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Abstract
Data-intensive applications executing on NVM-based stor-
age systems experience serious bottlenecks when moving
data between DRAM and NVM. We advocate for the use
of the long-existing but recently neglected on-chip DMA to
expedite data movement with three contributions. First, we ex-
plore new latency-oriented optimization directions, driven by
a comprehensive DMA study, to design a high-performance
DMA module, which significantly lowers the I/O size thresh-
old to observe benefits. Second, we propose a new data
movement engine, Fastmove, that coordinates the use of the
DMA along with the CPU with judicious scheduling and load
splitting such that the DMA’s limitations are compensated,
and the overall gains are maximized. Finally, with a gen-
eral kernel-based design, simple APIs, and DAX file system
integration, Fastmove allows applications to transparently ex-
ploit the DMA and its new features without code change.
We run three data-intensive applications MySQL, Graph-
Walker, and Filebench atop NOVA, ext4-DAX, and XFS-DAX,
with standard benchmarks like TPC-C, and popular graph
algorithms like PageRank. Across single- and multi-socket
settings, compared to the conventional CPU-only NVM ac-
cesses, Fastmove introduces to TPC-C with MySQL 1.13-
2.16× speedups of peak throughput, reduces the average la-
tency by 17.7-60.8%, and saves 37.1-68.9% CPU usage spent
in data movement. It also shortens the execution time of graph
algorithms with GraphWalker by 39.7-53.4%, and introduces
1.12-1.27× throughput speedups for Filebench.

1 Introduction
Emerging non-volatile memory (NVM) technologies such
as STT-MRAM [45], PCM [40], ReRAM [6], and 3D-
XPoint [15] offer byte-addressibility and comparable latency
as DRAM but with substantially larger capacity. In addition, it
provides data durability with orders of magnitude higher per-
formance than prior durable devices like SSDs [55]. Recently,
numerous studies have been proposed to combine faster,
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volatile DRAM, for caching, with slightly slower, denser
NVM, for persisting data, in storage systems to revolutionize
I/O performance of data-intensive applications with persis-
tence demands [12].

In NVM-based storage systems, data are often moved be-
tween the two types of memories, due to DRAM cache fill-up,
logging, or flushing. However, recent studies [28, 55] high-
light that the DRAM-NVM data movement is not efficient,
mainly because of their performance gaps in latency and
bandwidth [13]. Additionally, we further notice that such
data movement leads to heavy CPU consumption since NVM
chips are attached to the memory bus, and their accesses must
make use of the load and store instructions. Such nega-
tive performance effects worsen with multiple sockets, which
modern high-end servers often provide, because of the neg-
ative NUMA impact [28]. This data movement bottleneck
severely impairs the overall performance of I/O intensive ap-
plications and consequently, undermines the benefits brought
by incorporating NVM.

To address this bottleneck, the slowness of NVM motivates
us to re-think the usage of the on-chip DMAs that still come
with the CPU but have deteriorated in use with the advent of
fast storage devices. In this paper, we seek to transparently
expedite data movement in NVM-based storage systems by
(partially) offloading data movement to DMA to improve
overall performance. However, while exploiting the on-chip
DMA is a natural optimization, there are a few obstacles to
incorporating it into NVM-based storage systems.

First, we need to handle more complex I/O patterns and
have significantly different optimization goals than exist-
ing work [41, 54], which have already applied DMA as a
minor technique to free CPU cycles of page migration in
tiered DRAM-NVM systems. They handle I/Os that are al-
ways large, i.e., 2MB, and run in the background. However,
NVM-based storage systems face I/Os with much smaller and
variable sizes that are often on the critical path of the fore-
ground user requests. Thus, our primary optimization goal
is to shorten the execution time of DMA requests. Second,
latency-critical optimization requires an in-depth understand-
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ing of the strengths and limits of DMA, in conjunction with
NVM and storage-facing I/Os, which is largely beyond exist-
ing studies [21].

To address the above challenges, first, we conduct a com-
prehensive study to understand the latency behaviors of using
DMA for DRAM-NVM data movement on the Intel I/OAT
and Optane PM combination, the only such pair in existence.
This study suggests that the potential of DMA is heavily con-
strained by various factors, e.g., uneven advantages between
reads and writes over the CPU, the non-negligible costs that
grow with I/O size, bandwidth and concurrency limits, etc.

Second, we derive principles from the study to design
Fastmove, a general data movement system that sits at the
lower level of the software hierarchy. At the core, it includes
a high-performance DMA module, which encapsulates the
upper-level I/O requests into low-level hardware commands
that comply with the workflows of data movement in NVM-
based storage systems. We also maximize the benefits of
DMA by introducing various optimizations such as batch-
ing the page pinning and descriptor submission activities for
grouped DMA tasks and balancing and coordinating concur-
rent accesses to DMA channels. Furthermore, to compensate
for the limitations of the stand-alone DMA solution such as
the extra overhead and the concurrency and bandwidth con-
straints, we devise a lightweight Scheduler to prioritize bulk
I/Os to go through DMA, while smaller I/Os are routed to the
original CPU path. Scheduler additionally splits bulk read
I/Os and balance loads between the DMA and CPU paths,
adapting to real-time changes in DMA resource availability.

Finally, we incorporate Fastmove into the Linux kernel as
an OS library with a limited number of simple APIs, which
can be used to easily replace system functions that trigger data
movements. To demonstrate its practicality, we adapt three
NVM-based storage systems, NOVA, ext4-DAX, and XFS-DAX,
to make use of Fastmove with minimal (2 to 4 lines of code)
change. Consequently, applications running atop these sys-
tems can transparently enjoy the data movement acceleration
brought by Fastmove. Additionally, we enable such acceler-
ation for the cross-socket setting by deploying file systems
atop the Linux device mapper with 2 lines of code change.
This design enables the POSIX read() and write() APIs
to freely employ Fastmove. To prove this, we successfully
run three I/O-intensive applications, one industry-adopted
database, MySQL [3], one graph engine, GraphWalker [49],
and one file system and storage benchmark, Filebench [1]
atop the modified file systems without any modifications to
the applications.

We conduct extensive evaluations with three standard
benchmarks FIO [8], fileserver [1], and TPC-C [5], and three
popular random walk algorithms GraphLet, PageRank and
SimRank. The results highlight that, for workloads contain-
ing substantial I/Os with moderately large sizes and beyond,
considerable performance improvements are attained, regard-
less of local or remote NVM access. For TPC-C in MySQL,

Fastmove increases its peak throughput by 13-116% com-
pared to the original ones that use only the CPU, reduces the
average latency by 17.7-60.8%, and saves CPU cycles used
for data movement by 37.1-68.9%. Also, Fastmove brings
1.65-2.14× speedups of execution time for the GraphWalker
algorithms, and 1.12-1.27× speedups of throughput for the
Filebench fileserver workload.

In summary, Fastmove makes the following contributions:
• We present a comprehensive and general study to under-

stand the characteristics of on-chip DMA in conjunction
with NVM far beyond earlier studies [21], which showed
DMA use just as a minor optimization in limited experi-
mental settings [7, 25, 41].

• We propose and implement a fast memory copy engine
Fastmove that accelerates DRAM-NVM data movement in
NVM-based storage systems. Driven by the study findings,
it incorporates new latency-oriented optimizations to reduce
associated DMA costs and coordinates the CPU-only and
DMA paths to maximize overall performance. Fastmove’s
design principles significantly differ from earlier studies
that concentrated on movement of data in a tiered memory
setting [41, 54], where optimizations are simple due to the
large size of memory copy requests.

