17], and modify-
ing applications to efficiently utilize SMR devices [19,26,32].
SMRSTORE differs from above from two aspects. First,
SMRSTORE completely discards random write by building
everything as logs and hence avoid the potential constraints
led by using the limited conventional zones or the tax imposed
by random-to-sequential translation. Second, SMRSTORE
significantly minimizes SMR GC overhead by end-to-end
data placement strategies with the guidance of workloads.
Storage engine designs. To avoid the indirect overheads
of general-purpose file systems [17, 27], storage engines of
cloud storage systems [18] and distributed file systems [31])
tend to evolve towards to user space, special purposed [9],
and end-to-end integration [11, 32]. SMRSTORE follows and
further explores this path by building in the user space and im-
plementing the semantics of PANGU chunks, which is much
simpler than general file semantics (e.g., directory operations,
file hardlink). Further, the range of the end-to-end integra-
tion in SMRSTORE is much wider than host-device, which
includes OSS service layer, PANGU distributed file system
layer, the storage engine persistence layer, and a novel but
backward-incompatible device (i.e., HM-SMR drive). The re-
sults of SMRSTORE showcase the benefits can inspire future
storage system designs under similar circumstances.

9 Conclusion
This paper describes our efforts in understanding, designing,
evaluating, and deploying HM-SMR disks for standard-class
OSS in Alibaba. By directly bridging the semantics between
PANGU and HM-SMR zoned namespace, enforcing an all-
logs layout and adopting guided placement strategies, SMR-
STORE achieves our goal by deploying HM-SMR drives in
standard-class OSS and providing comparable performance
against CMR disks yet with much better cost efficiency.

Acknowledgments
The authors thank our shepherd Prof. Peter Desnoyers and
anonymous reviewers for their meticulous reviews and insight-
ful suggestions. We also thank the OSS and the PANGU team
for their tremendous support on the SMRSTORE project and
this paper. We sincerely thank Yikang Xu who pioneered the
SMRSTORE prototype development. This research was partly
supported by Alibaba AIR program and NSFC(62102424).

406 21st USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Archival-class OSS on Alibaba Cloud. https://www.

alibabacloud.com/solutions/backup_archive.

[2] Data Lake on Alibaba Cloud. https://www.
alibabacloud.com/solutions/data-lake.

[3] Fio. https://github.com/axboe/fio.

[4] hdparm. https://www.man7.org/linux/man-
pages/man8/hdparm.8.html.

[5] Shingled Magnetic Recording. https:
//zonedstorage.io/docs/introduction/smr.

[6] INCITS T13 Technical Committee. Information technol-
ogy - Zoned Device ATA Command Set (ZAC). Draft
Standard T13/BSR INCITS 537, 2015.

[7] INCITS T10 Technical Committee. Information
technology-Zoned Block Commands (ZBC). Draft Stan-
dard T10/BSR INCITS 536, 2017.

[8] A. Aghayev and P. Desnoyers. Skylight—A window on
shingled disk operation. In Proceedings of 13th USENIX
Conference on File and Storage Technologies (FAST),
2015.

[9] A. Aghayev, S. Weil, M. Kuchnik, M. Nelson, G. R.
Ganger, and G. Amvrosiadis. File systems unfit as
distributed storage backends: lessons from 10 years
of Ceph evolution. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP),
2019.

[10] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel.
Finding a needle in Haystack: Facebook’s photo storage.
In Proceedings of 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2010.

[11] M. Bjørling, A. Aghayev, H. Holmberg, A. Ramesh,
D. L. Moal, G. R. Ganger, and G. Amvrosiadis. ZNS:
Avoiding the Block Interface Tax for Flash-based SSDs.
In Proceedings of USENIX Annual Technical Confer-
ence (USENIX ATC), 2021.

[12] E. Brewer, L. Ying, L. Greenfield, R. Cypher, and
T. T’so. Disks for Data Centers. https://research.
google/pubs/pub44830.pdf, 2016.

[13] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J. Wu,
H. Simitci, J. Haridas, C. Uddaraju, H. Khatri, A. Ed-
wards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal,
M. F. u. Haq, M. I. u. Haq, D. Bhardwaj, S. Dayanand,
A. Adusumilli, M. McNett, S. Sankaran, K. Manivannan,
and L. Rigas. Windows azure storage: A highly avail-
able cloud storage service with strong consistency. In
Proceedings of the 21th ACM Symposium on Operating
Systems Principles (SOSP), 2011.

[14] T. R. Feldman and G. A. Gibson. Shingled Magnetic
Recording: Areal Density Increase Requires New Data
Management. Usenix Magazine, 2013.

[15] G. Gibson and G. Ganger. Principles of operation for
shingled disk devices. Canregie Mellon Parallel Data
Laboratory, CMU-PDL-11-107, 2011.

[16] C. Jin, W.-Y. Xi, Z.-Y. Ching, F. Huo, and C.-T. Lim.
HiSMRfs: A high performance file system for shingled
storage array. In Proceedings of 30th Symposium on
Mass Storage Systems and Technologies (MSST), 2014.

