
This paper is included in the Proceedings of the
21st USENIX Conference on File and

Storage Technologies.
February 21–23, 2023 • Santa Clara, CA, USA

978-1-939133-32-8

Open access to the Proceedings
of the 21st USENIX Conference on

File and Storage Technologies
is sponsored by

ConfD: Analyzing Configuration Dependencies of
File Systems for Fun and Profit

Tabassum Mahmud, Om Rameshwar Gatla, Duo Zhang, Carson Love,
Ryan Bumann, and Mai Zheng, Iowa State University

https://www.usenix.org/conference/fast23/presentation/mahmud

https://www.usenix.org/conference/fast23/presentation/mahmud

CONFD: Analyzing Configuration Dependencies of File Systems for Fun and Profit

Tabassum Mahmud, Om Rameshwar Gatla, Duo Zhang, Carson Love, Ryan Bumann, Mai Zheng
Department of Electrical and Computer Engineering, Iowa State University, Ames, IA

Abstract
File systems play an essential role in modern society for

managing precious data. To meet diverse needs, they of-
ten support many configuration parameters. Such flexibility
comes at the price of additional complexity which can lead to
subtle configuration-related issues. To address this challenge,
we study the configuration-related issues of two major file
systems (i.e., Ext4 and XFS) in depth, and identify a prevalent
pattern called multilevel configuration dependencies. Based
on the study, we build an extensible tool called CONFD to
extract the dependencies automatically, and create six plugins
to address different configuration-related issues. Our experi-
ments on Ext4 and XFS show that CONFD can extract more
than 150 configuration dependencies for the file systems with
a low false positive rate. Moreover, the dependency-guided
plugins can identify various configuration issues (e.g., mis-
handling of configurations, regression test failures induced by
valid configurations).

1 Introduction

File systems (FS), such as Ext4 [54] and XFS [89] on Linux-
based operating systems (OS) and NTFS [76] on Windows
OS, play an essential role in modern society. They directly
manage various files on desktops, laptops, and smartphones
for numerous end users [12]. Moreover, they often serve
as the local storage backend for distributed storage systems
(e.g., Lustre [63], GFS [1], HopsFS [22], MySQL NDB Clus-
ter [73]) to enable storage management at scale.

To meet diverse needs, many file systems are designed with
a wide range of configuration parameters controllable via
utilities [41, 45, 48, 52, 56, 58, 94, 100], which enables users
to tune the systems with different tradeoffs. For example, Ext4
contains more than 85 configuration parameters which can
be modified through a set of utilities called e2fsprogs [52].
The combination of the configuration parameters represents
over 1037 configuration states [32].

While configuration parameters have improved the system
flexibility, they introduce additional complexity for reliability.

Figure 1: A Configuration-Related Issue of Ext4. When
sparse_super2 feature is enabled and the size parameter
of resize2fs is larger than the Ext4 size, expanding the file
system results in metadata corruption.

Subtle correctness issues often rely on specific parameters to
trigger [6, 13]; consequently, they may elude intensive testing
and affect end users negatively. For example, in December
2020, users of Windows OS observed that the checker utility
of NTFS (i.e., ChkDsk [45]) may destroy NTFS on SSDs [60,
88]. The incident turned out to be configuration-related: two
specific parameters must be satisfied to manifest the issue, in-
cluding the ‘/f’ parameter of ChkDsk and another (unnamed)
parameter in Windows OS [87].

Similarly, Figure 1 shows another configuration-related
issue involving Ext4 and its mke2fs and resize2fs utili-
ties [52]. Two conditions must hold to trigger the bug: (1)
the sparse_super2 feature is enabled in Ext4 (via mke2fs);
(2) the value of the size parameter of resize2fs must be
larger than the size of Ext4 (i.e., expanding the file system).
Once triggered, the bug will corrupt the Ext4 metadata with
incorrect free blocks. The root cause behind the issue was
logical: with the specific configuration, the free block count
of the last block group of Ext4 was calculated before adding
new blocks for expansion.