• We present transparent in-kernel system support with in-
tegration of Fastmove into three NVM-aware DAX file
systems, while extending the device mapper to enable cross-
socket NVM access. This allows unmodified applications
to run atop Fastmove.

2 Background and Motivation
2.1 NVM-based Storage Systems
NVM chips sit close to the CPU either by being placed on the
memory bus and connected to CPU sockets via the processors’
integrated memory controller (iMC) or by being exposed via
cache coherence interconnects like Compute Express Link
(CXL) [11, 18, 39]. In 2019, Intel released Optane PM, the
first commercial NVM chip based on the 3D XPoint tech-
nology [15]. Beyond Optane PM, multiple companies are
developing new products based on technologies other than
3D XPoint [15] such as STT-MRAM [45], FRAM [23], Nano-
RAM [42], and ReRAM [6].

Despite the different implementations, they are expected to
offer memory interfaces with byte-addressability, data persis-
tence, and large capacity. Therefore, there have been extensive
research focusing on incorporating NVM to build scalable
storage systems [9, 22, 24, 27, 34, 53] that accelerate the data
access of latency-critical, data-intensive applications. These
applications persist all their data on NVM, while caching
the working set and metadata like indexes in DRAM. When
accessing non-cached data, applications need to load them
from storage, while upon modification, the dirty pages and log
entries need to be flushed back to storage for data durability.

Typically, they make use of NVM-aware DAX file systems
such as NOVA that retain the standard file system interfaces
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Table 1: I/O size (KB) distribution of various workloads
size TPC-C fileserver Graphlet/PPR/SR

read
[0,16) - 80.2% -
[16,32) 100% 11.5%
[32,∞) - 8.3% 100%

write
[0,16) 6.5% 82.2% -
[16,32) 82.9% 10.2% -
[32,∞) 10.6% 7.6% -

and provide strong consistency guarantees along with various
NVM-oriented performance optimizations [7, 20, 53]. There-
fore, the aforementioned data copies often involve memory
allocated in user space, while requiring kernel memory copy
module support.

2.2 The Data Movement Bottleneck
DRAM-NVM data movement can be a critical bottleneck in
terms of performance in data-intensive applications. To under-
stand this, we perform a study on the I/O size distributions of
various applications, from domains ranging from traditional
SQL databases to graph analytic frameworks, and their impact
on performance and resource usage.

As shown in Table 1, driven by the standard database TPC-
C workloads with 5000 warehouses and 16KB innodb page
size in MySQL, more than 93% of write I/Os in MySQL are
beyond 16KB, where a significant number of these bulk writes
are sitting on the critical path of writing logs for foreground
update transactions. In the fileserver workload of Filebench,
8.3% and 7.6% of the reads and writes are beyond 32KB, re-
spectively. Though the number of bulk I/Os is relatively small
in fileserver, they already account for 44.1% of the overall data
movement volume. Finally, GraphWalker, a single-threaded
graph processing system, periodically reads from NVM into
DRAM, all in 128KB chunks, which it later consumes with
its in-memory processing [49].

To assess the negative impacts of data movement, we run
the msppr workload [49] in GraphWalker atop NOVA, an NVM-
based file system, with Optane PM. Note that NOVA uses
Linux memcpy to access data on Optane and does not make use
of SIMD as SIMD cannot be used within the kernel [43]. We
find that over 92% of the execution time is spent on reading
data from NVM under a single socket setting, while, when
cross-socket data movement is involved, this number increases
to over 97%. While these numbers will vary depending on the
application, our observation is that for many applications, the
time consumed for data movement is a clear bottleneck.

The inefficiencies of CPU-directed data movement are
mainly caused by the performance gap between DRAM and
NVM. In particular, with 6 interleaved Optane DIMMs within
a single socket, reading a 4K page from Optane takes 952ns,
2.9× longer than that of DRAM. Similar to latency, PM shows
74.4%/35.3% lower read/write throughput than DRAM. Even
worse, it takes 18 CPU cores for Optane to reach its peak
load throughput while it only takes 5 for DRAM to reach
a similar load throughput [55]. Finally, when accessing re-

mote memory across sockets, both DRAM and NVM suffer
negative NUMA effects due to the extra writes introduced
by the default directory-based cache coherence protocol [28].
However, the performance loss of remote NVM accesses is
larger because of its lower write bandwidth. Our findings are
consistent with recent studies [14, 28, 55].

2.3 On-Chip DMA and its Challenges
Modern processors have included on-chip DMA engines since
as far as one can remember. For instance, Intel’s I/O Acceler-
ation Technology (I/OAT) DMA engine [16] lies in the inte-
grated I/O module of the CPU, which also connects to cores
and iMCs through a mesh interconnect. Similarly, AMD’s
second-generation EPYC processors are also equipped with
on-chip DMA engines [37]. With the advent of high perfor-
mance storage devices, however, they have deteriorated to
a mostly unused component. The observations behind the
data movement overhead problem motivate us to re-think the
role of the on-chip DMA in NVM-based storage systems. We
advocate that it will be beneficial to use on-chip DMAs to of-
fload data copy jobs in NVM-based storage systems, thereby
improving the copy performance itself as well as saving CPU
cycles that could be used for other useful work.

To explore the latency improvement potential of DMA, we
evaluate the speed of moving data between DRAM and NVM
achieved by Intel I/OAT, in comparison with the CPU-only
counterparts. Here, we refer to the I/OAT setting as Simple-
DMA as we use it as-is without optimizations, which are
explored later.

We use the FIO benchmark [8] to generate single-threaded
read and write requests with I/O sizes ranging from 16KB to
512KB, where the former load data from NVM to DRAM
while the latter store data in the opposite direction. These
requests trigger kernel memory copy functions through NOVA
to operate the underlying NVM—Optane PM [55], and we
measure the time consumed for those functions.

Figure 1a and Figure 1c show that Simple-DMA performs
consistently worse than CPU-only, and delivers 29.9-134.4%
higher read latency, regardless of local and remote accesses.
Contrary to reads, for local writes as shown in Figure 1b,
Simple-DMA delivers comparable latency as CPU-only at
64KB, with meaningful differences expanding with I/O sizes
from 128KB and beyond. For instance, when writing 256KB,
the latency of Simple-DMA is only 64.7% of the CPU-only
latency. Compared to the single-socket results, in Figure 1d,
when considering two sockets, we observe that the perfor-
mance of remote writes achieved by CPU-only and Simple-
DMA both worsen. However, the request size threshold where
Simple-DMA catches up with CPU-only becomes smaller at
16KB, which is only 25% of that observed for local writes.

The above latency comparison suggests that there is hardly
any opportunity to allow reads within NVM-based storage
systems to benefit from Simple-DMA; while for large writes,
opportunities seem to exist. However, whether such large
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Figure 1: Simple-DMA versus CPU-only read/write latency
as request size is varied with FIO workloads.

writes (not smaller than 128KB for local writes) are amply
available in typical applications is questionable. For example,
as shown in Table 1 in our evaluation, around 80% of the
bulk writes for MySQL-TPC-C concentrate on the range of
[16KB, 32KB), which is certainly below the benefit threshold
of Simple-DMA. Our conclusion is that we need to explore
whether there are optimization opportunities.