[17] C. Lee, D. Sim, J. Hwang, and S. Cho. F2FS: A new
file system for flash storage. In Proceedings of 13th
USENIX Conference on File and Storage Technologies
(FAST), 2015.

[18] Q. Luo. Implement object storage with smr based key-
value store. In Proceedings of Storage Developer Con-
ference (SDC), 2015.

[19] P. Macko, X. Ge, J. Haskins, J. Kelley, D. Slik, K. A.
Smith, and M. G. Smith. SMORE: A Cold Data Object
Store for SMR Drives (Extended Version). https://
arxiv.org/abs/1705.09701, 2017.

[20] A. Manzanares, N. Watkins, C. Guyot, D. LeMoal,
C. Maltzahn, and Z. Bandic. ZEA, a data manage-
ment approach for SMR. In Proceedings of 8th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage), 2016.

[21] D. L. Moal. dm-zoned: Zoned Block Device device map-
per. https://lwn.net/Articles/714387/, 2017.

[22] D. L. Moal. Linux SMR Support Status.
https://events.static.linuxfound.org/
sites/events/files/slides/lemoal-Linux-
SMR-vault-2017.pdf, 2017.

[23] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu,
S. Pan, S. Shankar, V. Sivakumar, L. Tang, and S. Ku-
mar. f4: Facebook’s warm BLOB storage system. In
Proceedings of 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[24] G. Oh, J. Yang, and S. Ahn. Efficient Key-Value Data
Placement for ZNS SSD. Applied Sciences, 2021.

[25] Z. Pang, Q. Lu, S. Chen, R. Wang, Y. Xu, and J. Wu.
ArkDB: A Key-Value Engine for Scalable Cloud Stor-
age Services. In Proceedings of the 2021 International
Conference on Management of Data (SIGMOD), 2021.

[26] R. Pitchumani, J. Hughes, and E. L. Miller. SMRDB:
Key-Value Data Store for Shingled Magnetic Recording
Disks. In Proceedings of the 8th ACM International
Systems and Storage Conference (SYSTOR), 2015.

[27] O. Rodeh, J. Bacik, and C. Mason. Btrfs: The linux
b-tree filesystem. ACM Transactions on Storage (TOS),
2013.

USENIX Association 21st USENIX Conference on File and Storage Technologies 407

https://www.alibabacloud.com/solutions/backup_archive
https://www.alibabacloud.com/solutions/backup_archive
https://www.alibabacloud.com/solutions/data-lake
https://www.alibabacloud.com/solutions/data-lake
https://github.com/axboe/fio
https://www.man7.org/linux/man-pages/man8/hdparm.8.html
https://www.man7.org/linux/man-pages/man8/hdparm.8.html
https://zonedstorage.io/docs/introduction/smr
https://zonedstorage.io/docs/introduction/smr
https://research.google/pubs/pub44830.pdf
https://research.google/pubs/pub44830.pdf
https://arxiv.org/abs/1705.09701
https://arxiv.org/abs/1705.09701
https://lwn.net/Articles/714387/
https://events.static.linuxfound.org/sites/events/files/slides/lemoal-Linux-SMR-vault-2017.pdf
https://events.static.linuxfound.org/sites/events/files/slides/lemoal-Linux-SMR-vault-2017.pdf
https://events.static.linuxfound.org/sites/events/files/slides/lemoal-Linux-SMR-vault-2017.pdf

[28] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM
Transactions on Computer Systems (TOCS), 1992.

[29] A. Suresh, G. A. Gibson, and G. R. Ganger. Shingled
Magnetic Recording for Big Data Applications. Techni-
cal Report CMU-PDL-11-107, 2012.

[30] Q. Wang, J. Li, P. P. C. Lee, T. Ouyang, C. Shi,
and L. Huang. Separating data via block invalidation
time inference for write amplification reduction in Log-
Structured storage. In Proceedings of 20th USENIX
Conference on File and Storage Technologies (FAST),
2022.

[31] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn. Ceph: A scalable, High-Performance
distributed file system. In Proceedings of 7th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI), 2006.

[32] T. Yao, J. Wan, P. Huang, Y. Zhang, Z. Liu, C. Xie,
and X. He. GearDB: A GC-free Key-Value Store on
HM-SMR Drives with Gear Compaction. In Proceed-
ings of 17th USENIX Conference on File and Storage
Technologies (FAST), 2019.

408 21st USENIX Conference on File and Storage Technologies USENIX Association

	Introduction
	Background
	Alibaba Cloud OSS
	Host-Managed HM-SMR

	Evaluating Existing Solutions
	Evaluation Configurations
	Performance Comparison

	SMRstore Design Choices
	SMRstore Design & Implementation
	Architecture Overview
	On-Disk Data Layout
	Data Index
	Zone Management
	Garbage Collection
	Recovery

	Evaluation
	High Concurrency Microbenchmark
	Multi-Stream Benchmark
	Effectiveness of Placement Strategy
	Recovery Performance
	Resource Consumption
	Field Deployment

	Limitation & Future Work
	Related Work
	Conclusion