Due to the combinatorial explosion of configuration states
and the substantial time needed to scrutinize a file system

USENIX Association 21st USENIX Conference on File and Storage Technologies 199

under each configuration state, it is practically impossible to
exhaust all states for thorough testing today [9]. Moreover,
with more and more heterogeneous devices and advanced fea-
tures being introduced [65, 83, 86], the configuration states
are expected to grow. Therefore, effective methods to help
improve configuration-related testing and identify critical con-
figuration issues efficiently are much needed.

1.1 Limitations of the State of the Art
There are practical test suites to ensure the correctness of file
systems under different configurations (e.g., xfstests [95]).
Unfortunately, their coverage in terms of configuration is lim-
ited: fewer than half of configuration parameters are used
based on our study, which reflects the need for better tool sup-
port. Also, configuration-related issues have emerged in other
software systems and have received much attention [4, 13, 24,
33, 35]. But unfortunately, existing efforts mainly focus on
relatively simple configuration issues (e.g., typos [4]) within
one single application, which is limited for addressing the file
system configuration challenge involving multiple programs.
Please refer to §2 for more details.

1.2 Our Efforts & Contributions
This paper presents one of the first steps to address the in-
creasing configuration challenge of file systems. Inspired by
a recent study [33] on configuration issues in Hadoop [40]
and OpenStack [77], we focus on configuration dependency,
which describes the dependent relations among configuration
parameters [33]. Such dependency has been identified as a
key source of complexity caused problems, and capturing the
dependency is essential for improving configuration design
and tooling [13, 19, 33].

While the basic concept of configuration dependency has
been proposed in the literature (see §2), the understanding of
specific dependency patterns and implications in the context
of file systems is still limited. Therefore, we first conducted
an empirical study on 78 configuration-related issues in two
major file systems (i.e., Ext4 and XFS). By scrutinizing real-
world bugs and the relevant source code, we answer one im-
portant question: What critical configuration dependencies
exist in file systems?

Our study reveals a prevalent pattern called multilevel con-
figuration dependencies. Besides the relatively simple config-
uration constraints (e.g., value range [13]), there are implicit
dependencies among parameters from different utilities of
a file system. The majority (96.2%) of issues in our dataset
requires meeting such deep configuration dependencies to
manifest. Interestingly, the workloads applied to the file sys-
tem do not have to be configuration-specific: 71.8% issues
only involve generic file system operations.

Based on the study, we built an extensible framework called
CONFD to extract the multilevel configuration dependencies

automatically and leverage dependency-guided configuration
states for further analysis. One key challenge is how to es-
tablish the correlation between parameters specified through
different utilities which have different ways of configuration
handling. We address the challenge by metadata-assisted taint
analysis, which leverages the fact that all utilities of a given
file system share the same metadata structures. Moreover,
based on the dependencies extracted, we created six plugins
to help address configuration-related issues in file systems
from different angles.

Our experiments show that CONFD can extract 154 dif-
ferent configuration dependencies with a low false positive
rate (8.4%) for Ext4 and XFS. Moreover, with the depen-
dency guidance, the CONFD plugins can identify various
configuration-related issues, including inaccurate documenta-
tions, configuration handling issues, and regression test fail-
ures induced by valid configurations.

In summary, this paper makes the following contributions:

• Deriving a taxonomy of critical configuration dependen-
cies of file systems based on real-world issues.

• Building the CONFD prototype 1 to extract configuration
dependencies and expose relevant issues in file systems.

• Integrating with multiple practical tools (e.g.,fault injec-
tor [25], fuzzer [29], regression test suites [51, 95]) to
improve their configuration coverage and effectiveness.

• Evaluating the methodology on two widely used file
systems and demonstrating the effectiveness.

The rest of the paper is organized as follows: §2 introduces
the background and related work; §3 presents the empirical
study and findings; §4 describes the CONFD framework; §5
shows experimental results; §6 discusses limitations and po-
tential extensions; §7 concludes the paper.

2 Background & Related Work

2.1 Background

File System Configurations. The configuration methods of
file systems are different from that of many applications,
which makes the problem arguably more challenging. As
shown in Figure 2, a typical file system may be configured
through a set of utilities at four different stages:

• Create. When creating file systems, the mkfs utility (e.g.,
mke2fs for Ext4) generates the initial configurations.

• Mount. When mounting file systems, certain configu-
rations can be specified via mount (e.g., ‘-o dax’ to
enable the Direct Access or DAX feature [65]).