Moreover, we have witnessed initial adoptions [7,21,41,54]
of on-chip DMA to accelerate DRAM-NVM data movement.
However, these early attempts mostly focus on tiered memory
systems, and cannot be directly applied to NVM-based storage
systems, which is our focus, due to the following reasons.

First, our optimization goal differs from using DMA in
tiered memory systems, where data movements triggered by
page migration run in the background, not on the critical
path of user requests. Related works primarily focus their
optimization goal on deriving advanced migration policies,
and use DMA as a minor optimization to free CPU cycles [41].
In contrast, for NVM-based storage systems, data copy jobs
such as user reads and log flushing are part of an end-to-end
execution of foreground requests, which directly affect user
experience. Thus, the key performance measure is latency.

Second, the I/O patterns and workflows differ significantly
between NVM-based storage systems and tiered memory
systems. The page migration workloads in tiered memory
systems are quite simple and always happen at 2MB huge
page granularity [41, 54]. In contrast, the sizes of bulk I/Os
in NVM-based storage systems are much smaller and vary
considerably. It is equally important that the workflow of
handling memory copies via DMA in NVM-storage systems
contains considerably more steps than that of tiered memory.
These differences imply that the associated overhead of DMA
is not negligible in NVM-based storage systems.

In summary, the Simple-DMA performance, the demand
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Figure 2: Workflow of memory copy using Simple-DMA.

for reducing latency and the storage-specific I/O patterns
present us with unique challenges in making use of the DMA
in NVM-based storage systems. In this paper, through an
in-depth study of the behavior of on-chip DMA, we explore
avenues of optimization opportunities. In addition, through
Fastmove, we develop the necessary abstractions and trans-
parent latency-sensitive optimizations so that applications
may reap the benefits of the DMA without any code change.

3 DMA Optimization Opportunities
Here we provide a comprehensive study on DMA in con-
junction with NVM to derive the optimization directions for
lowering the latency of DMA-enabled memory copies and
for unleashing its potentials to (partially) alleviate the above
DRAM-NVM data stall problem.

3.1 DMA-enabled Data Moving Workflow
To begin our study, we first illustrate in Figure 2 the workflow
of handling memory copy requests issued by applications
via DMA, which implements exactly the same logic as the
Linux memcpy. Take a 16KB I/O as an example. The virtual
addresses of data residing in DRAM for NVM-based storage
systems are possibly not contiguous, which leads to this single
memory copy operation at the application side being divided
up into four DMA subtasks. Each subtask corresponds to a
4KB page and will go through the following steps. ① pins the
target DRAM pages as we need to prevent those pages from
being swapped out or modified during DMA execution. An
alternative way to do so is to allocate a DMA buffer, but at the
cost of imposing extra memory copies or giving up transparent
support to applications. ② prepares the DMA descriptor, the
required metadata for I/OAT, which is then submitted to the
hardware at step ③. Meanwhile, the submitter waits (④b) until
the completion of ④a and reaches the final step ⑤ to finalize
the corresponding DMA subtask execution, e.g., unpinning
the page and notifying the application. Note that all steps
except ④a are managed by a CPU thread, often the I/O thread
of the application.
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Table 2: Breakdown time costs of local read and write requests
that use Simple-DMA

size
(KB)

cost (%)
#subtasks

pin submit I/OAT other

read
16 4.7 12.7 80.4 2.2 8
32 4.9 14.1 78.7 2.3 16
64 5.1 14.8 77.9 2.3 32

write
16 6.2 15.7 75.3 2.9 8
32 7.1 19.8 69.8 3.3 16
64 7.9 23.3 65.3 3.5 32

3.2 I/OAT and Optane PM Demonstration
To make the study concrete, in this section, we focus on the
combination of Optane PM and Intel’s I/OAT DMA.

3.2.1 Associated Time Costs
First, we investigate the latency breakdown results of Simple-
DMA, which are summarized in Table 2, with the same setup
as Figure 1a and Figure 1b. “pin”, “submit”, and “I/OAT”
correspond to steps ①, ②-③, and ④a of Figure 2, respectively,
while “others” denotes the remaining overhead.

The execution on the I/OAT hardware is the longest step
of DMA-enabled memory copy requests across reads and
writes. However, its ratio decreases from 80.4% to 77.9%,
and 75.3% to 65.3% for reads and writes, respectively, when
I/Os expand from 16KB to 64KB. In contrast, the associated
overhead, excluding I/OAT, is also non-negligible and grows
proportionally with request size, reaching to 34.7% for local
64KB writes. This is mainly because bulk I/Os within NVM-
based storage systems trigger a series of I/OAT subtasks at
4KB granularity, as introduced in Section 3.1.

This growing overhead can be further doubled when the
source and destination addresses of the corresponding I/O
request are not aligned. Figure 3 illustrates such an example.
The src of page#1 is not aligned with dst of page#a. As the
DMA does not support cross-page copy when it cannot tell
if the physical address is contiguous between pages, we have
to split page#1 into two separate portions, namely ① and ②,
where the former fits in the empty space of page#a, while the
latter will have to fit on the lower part of page#b. Each of these
portions will trigger a separate I/OAT subtask. Moreover, the
remaining two pages #2 and #3 will go through the same effort.
As the FIO workloads exhibit unaligned memory addresses,
as shown in Table 2, bulk I/Os consist of 8-32 DMA subtasks
and pay the associated time cost one more time. As this shows,
in the case of transferring unaligned memory addresses, the
overhead involved can turn out to be even more significant.

Trimming down the associated costs seems promising for
improving the latency of writes. For instance, one can imagine
that reducing them by 30.7% for 16KB writes will allow
the DMA latency turning point to be reduced from 64KB
to 16KB, enabling more applications, like MySQL, to gain
performance benefits. However, this is not so with reads, since
even completely eliminating these overheads still results in the
DMA performing 11.1%-39.3% slower than CPU-only. Thus,

#0 #1 #2 #3

#a #b #c #d

Source

Virtual Address

Destination

Virtual Address

⑥

② ③ ④ ⑤① ⑥
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page 

boundary

DMA 

subtask 

boundary

Figure 3: Composition of DMA subtasks for a single applica-
tion data movement job with unaligned source and destination
addresses. Three source pages (#1-#3) are involved but six
subtasks are generated (①-⑥).

other means to overcome this challenge must be conceived.
In addition, using Transparent Huge Page (THP) in the ker-

nel makes the addresses, with high probability, to be contigu-
ous. For contiguous copies, the cost of I/OAT still dominates,
but with the submission and unalignment cost significantly
diminished, compared to the above non-contiguous ones. This
is because under such setting, memory copy requests will no
longer be divided into multiple DMA subtasks.

3.2.2 Intra-Request Parallel Copy
Each DMA device consists of M multiple channels that can
process DMA subtasks in parallel. Therefore, we explore
parallelizing hardware copy of a single request, where we
split the request into N chunks (N ≤ M) and thus, N DMA
subtasks, each chunk making use of one channel. Here, we
derive two different parallel execution modes, namely, para-A
and para-B, where para-A uses a single submitter for channel
submission, while para-B spawns N submitters, each of which
manages its own channel independently.

For 64KB reads and writes, compared to Simple-DMA,
para-A indeed reduces the I/OAT copy time, but the reduction
is not proportional to the number of parallel chunks. In addi-
tion, we observe a significant increase in the submission over-
head, which eventually offsets the benefits of intra-request,
multi-channel parallel copy. In the end, para-A does not im-
prove much on the end-to-end latency of Simple-DMA for
reads, while even leading to performance loss for writes.

Para-B fares worse than para-A, worsening latency for both
reads and writes. Our analysis shows that para-B sharply
increases the hardware copy time by up to 68.7%. This is
because of the heavy contention on DMA bandwidth driven
by the parallel subtasks. This case differs from para-A, as the
single submitter setting in para-A enables pipeline parallelism,
which does not heavily stress the DMA. In addition, para-B
introduces heavy CPU usage due to the multiple submitters.

Finally, as we cannot parallelize intra-request copies within
DMA, we also explore the possibilities of balancing these
copy subtasks between the CPU and DMA. Unfortunately,
this is not applicable for writes, as using the DMA can eas-
ily saturate NVM’s bandwidth. We find that the bandwidth
competition can lead to amplified interference between the
two tasks, resulting in 14.6% higher latency compared to the
sole execution of using the DMA. In contrast, we find this
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Figure 4: I/OAT latency when 4 FIO threads doing read/write
workloads as number of channels and as request size is varied.

solution works well for reads as the DMA cannot consume
all of the NVM bandwidth, and thus, the joint use of the CPU
and DMA leads to better bandwidth consumption. We take
this last approach as part of our optimization.

3.2.3 Impacts of Inter-Request Parallelism
Finally, we evaluate the impact of inter-request parallelism
as in reality, application threads may concurrently execute
data movement requests and make use of the DMA. First,
we investigate whether using more DMA channels influences
the performance of DMA operators. To this end, we use four
concurrent threads to submit DMA requests to its multiple
DMA channels on our two-socket NUMA machine. Here, we
exercise up to 8 channels per DMA device/NUMA node. Fig-
ure 4 shows the latencies of DMA operators with varied I/O
sizes. With the increasing number of channels, irrespective of
local/remote reads/writes, the DMA operators become faster.
For instance, compared to the 1 channel setting, adding one
more channel leads to 38.1%-53.3% latency reduction for the
256KB memory copy operators. Trends are similar with more
concurrent threads and cross-socket NVM accesses.

Second, we explore the changes in read/write effective
bandwidth with the increase in the number of concurrent
threads submitting DMA requests with bulk I/Os. We find
that Simple-DMA observes an increase in read/write effective
bandwidth for up to four threads, but beyond this, it starts to
decline sharply. (Results not shown due to space limit.) The
key limiting factor here is not drive scalability but, instead,
the I/OAT DMA bandwidth. This suggests that a limit on
concurrent DMA access should be set to prevent the DMA
resource from being over-used.

3.3 Study Generalization
While the performance study above takes into consideration

the performance characteristics of the underlying hardware,
it also lays out the general study flow and key factors to be
considered independent of particular NVM and DMA devices.
With the advent of new hardware, the general study always
needs to answer the following two questions:

First, how can the DMA be best configured so that using it
can be faster than CPU-only even for small I/O requests? This
part requires understanding the DMA subtask associated cost,
the DMA parallel execution, and the effects of concurrency
that drive the latency-oriented optimizations. Furthermore, it
also requires exploring the effects of balancing loads among
DMA channels and even between DMA and CPU.

Second, how do we choose among the different copy paths?
We decide the best-effort path with the minimal time cost
among three choices, namely, CPU, DMA, and DMA-CPU
cooperation. Furthermore, we have to check if there are avail-
able DMA resources, i.e., the current DMA bandwidth usage,
monitored during DMA execution, is below the profiled max-
imum bandwidths of DMA and NVM, respectively.

In summary, our general study framework will offer useful
guidelines for accelerating data movement in storage systems
that combine future DMA implementations and near-DRAM
storage devices such as the upcoming CXL devices.

4 Overview of Fastmove
Driven by the study in Section 3, we aim to let data-intensive
applications transparently make the best use of DMA to al-
leviate the NVM data stall problem presented in Section 2.2.
Done properly, this should lead to better performance and alle-
viate CPU involvement required for memory copies between
DRAM and NVM. First, we need to improve the latency of
DMA-enabled data movement by taking into consideration
the access constraints of DMA such as extra overhead, re-
source allocation, and interference within DMA or with CPU.
Second, to complement DMA’s limitations, we need to judi-
ciously determine when and how much to resort to the normal
CPU data path. Finally, while DMA is supported by Linux
kernel functions, applications should not be burdened by high
development and optimization overhead to exploit the DMA.
Thus, a clean abstraction that requires minimal changes to
applications is imperative.

4.1 Fastmove’s Architecture
Figure 5 shows the overall design of Fastmove, our efficient
data movement engine. It sits below DAX file systems such
as NOVA, ext4-DAX, and XFS-DAX, which are compatible with
POSIX APIs and designed to use recent PM, as well as the
Linux device mapper module, which allows file systems to
use PMs across sockets. With this design, applications that run
atop a POSIX file system should seamlessly be able to use our
engine. Fastmove consists of three major system components,
namely, Scheduler, DMA module, and CPU module. We
retain the original design of the CPU module, where we let
the corresponding I/O request execute the load and store
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Figure 5: The overall architecture of Fastmove, which man-
ages both DMA and CPU resources. Each NUMA node has a
DMA device (dashed line box), which has multiple channels.

instructions as usual. However, we introduce a new DMA
module that manages DMA resource allocation and memory
copy offloading, with various optimizations to alleviate DMA
costs and improve DMA resource usage. (Details will be
discussed in Section 5.1.)

As the core logic, Scheduler is responsible for making
decisions on selecting either DMA or CPU to execute requests.
Its detailed design will be discussed in Section 5.3. This
decision-making procedure should be fast so as not to incur
overhead on the end-to-end request latency. It should also
be smart so as to prioritize the use of DMA to fully make
use of its strengths, while resorting to the CPU-only path as
needed to compensate for the limitations of DMA for overall
enhanced performance (Section 5.2).

4.2 API Abstraction
To exploit DMA transparently at the application level, we
introduce three APIs that are simple extensions to existing
APIs used by DAX file systems. The key observation here is
that DAX file systems universally make use of a limited num-
ber of APIs for data movement, namely, copy_from_user,
copy_to_user, and dax_iomap_rw. The first two are called
by the read and write file system functions, while the last
API is used by the read_iter and write_iter file system
functions to perform memory copies in batches. These APIs
are replaced by the APIs that we describe below.

As shown in Table 3, the three APIs that we in-
troduce are fm_copy_from_user, fm_copy_to_user, and
fm_iomap_rw. The first two new APIs have four arguments,
dst, src, len, and bdev. dst and src specifies the destina-
tion and source of the copy (from PM to DRAM or vice versa),
while len refers to the number of bytes to copy. The last ar-
gument bdev is the PM block device descriptor that includes
rich information of the PM device such as the NUMA node
id of the target PM. The last API fm_iomap_rw has three
parameters, where iocb specifies the operational semantics
such as read or write, iov_iter encodes parameters such as

Table 3: Fastmove APIs
fm_copy_from_user(dst, src, len, bdev);
fm_copy_to_user(dst, src, len, bdev);
fm_iomap_rw(iocb, iov_iter, iomap_ops);

source and destination address vectors, and iomap_ops that
is passed by file systems for I/O address mapping.

Finally, we only need to replace the old APIs with the new
ones at the file system level. Thus, upper layer applications
can take advantage of Fastmove without any code change.
(Details are discussed in Section 5.4.)