1CONFD is on https://github.com/data-storage-lab/ConfD

200 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/data-storage-lab/ConfD

Figure 2: Methods of Configuring File Systems. This figure
shows four typical stages to configure a file system: (a) at
creation (e.g., mke2fs) or mount time (mount) before usage;
(b) via online utilities (e.g., e4defrag); (c) via offline utilities.

• Online. Many utilities can change the configurations of a
mounted file system directly by modifying the metadata
online (e.g., Ext4 defragmenter e4defrag [53], Win-
dows NTFS checker ChkDsk [45]).

• Offline. Offline utilities can also modify file sys-
tem images and change the configurations (e.g.,
resize2fs [79], e2fsck [50])

Note that all the utilities have different configuration pa-
rameters to control their own behaviors, which will eventu-
ally affect the file system state. Moreover, the configuration
parameters may affect the behavior of the file system long
after the FS image is created, and some configurations can-
not be changed later. Also, the validation of parameters may
occur at both user level and kernel level. For example, the
‘-O inline_data’ parameter of mke2fs and the ‘-o dax’ of
mount are further validated in the ext4_fill_super func-
tion of Ext4. Therefore, we believe it is necessary to consider
the file system itself as well as all the associated utilities as
an FS ecosystem to address the configuration challenge. For
simplicity, we call the file system and utilities as components
within the FS ecosystem.

The multi-stage configuration method is common among
file systems. As listed in Table 1, many popular file systems
follow similar modular designs and can be configured via
different utilities at different stages. Therefore, we believe
that the multi-component configuration challenge is general.
We focus on Ext4 and XFS in this work because they are
two major file systems on Linux and they support the latest
DAX [65] configuration for non-volatile memories (NVM).
We leave the others as future work (§6).

FS Test Suites. Practical test suites have been created to
ensure the correctness of file systems under various config-
urations. Unfortunately, due to the complexity of configura-
tions, their coverage in terms of configuration is limited. As
shown in Table 2, fewer than half of configuration parame-
ters are used in the standard test suites of Linux file systems
(i.e., xfstests [95], e2fsprogs/tests [51]) based on our
study. Since each parameter may have a wide range of val-
ues representing different states, the total number of missed

FS (OS) Four Stages of Configuration
Create Mount Online Offline

Ext4 (Linux) [66] [69] [53], [79] [50], [79]
XFS (Linux) [68] [69] [91], [92] [90], [93]

BtrFS (Linux) [67] [69] [41], [43] [42]
UFS (FreeBSD) [75] [70] [59], [80] [49], [58]
ZFS (FreeBSD) [96] [98] [99], [100] [97]

NTFS (Windows) [55] [72] [45], [46] [45], [81]
APFS (MacOS) [48] [71] [48] [48], [57]

Table 1: Examples of configuration methods for different
file systems. The last four columns list example utilities that
can affect the file system configuration states.

Test Target # of Conf. Param.
Suite Software Total Used

xfstests Ext4 >85 29 (< 34.1%)
e2fsprogs e2fsck >35 6 (< 17.1%)
/tests resize2fs >15 7 (< 46.7%)

Table 2: Configuration Coverage of Test Suites.

configuration states is much more than the number of unused
parameters, which implies the need for better tool support.
Configuration Constraints & Dependencies. Configuration
constraints specify the configuration requirements (e.g., data
type, value range) of software [13]. Intuitively, such infor-
mation can help identify important configuration states, and
it has proved to be effective for addressing configuration-
related issues in a wide range of applications [4, 8, 13, 14, 33].
Configuration dependency is one special type of constraint
describing the dependent correlation among parameters [13,
33], which has shown recently to be critical for addressing
complex configuration issues in cloud systems [33]. For sim-
plicity, we use constraints and dependencies interchangeably
in the rest of the paper. Note that although the basic concepts
have been proposed, there is limited understanding of them in
the context of file systems. This paper attempts to fill the gap.