5 Design and Implementation
5.1 High-Performance DMA Module
Under Fastmove, we offer a dedicated wrapper module to
easily use the low-level primitives that DMA offers. This
wrapper executes the I/O requests admitted by Scheduler.
Here, we encapsulate the DMA requests by inheriting the
values of parameters from the Fastmove APIs and the DMA
channel assignment from Scheduler. Then, the wrapper exe-
cutes DMA requests by going through all the steps in Figure 2
with the following major techniques and optimizations.
Batched DRAM page pinning. Memory addresses passed
from user space are all virtual and need to be translated into
physical ones that the DMA can consume. Furthermore, to
satisfy DMA requirements, the virtual-to-physical address
mapping must remain valid and unchanged during the exe-
cution of the corresponding DMA copy. This can be done
by calling the pin_user_page and the dma_map_page ker-
nel functions. However, pinning user pages one by one incurs
high overhead for bulk I/Os, which span across multiple pages.
To lighten this overhead, we leverage the pin_user_pages
function available in the recent Linux kernel (version 5.9) that
pins all the pages belonging to a single I/O. Similarly, we
apply the same optimization for unpin_user_page via the
new unpin_user_pages function.
src/dst page pairing. A bulk I/O will be mapped to a list
of DMA subtasks at 4KB page granularity, each of which
requires to pair the addresses of the source and destination
pages for preparing the DMA descriptor. If the two addresses
are not aligned, to ensure the correctness of DMA execution,
which assumes that copies take place within page boundary,
we have to carefully match the capacity of dst pages and the
content size of src pages so that cross-page copies can be
avoided. However, this leads to doubling the number of DMA
subtasks, as described in Section 3.2.1.

Here, we make a key observation that NVM is managed
contiguously in the kernel, and thus the cross-page copies can
be tolerated. We exploit this finding as when preparing the
DMA descriptor, we specify the length of the corresponding
subtask in a page aligned manner on the DRAM side. For
instance, take the situation in Figure 6 assuming that the
source and destination are DRAM and NVM, respectively.
We take the first portion of the source (① of page#1), which
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Figure 6: Composition of DMA subtasks with halved numbers
for a data movement job, enabled by the contigious NVM
address management, in comparison to Figure 3.

will always be smaller or equal to a page but aligned on the
right end, as the size of the first DMA subtask. Thereafter,
the size of the subsequent DMA subtasks will always be a
page and aligned (② of page#2) except possibly for the last
portion (③ of page#3), which will be page aligned on the left
end. This enables us to reduce the number of DMA subtasks
by half, in comparison to Figure 3.
Metadata buffer pre-allocation. DRAM space must be allo-
cated with varying sizes to store the DMA request metadata,
i.e., descriptors. The scatterlist structure is used to store
the list of descriptors of DMA subtasks belonging to a single
bulk I/O, where each item is typically 32 bytes. To accelerate
memory allocation, we pre-allocate a fixed-size buffer to store
this information prior to the execution of DMA copy. We set
the buffer size to 4KB, which can accommodate DMA request
metadata for 128 user pages (in total 512KB) at once.
Batch submission. Finally, to amortize the DMA subtask
submission, considering that leveraging multiple channels
performs no better than using a single channel (Section 3.2.2),
we submit scatterlist in a batch to a single DMA channel
assigned by Scheduler. This batched submission reduces the
locking overhead for coordinating the concurrent accesses of
the task queue associated with the DMA channel [17].

5.2 DMA-CPU Cooperated Bulk Reads
With Simple-DMA, the application thread (CPU) submits re-
quests to the DMA, which solely moves the data (see top part
of Figure 7). However, as shown in Section 3.2.3, bulk reads
could be made faster through DMA and CPU cooperation.
Motivated by this, we design an optimized bulk read within
Fastmove that is depicted by the lower part in Figure 7. Here,
the application thread first splits the bulk read into two chunks,
and then submits one chunk (#1) via the normal DMA path
with optimizations mentioned in Section 5.1, followed by the
other chunk (#2) being copied by the CPU. Upon completion
of chunk#2, the corresponding CPU thread polls the status of
the DMA. Finally, the execution of the target read completes
when both the DMA and CPU finish their assigned chunks.
This design not only improves the NVM read bandwidth but
also hides the copy latency due to the CPU.

While the optimized bulk read is a natural sharing of load,
the challenge we face here is how to decide the loads that
will go through the CPU and DMA. Chosen inappropriately,

CPU

DMA Transfer Whole Request

Waiting

Time

prepare

CPU

DMA Transfer Chunk#1

Transfer Chunk#2

notify

pollCooperated

Simple-DMA

Figure 7: The workflow of DMA-CPU cooperated reads.

the gap between the execution time of CPU and DMA could
lead to either waste of CPU cycles for polling the DMA status
or lower DMA utilization. To balance their execution time,
we set the chunk #1 and #2 size ratio to the ratio of the aver-
age single-threaded bandwidth on the CPU and DMA paths.
which are monitored by our Scheduler.

5.3 Controlling and Scheduling
We design a light-weight Scheduler that outputs the proper
memory copy path assignment plan for each I/O request going
through the above Fastmove’s APIs, distributes loads of bulk
reads between CPU and DMA, and properly allocates DMA
resources for offloaded tasks.
Initial configuration. Decision-making by Scheduler is
driven by the four pre-chosen I/O size thresholds for lo-
cal/remote NVM reads/writes, beyond which DMA path
should be involved for better performance, and the concur-
rency sweet spot M per DMA device, which corresponds to
the maximal number of concurrent threads leading DMA to
reach the peak bandwidth. In addition, Scheduler also moni-
tors the following four variables: (1) Ci, which is used to keep
track of the number of on-the-fly requests submitted to device
i and that works as an indicator of the workload intensity level
of that device; (2) Si, which points to the next available DMA
channel on the DMA device i; and (3) BC and BD, that record
the bandwidth dynamically consumed by the CPU and DMA,
respectively.
Scheduling. Scheduler first inspects every I/O request to
figure out the following parameters: the NUMA node id of
the target NVM (NP), the request type RW , the NUMA infor-
mation LR, and I/O length L. RW and LR are both boolean
values indicating read/write and local/remote, respectively.
Then, the path scheduling logic is straightforward as follows.
Scheduler compares the request length L to the DMA thresh-
old, pointed by the pair of RW and LR, to identify bulk I/Os.
For bulk I/Os, Scheduler chooses the DMA as long as the
DMA device on node NP is under its concurrent limit, i.e.,
CNP < M. If so, Scheduler chooses the next DMA channel
associated with NP’s DMA in a round-robin fashion (based
on SNP) and updates the required resource variables, i.e.,
CNP = CNP + 1 and SNP = (SNP + 1) mod G. Otherwise, we
fall back to the CPU-only data path. Additionally, we use BC
and BD to derive the split ratio of bulk reads between the CPU
and DMA by following the logic presented in Section 5.2.
Performance consideration. To minimize the overhead that
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may incur due to request processing, we make the follow-
ing two design choices. First, instead of implementing the
Fastmove logic as a centralized component for coordination,
we provide the logic as a function, which runs at the memcpy
caller side. This precludes inter-thread communication be-
tween I/O threads and Scheduler helping enhance perfor-
mance. Second, coordination of concurrent access to globally
shared variables like SN and CN adopt lightweight mecha-
nisms such as atomic counters to further reduce overhead.

5.4 Implementation Details
We implement Fastmove1 under the DMA framework [32] in
Linux kernel 5.9 with 2417 lines of C code for its core logic.
Integration with NVM-based storage systems. We inte-
grate Fastmove into three widely-adopted, DAX file sys-
tems, namely, NOVA [53], ext4-DAX [30], and XFS-DAX [33],
where NOVA is tailored for hybrid DRAM-NVM settings,
while the other two systems are more general and compati-
ble with NVM. Fastmove’s transparent design leads to min-
imal changes to the above systems. Specifically, we intro-
duce only 2 lines of code changes to both ext4-DAX and
XFS-DAX, which simply replace the memory copy functions
in read_iter() and write_iter() system calls with the
APIs in Table 3. NOVA requires 2 additional changes to its
read() and write() functions.

Though Fastmove enables NUMA NVM access by de-
sign, DAX file systems cannot naturally use NVM devices
sitting across NUMA sockets. We address this problem by
leveraging the Linux native device mapper [31], as shown
in Figure 5. For the device mapper, similarly, only 2 lines in
dm_copy_from_iter and dm_copy_to_iter functions need
to be replaced. Note, however, that the current version of NOVA
does not support the use of the device mapper. Therefore, we
extend NOVA to work with the device mapper and its new
code base can be found in Fastmove 1. With these minimal
changes, Fastmove is able to transparently benefit many ap-
plications that run atop these three file systems.
Correctness guarantee. The use of DMA in Fastmove will
not introduce any data inconsistencies compared to CPU-only
data accesses. First, while not mentioned in any public docu-
mentation from the hardware vendor, Kalia et al. [21] experi-
mentally show that I/OAT preserves ordering during execu-
tion. Second, Fastmove always monitors the execution status
of parallel DMA subtasks and knows which set of pages failed
to be copied even though these pages may not be consecutive.
This slightly relaxed memcpy semantic is enough since (1)
most applications including filesystems and databases have
their own well-designed fault handling mechanism, which can
leverage Fastmove ’s fault reports to recover state correctly,
and (2) in kernel, there are many strict checks to avoid copy
failures, such as permission validation prior to copy execution.
Thus, failures will be rare.

1Publicly available at https://github.com/fastmove-open/fastm
ove

6 Evaluation
6.1 Experimental Setup
We deploy our experiments on a physical server with two
20-core Xeon Gold 6248 processors and 192GB DRAM. This
machine has two NUMA nodes, each connected with six Intel
Optane PM chips (128GB each and 1.5TB in total). We evalu-
ate Fastmove with both the Optane PM device and emulated
NVM to demonstrate the generality of Fastmove. With Op-
tane PM, we configure it to be interleaved within each NUMA
node and under the App Direct mode, and use the Linux device
mapper under its striped mode to enable cross-socket NVM
accesses. For the NVM emulated experiments, we use 64GB
DRAM to emulate an advanced NVM device with DRAM-
like latency and bandwidth, which is significantly better than
Optane PM, using a Linux built-in emulator [35]. Note that
our evaluation primarily focuses on Optane PM, while the
emulated NVM performance results are only presented in
Section 6.4.1.
Baseline and configurations. We exercise NOVA, ext4-DAX,
and XFS-DAX enhanced by Fastmove. Our natural baselines
are these file systems with their memory copy operations
going through the conventional CPU path, denoted by “CPU-
only”. We use default configurations for both baselines.
Case study applications and workloads. We take three data-
intensive applications MySQL, GraphWalker and Filebench,
with no code changes, to transparently use Fastmove by sim-
ply running them atop the three slightly modified DAX file
systems. To evaluate Fastmove’s benefits, we run experi-
ments with the FIO microbenchmark [8] and a synthetic work-
load generated based on FIO, application workloads like the
widely-adopted standard database workload TPC-C [5] and
the file access workload fileserver [1], and three popular graph
processing tasks, namely, Graphlet Concentration, Personal-
ized PageRank and SimRank. The detailed configurations are
presented in Section 6.3.

6.2 Microbenchmark Results
6.2.1 Latency Threshold Choices
To help figure out the read/write thresholds with different
concurrency levels required to drive the memory copy path
selection in Fastmove, we run the FIO workloads to evaluate
both the original and modified NOVA file systems. Here, we
generate read and write workloads with different I/O sizes
ranging from 16KB to 64KB, which are issued by 1 to 4 con-
current threads. We test both local and remote (cross-socket)
NVM accesses. In Figure 8, we show the normalized aver-
age latency of Fastmove against the CPU-only baseline. (We
omit the results for remote NVM access as they show similar
trends with the local accesses.) In addition, we also include
the results of “Simple-DMA”, the baseline with DMA enabled
but not highly optimized, to demonstrate the validity and ef-
fectiveness of Fastmove’s optimizations and our Fastmove.
Note that, these results look exactly the same across three
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Figure 8: The latency comparison between Fastmove and Simple-DMA, with 1,2,4-threaded FIO workloads, normalized to the
latencies of CPU-only memory copying. (Remote read/write results omitted due to similar trends and space limit.)

file systems, thus we omit the evaluation of ext4-DAX and
XFS-DAX for this part.

As shown in Figures 8a, across all exercised I/O sizes, CPU-
only delivers constantly lower local read latency than Simple-
DMA. In contrast, Fastmove visibly improves the perfor-
mance of Simple-DMA and introduce 1.20-3.07× speedups
for various I/O sizes, leading read requests with relatively
small sizes to benefit from DMA. Compared to CPU-only, the
turning points of Fastmove are 32KB across the 1, 2 and 4
threaded workloads, respectively. Including and beyond these
turning points, Fastmove starts to observe a visible reduction
in average request latency. For instance, Fastmove reduces
the local read latency of CPU-only accesses by 13.0-25.6%
for 64KB. While not shown, for remote read latency requests
with I/O size starting with 32KB can benefit from Fastmove
while 64KB for Simple-DMA.

For writes, we observe larger improvements than reads. Fig-
ure 8b shows that for local writes, Simple-DMA runs faster
than CPU-only at 64KB, 128KB, and 128KB for the three
concurrency settings, respectively. Fastmove dramatically im-
proves Simple-DMA’s latency, and drops the turning points to
16KB, 16KB, and 32KB. With 2 threads, Fastmove achieves
36.9%-49.0% and 26.3%-48.6% reduction on average latency
for I/Os at 32KB and beyond, compared to Simple-DMA
and CPU-only, respectively. The benefits of the two DMA
variants further expand for remote writes (again, not shown).
First, they perform better than CPU-only for even 16KB.
Second, the latency gap between the DMA usage and CPU-
only becomes visibly larger, e.g., for 256KB cross-socket
I/O requests, Simple-DMA and Fastmove reduce latency by
75.3% and 86.1%, respectively, compared to CPU-only. Third,
Fastmove significantly outperforms Simple-DMA by 40.7-
48.1%, 65.9-73.7%, and 86.7-96.2% for 16KB, 32KB, and
64KB, respectively.

Finally, Table 4 illustrates the impact of the batched submis-
sion optimization on tail latency. We find that batching within
Fastmove does not prolong, but rather, improves tail latency.
For instance, with the same setting of 2-thread experiments
in Figure 8, the P99 latency numbers in Table 4, indicating
a 8.0-38.5% reduction, compared to the non-batching base-
line. This is because Fastmove is not batching DMA subtasks
across I/O requests from upper applications but is batching

Table 4: P99 latency (us) comparison of local read/write with
batching enabled or disabled in Fastmove, corresponding to
the same setting of 2-thread experiments in Figure 8.

size
(KB)

read write
batching non-batching batching non-batching

16 8 13 10 11
32 9 11 14 19
64 16 21 23 30
128 27 37 46 55
256 49 72 80 87

submissions of DMA subtasks that belong to a single request.