2.2 Related Work
Analysis of Software Configurations. Configuration issues
have been studied in many software applications [4, 6, 7, 13,
14, 24, 33, 35]. For example, ConfErr [4] manipulates param-
eters to emulate human errors; Ctests [35] detects failure-
inducing configuration changes. In general, these works do
not analyze deep dependencies within the software. The
closest work is cDEP [33], which notably observes inter-
component dependencies in Hadoop [40] and OpenStack [77].
Unfortunately, their solution is largely inapplicable for file
systems. This is because their target components share config-
uration specifications (e.g., XML) and libraries [39], which
makes them equivalent to one single program in terms of
configuration. In contrast, the configuration dependencies in
file systems may cross different programs and the user-kernel
boundary, which requires non-trivial mechanisms to extract.

USENIX Association 21st USENIX Conference on File and Storage Technologies 201

In addition, cDEP relies on a Java framework [82] which
cannot handle C-based file systems.

Reliability of File Systems. Great efforts have been made to
improve the reliability of file systems [2, 10, 17, 18, 29] and
their utilities [3, 25, 26, 27, 78]. For example, Prabhakaran et
al. [2] apply fault injection to analyze the failure policies of
file systems and propose improved designs based on the IRON
taxonomy; Xu et al. [30] and Kim et al. [29] use fuzzing to
detect file system bugs; SQCK [3] and RFSCK [25] improve
the checker utilities of file systems to avoid inaccurate fixes.
While effective for their original goals, these works do not
consider multi-component configuration issues. On the other
hand, the configuration dependencies from this work may be
integrated with these existing efforts to improve their coverage
(see §4.2). Therefore, we view them as complementary.

Configuration Management Tools. Faced by the increasing
challenge, practitioners have created dedicated frameworks
for configuration management [31, 44]. For example, Face-
book HYDRA [31] supports managing hierarchical configu-
rations elegantly. While helpful for developing new applica-
tions, refactoring FS ecosystems to leverage such frameworks
would require substantial efforts (if possible at all). Notably,
the framework supports running a program with different
compositions of configurations automatically. Nevertheless,
since it does not understand configuration dependencies, it
may generate many invalid configuration states (see §5.2.3).
This work aims to address such limitations.

3 Configuration Dependencies in File Systems
In this section, we present a study on the Ext4 and XFS
ecosystems to understand the potential patterns of config-
uration issues and guide the design of solutions. We discuss
the methodology and findings in §3.1 and §3.2, respectively.

3.1 Methodology
Our dateset includes two parts: (1) the source code of
Ext4 and XFS and seven important utilities including
mke2fs, mount, e4defrag, resize2fs, e2fsck, mkfs.xfs,
and xfs_repair, which are described in Table 3; (2) a set of
78 configuration-related bug patches for the two FS ecosys-
tems, which are collected from the commit histories of their
source code repositories via a combination of keyword search
(e.g., ‘configuration’, ‘parameter’, ‘option’), random sam-
pling, and manual validation. Note that the patch collection
method is inspired by previous studies of real-world bugs [5,
12, 36]. While time-consuming, it has proved to be valuable
for driving system improvements [5, 12]. On the other hand,
similar to previous studies, the findings of our study should
be interpreted with the method in mind. For example, the 78
patches only represent a subset of issues that have been trig-
gered and fixed; there are likely other configuration-related
issues not yet discovered (see §6 for further discussion).

3.2 Findings

Based on the dataset, we analyzed each patch and the relevant
source code in depth to understand the logic, which enables
us to identify the configuration usage scenarios as well as
configuration constraints that are critical. We summarize our
findings in Table 3 and Table 4 and discuss them below.

Finding #1: The majority of cases (96.2%) involve critical
parameters from more than one component. The first column
of Table 3 shows six typical usage scenarios of file systems
which cover all bug cases in our dataset (78 in total). 96.2%
of the bug cases require specific parameters from at least two
key utilities (i.e., the utilities in bold in each usage scenario)
to manifest. This reflects the complexity of the issues and
suggests that we cannot only consider one single component.

Finding #2: There is a hierarchy of configuration dependen-
cies. We classify the configuration constraints derived from
our dataset into three major categories as follows:

• Self Dependency (SD) means individual parameters
must satisfy their own constraints (e.g., data type or
value range). For example, the blocksize parameter
of mke2fs has a value range of 1024 - 65536 and must
be a power of 2.

• Cross-Parameter Dependency (CPD) means multiple
parameters of the same component must satisfy rela-
tive relation constraints (e.g., two mke2fs parameters
meta_bg and resize_inode cannot be used together).

• Cross-Component Dependency (CCD) means the pa-
rameters or behaviors of one component depend on the
parameters of another component. Both dependencies
in Figure 1 belong to this category becasue they in-
volve parameters of mke2fs and the (buggy) behavior of
resize2fs depend on them.

As summarized in Table 4, each major category may con-
tain a couple of sub-categories which describe more spe-
cific constraints. Together, these constraints form a hierarchy
which we call multilevel configuration dependencies. Note
that we only observed 7 out of 8 sub-categories in the dataset.
We include the unseen “Value” sub-category in CPD based
on the literature [13] for completeness.

Moreover, among all the dependencies, there is a subset
which directly contribute to the manifestation of the bugs in
our dataset: the relevant parameters are explicitly mentioned
in the bug patches, and modifications to the corresponding
functionalities are needed to fix the bugs (i.e., they are related
to the root causes). We call this subset of dependencies as
critical dependencies. The count of the critical dependencies
for each sub-category is shown in the last column of Table 4.
We are able to derive 168 critical dependencies manually
in total, which is larger than the number of bug cases. This
is because multiple critical dependencies may be needed to

202 21st USENIX Conference on File and Storage Technologies USENIX Association

FS Usage Scenarios Description # of Multilevel Config. Dependencies
(key configuration utilities are in bold) Bug SD CPD CCD
1 mke2fs - mount - Ext4 create & mount an Ext4 to use 13 13 (100%) 1 (7.7%) 13 (100%)
2 mke2fs - mount - Ext4 - e4defrag online defragmentation 1 1 (100%) – –
3 mke2fs - mount - Ext4 - umount - resize2fs resize an umounted Ext4 17 17 (100%) – 17 (100%)
4 mke2fs - mount - Ext4 - umount - e2fsck check Ext4 & fix inconsistencies 36 36 (100%) 4 (11.1%) 34 (94.4%)
5 mkfs.xfs - mount - XFS create & mount an XFS to use 5 5 (100%) 2 (40%) 5 (100%)
6 mkfs.xfs - mount - XFS - umount - xfs_repair check XFS & fix inconsistencies 6 6 (100%) 1 (16.7%) 6 (100%)

Total 78 78 (100%) 8 (10.3%) 75 (96.2%)

Table 3: Distribution of Configuration Bugs in Six Scenarios. This table shows the distribution of 78 configuration bugs in six
typical usage scenarios of file system. The last three columns shows the percentages of bug cases that involve Self-Dependency
(SD), Cross-Parameter Dependency (CPD), and Cross-Component Dependency (CCD), respectively.

Multilevel Config. Dependencies Description Observed? Count
Self Dependency Data Type parameter P must be of a specific data type (e.g., integer) Y 44

(SD) Value Range P must be within a specific value range (e.g., P < 4096) Y 41
Cross-Parameter Control P1 of C1 can be enabled iff P2 of C1 is enabled/disabled Y 5

Dependency Value P1’s value depends on P2 ’s value (e.g., P1 < P2) N –
(CPD) Behavioral component C1’s behavior depends on P1 and P2 of component C1 Y 1

Cross-Component Control P1 of C1 can be enabled iff P2 of C2 is enabled/disabled Y 1
Dependency Value P1’s value depends on P2 from another component Y 1

(CCD) Behavioral component C1’s behavior depends on P2 of C2 Y 75
Total 7/8 168

Table 4: Multilevel Configuration Dependencies. This table describes the multilevel configuration dependencies observed. Pn
means parameter, Cn means component. The last column shows the count of each sub-category of dependency observed.

trigger a bug. For example, both dependencies in Figure 1 are
critical dependencies for this bug case.

As shown in the last three columns of Table 3, SD and CCD
are almost always involved in all scenarios (100% and 96.2%
respectively), while CPD is non-negligible (10.3%). This is
because SD represents relatively simple constraints which
always need to be satisfied first to make the target component
work (e.g., correct spelling). SD is relatively easy to check
and has been the focus of previous work [4]. However, this
does not mean that 100% of the bugs could be avoided if
SD is checked or satisfied. For example, a bug related to
both the bigalloc and extent parameters (i.e., there is a
CPD involved) may still occur even if the two parameters
are spelled correctly. In other words, only considering simple
constraints of individual parameters is not enough.