6.2.2 Breakdown Analysis
We use two synthetic FIO workloads to investigate the per-
formance improvements introduced by each individual opti-
mization within Fastmove. The bulk dominating workload
contains I/Os with an average size of 256KB, while the mixed
one has a mixture of bulk and small I/Os, ranging between
8KB and 256KB. For the two workloads, we use 6 concurrent
threads to issue local read or write requests to the underlying
NOVA file system.

Figure 9 reports the normalized throughput numbers, which
indicate that different workloads see different optimization
sweet points. The direct usage of DMA with loads evenly dis-
tributed among channels leads to a 46.6% and 25.7% through-
put drop for the bulk and mixed workloads, respectively, com-
pared to CPU-only. This is because small I/Os do not benefit,
yet still go through the DMA, and the associated DMA over-
heads have not yet been ameliorated. As we start to avoid
overloading the DMA resources by adding the concurrent
limit optimization (here, set to 4), Fastmove’s performance
improves by 23.0% and 16.5% for the two workloads. The
batching optimization makes Fastmove begin to outperform
CPU-only, with a throughput increase of 55.8% and 17.9%.
The latency threshold filtering further improves Fastmove’s
performance by 0.3% and 9.5%, where the mixed workload
observes larger improvements as this optimization avoids its
small I/Os from paying the latency penalty of going through
the DMA. Finally, the bulk read split design choice brings
another 12.3% and 3.1% improvement. In the end, adding all
these optimizations together brings a 1.15× improvement in
throughput for the two workloads, compared to CPU-only.
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6.3 Overall Performance
Next, we evaluate the positive impact of using Fastmove
on the performance of real-world applications that introduce
more complex characteristics than microbenchmarks such as
non-uniformed I/O size distribution, computation-related cost,
foreground and background processing division, etc.

6.3.1 Application Configurations
MySQL. We install MySQL version 5.7.33 with the default
16KB innodb_page_size. innodb_buffer_pool_size is
set to half of the DRAM space, the recommended setting.
We run the TPC-C workload with a read and write ratio of
1.78:1. For each run, we populate a 466GB database with
5000 Warehouses during the initialization phase and use 14
connections during the evaluation phase.
GraphWalker. GraphWalker [49] supports fast random
walks on large graphs with a single machine. We exercise
three common random walk algorithms, namely, Graphlet
Concentration (Graphlet), Personalized PageRank (PPR) and
SimRank (SR). We also follow GraphWalker to generate a
Kron30 dataset using the Graph500 Kronecker [2], which con-
sists of 1 billion vertices and 32 billion edges that take 638GB
and 136GB of persistent media space to store its original text
data and the compressed CSR data, respectively. We use the
GraphWalker default configurations.
Fileserver. We exercise the predefined workload, fileserver,
within the Filebench framework [1]. It uses 8 concurrent
threads to issue I/Os with variable sizes presented in Table 1.
Enabling/disabling THP. We test MySQL and Fileserver
without using transparent huge pages (THP), resulting in non-
contiguous memory copies. This is recommended by the
MySQL official site as THP introduces negative performance
impacts on random memory accesses with small I/O sizes.
Contrary, we enable THP for GraphWalker with contiguous
copies, as its workloads are read-dominating and bulk-sized.

6.3.2 MySQL Enhancement
Single-socket results. First, we consider the performance
within a single socket, where application threads and PM
are located under socket 0. Figure 10a shows the throughput
comparison (officially measured as tpmC by TPC-C) between
CPU-only and Fastmove execution of MySQL. Across all set-
tings, Fastmove consistently delivers better performance than

NOVA ext4 XFS NOVA ext4 XFS
Single-socket Muti-socket

0

50k

100k

tpm
C

(a) Peak throughput

NOVA ext4 XFS NOVA ext4 XFS
Single-socket Muti-socket

0

100

200

300

Qu
ery

 Ti
me

 [u
s]  Fastmove  CPU-only

(b) Query time
Figure 10: Throughput (measured as tpmC) and query time
achieved by running TPC-C against MySQL.

CPU-only, and the improvements associated with different un-
derlying file systems look similar. For instance, Fastmove in-
troduces 1.23×, 1.15×, and 1.13× speedups of peak through-
put over the CPU-only baseline across NOVA, ext4-DAX, and
XFS-DAX, respectively. Figure 10b reports the corresponding
average query time results. Consistent with the throughput
results, Fastmove reduces the average latency of CPU-only
by 17.7-25.0%.

To understand the source of improvements, we profile the
I/O distribution of the TPC-C workload. As shown in Table 1,
almost all of its read requests are smaller than 32KB. As this is
below the 32KB threshold, the vast majority of read requests
go through the ordinary CPU-only path in Fastmove. As a
consequence, the performance improvements here are driven
by the 90.9% of bulk writes beyond 16KB, which correspond
to the logging activities handled by the 4 background flush
threads. To conclude, Fastmove indeed choose proper mem-
ory copy paths for I/O with varied sizes, and I/OAT DMA
does alleviate the NVM accessing data stalls.
Multi-socket results. Next, we explore the performance
implications under two sockets, where we replicate the above
experiments by evenly distributing application threads to two
CPUs and spreading the data on all 12 PMs via Linux device
mapper under its stripped mode.

Figure 10a shows the absolute throughput numbers
achieved by CPU-only with two sockets decrease by 38.1-
48.1%, compared to the single-socket counterparts. This is
because performance degrades for cross-socket memory copy
operations as depicted in Figure 8. In contrast, Fastmove
observes lighter negative impact of cross-socket NVM ac-
cess with only 0.8-15.5% drop in peak throughput. Fastmove
significantly outperforms the CPU-only baseline, introduc-
ing 1.68-2.16× tmpC improvements. Additionally, in Fig-
ure 10b, Fastmove brings a significant latency reduction of
47.1-60.8%. Contrary to the single-socket results, we see that
Fastmove’s improvements over CPU-only expand. This is
because the threshold for remote reads drops to 16KB, which
allows for cross-socket NVM reads to take advantage of the
DMA if DMA usage is not full, and also the DMA benefits for
remote reads and writes are larger than those for local ones.
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Figure 11: Execution times running Graphlet (G), PPR and
SR over GraphWalker with NOVA/ext4-DAX/XFS-DAX.

6.3.3 GraphWalker Enhancement
Single-socket results. Figure 11a shows the execution times
of three graph analytic tasks over GraphWalker. The perfor-
mance of the CPU-only baseline looks similar across different
file systems, and so does our Fastmove. However, we observe
that Fastmove significantly reduces the execution time over
CPU-only, despite the fact that the graph analytic jobs are
read-only workloads towards the underlying data systems.
More specifically, Fastmove introduces 1.78-2.13×, 1.79-
2.14×, and 1.65-1.97× speedups for Graphlet, PPR, and SR,
respectively. The significant improvements come from the
dominating bulk read I/Os as shown in Table 1.
Multi-socket results. Consistent with the above TPC-C
results, the improvements of Fastmove for the graph ana-
lytic workloads become larger compared to the single-socket
counterparts. Figure 11b depicts that Fastmove brings 1.91-
2.01×, 1.97-2.05×, and 1.71-2.06× execution time speedups
for Graphlet, PPR and SR running in GraphWalker, respec-
tively, across three different NVM-based file systems.

6.3.4 Fileserver Enhancement
The performance trends of the fileserver workload within
Filebench atop NOVA look similar to those of TPC-C and
graph algorithms above. Due to the space limit, we omit
the figures. To summarize, Fastmove introduces 1.12× and
1.27× speedups in peak throughput, measured by IOPS, for
the single-socket and multi-socket settings, respectively.

6.3.5 CPU Consumption Improvement
Finally, we explore another possible benefit of using
Fastmove, which is the CPU consumption improvement.
Here, we measure the CPU cycles spent in moving data be-
tween DRAM-NVM and processing the application logic. For
MySQL TPC-C workload, Fastmove reduces its data move-
ment CPU usage from 62% to 39% and from 90% to 28% for
single-socket and multi-socket settings, respectively. We also
observe a significant increase in its utime. This is because
the saved CPU cycles from data movement are used to per-
form useful work, leading to improved throughput numbers
(presented in Section 6.3.2). Unlike this, for GraphWalker,
Fastmove’s CPU usage improvement seems little. For in-
stance, Fastmove reduces its CPU usage for data movement
by up to 5%. This is because workloads with GraphWalker

benefits largely by the DMA-CPU cooperated bulk read opti-
mization, which requires CPU involvement.

6.4 Other Factors
6.4.1 Emulated NVM Performance
We deploy NOVA on emulated NVM, replicate the experiments
for Figure 8, and report the latency comparison results be-
tween CPU-only, Simple-DMA, and Fastmove in Figure 12.
Fastmove outperforms CPU-only for local reads and writes
with I/O sizes of 16KB and beyond. The benefits observed are
larger than those corresponding to experiments with Optane
PM (Figure 8). This is because emulated NVM is of DRAM-
like read and write performance. Considering the association
cost in Section 3.2.1, the dominating DMA copy execution
step becomes faster, leading to visible end-to-end read/write
latency improvements. Also, this implies that the time cost of
NVM device access plays a key role in assigning DMA re-
sources, i.e., the performance turning point based on I/O size
decreases when NVM device performance improves, and vice
versa. Furthermore, we find that the DMA bandwidth within
Fastmove saturates when concurrency reaches 4 threads, ex-
actly the same as the Optane PM experiments. This is because
both the emulated NVM and Optane based experiments make
use of I/OAT DMA, and under both cases, DMA bandwidth
capacity is lower than Optane PM and emulated NVM.

6.4.2 DDIO Impacts
Enabling DDIO introduces no impact on the CPU-only base-
line. However, DDIO affects DMA reads and writes differ-
ently. To unify our settings, we chose to turn DDIO off for our
evaluation. With DDIO enabled, MySQL-TPCC-Fastmove
outperforms the CPU-only baseline by 5.4%, but performs
15% worse than the DDIO-disabled counterpart. Unlike this,
we observe no differences for GraphWalker’s three algorithms,
when switching on/off DDIO. This is because DDIO makes
DMA writes slower and thus, does not affect GraphWalker
whose workload is read-only.

7 Related Work
I/OAT usage. Previous studies have used I/OAT to of-
fload memcpy operations that move data from DRAM to
DRAM [46,47] as well as to improve network bandwidth with
lower CPU utilization in data center environments [25, 48].
Unlike these, our study stands to speed up data movement
between DRAM and NVM, where the interaction between
I/OAT and hybrid memory architectures is more complex
and its acceleration demands careful system design. Most
recent work have included I/OAT as a minor optimization for
data movement in NVM-based systems with special purposes
ranging from log replication [7] to memory migration [41].

Unlike them, Fastmove is a general system to make use
of on-chip DMA to address the inefficiencies (e.g., lower
bandwidth or extra CPU overhead) introduced by CPU-only
accesses to NVM for bulk, storage-facing I/Os, which has
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Figure 12: The latency comparison between Fastmove and Simple-DMA, with 1,2,4-threaded FIO workloads , normalized to
the latencies of CPU-only memory copying when deploying NOVA on in-kernel NVM-emulator.

been observed to be a critical performance limitation in com-
bined use of Optane PM and Intel processors. These systems
can take advantage of Fastmove with little effort. Kalia et
al. [21] present a number of optimizations for efficient remote
NVM accesses via network, which includes an initial attempt
to use I/OAT to improve single-core RPC performance for
bulk remote NVM writes. This work is orthogonal to ours.
NVM-related studies and systems. There is a large body
of work focusing on the analysis of the basic performance
characteristics of using NVM [12, 14, 51, 55, 56]. The rich
findings from these studies have spawned numerous studies
for re-designing scalable and high performance data struc-
tures [24, 28, 50], file systems [19, 29, 53, 57] and key-value
stores [9, 27]. Our work extends the existing study by in-
corporating the interaction between NVM and DMA, and
complements the prior NVM-based systems as they can bene-
fit from either the general design or the real implementation
of Fastmove to alleviate data stalls. OdinFS [57] decouples
application threads from the background NVM access threads
and additionally parallelizes NVM accesses across sockets. Its
NVM threads can benefit from Fastmove and its integration
will be explored in the future.
Tiered memory systems. Fastmove handles more com-
plex I/O patterns than those in tiered memory. In addition,
Fastmove is implemented in the kernel with simple APIs.
Therefore, Fastmove could be directly used in tiered memory
systems. In fact, we have successfully adapted Nimble [54]
to transparently use Fastmove through simple API replace-
ment. However, through preliminary evaluations, we find that
the DMA, in particular I/OAT, may not be a good option for
improving page migration in tiered memory. This is because
the DMA bandwidth is easily overwhelmed by the work-
load. Therefore, Fastmove does not deliver any significant
improvement over Nimble-DMA [54], a Linux patch that
adapts Nimble to use I/OAT.
Zero-copy technologies. Another line of work on PM at-
tempts to move data management from kernel space to user
space to eliminate data copies along the I/O path. For instance,
the memory mapped file I/O (e.g., the mmap system call) is
enabled such that users may access files in the same way as
memory data [52]. However, mmap-based solutions may incur
high overhead due to page faults [10, 26] and may have to

have applications handle data persistence and reliability on
their own [36, 38]. Yet another line of work leverages kernel
by-pass I/O interfaces such as SPDK and PMDK [4] to avoid
the use of the complicated OS I/O stack [44]. However, the
performance gains come at the price of substantial effort for
re-writing the I/O handling part of the target applications.

In contrast, our work demonstrates better applicability since
there is no code change required to run existing applications
atop Fastmove, as long as they use kernel file systems. More-
over, it is possible to extend our design to handle memory
copy operations in user space, where these operations may
have an even bigger impact on the overall performance com-
pared to their counterparts in kernel space. This is because
by bypassing the kernel, memory copying will contribute to a
larger portion of the end-to-end access performance.

8 Conclusion
In this paper, we first study the DRAM-NVM data move-
ment problem and then propose and implement Fastmove,
a general engine that exploits the on-chip DMA technology.
With a clean abstraction and transparent design, applications
can use Fastmove via slightly-modified file systems with no
further changes. Experimental results with industry-standard
workloads on MySQL and popular random walk algorithms
on GraphWalker highlight that Fastmove brings significant
benefits such as peak throughput increase, execution time
reduction, and CPU consumption savings.
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