Interestingly, we observed both CPD and CCD between the
DAX feature and other seemingly irrelevant configurations. In
one case, a corruption was triggered when ‘-O inline_data’
was used in mke2fs and the image was mounted with ‘-o
dax’ subsequently. In another case, the DAX feature con-
flicted with the ‘has_journal’ configuration, which may
lead to corruptions when changing the journaling mode on-
line. Such unexpected dependencies implies the complexity
of adding the DAX support to the Linux kernel.

Finding #3: Configuration parameters are handled in hetero-
geneous ways in an FS ecosystem. We identified four major
sources of heterogeneity in FS configurations. First, different

parameters may be mapped to different types of variables
in the code. For example, the parameters of Ext4 may be
stored in (at least) four different ways including (i) a local
variable, (ii) a global variable, (iii) a bit in a bitmap accessed
via bit operations, and (iv) directly in the superblock. Second,
within the superblock, parameters may be kept either in one
single field (e.g., s_log_block_size) or as one member of
a compound field. Third, parameters can be loaded from the
superblock either directly or through library calls. Lastly, dif-
ferent components may use different functions for handling
configurations (e.g., resize2fs uses the “main” function,
while mke2fs invokes a special function called “PRS”). Such
heterogeneity makes previous solutions mostly inapplicable.
Finding #4: The majority of cases (71.8%) do not require
configuration-specific workloads to manifest. Interestingly,
despite the complexity, many bugs can be triggered without
applying configuration-specific workloads. This suggests that
we may re-use existing efforts on stressing file systems [51,
95] to analyze configuration-related issues effectively.

4 Extracting & Using Multilevel Configuration
Dependencies

Based on the study, we built an extensible framework called
CONFD to leverage the dependency information to address
configuration-related issues. As shown in Figure 3, CONFD
consists of two main parts: (1) ConfD-core (yellow box) for
extracting multilevel configuration dependencies and generat-

USENIX Association 21st USENIX Conference on File and Storage Technologies 203

Figure 3: Overview of CONFD. There are two parts: (1)
ConfD-core (yellow) for extracting configuration dependen-
cies and generating critical states; (2) ConfD-plugins (green)
for detecting various configuration-related issues.

ing critical configuration states, which further contains three
sub-modules (i.e., Taint Analyzer, Dependency Analyzer, and
State Generator); (2) ConfD-plugins (green box) for detecting
various configuration-related issues based on the generated
configuration states. We elaborate on the two parts in the
following two subsections respectively.

4.1 Extracting Configuration Dependencies
4.1.1 Metadata-assisted Taint Analysis
As the first step, the Taint Analyzer of CONFD performs
metadata-assisted taint analysis and generates taint traces to
capture the propagation flow of configuration parameters in
the target FS ecosystem.

It takes the source code of the target system as input, and
uses the LLVM compiler infrastructure [85] to generate inter-
mediate representation (IR) of the source code. It then tracks
the propagation of each configuration parameter along the
data-flow paths in IR based on the classic taint analysis algo-
rithm [21]. We maintain a set to keep the initial configuration
variables and any variables derived from the initial configura-
tion variables while traversing the IR. When a new variable is
added to the set, we add the corresponding IR instruction to
the taint trace. We maintain a mapping between each configu-
ration parameter and the variables derived from it to enable
tracking if a variable may be derived from multiple parame-
ters, which is essential for establishing the correlation across
parameters. Our taint analysis is context-sensitive and can
handle both intra-procedural and inter-procedural analysis.
Context-sensitivity is important for inter-procedural analysis
because one function can be called from different contexts,
which is also crucial for deriving accurate dependency across
different taint traces (§4.1.2).

One unique challenge we encounter is how to establish the
mapping between parameters of different components of the
FS ecosystem. As mentioned in §3.2, the components in the

FS ecosystem tend to load configurations in different ways
and process equivalent FS information using different vari-
ables or functions. We address this challenge based on one key
observation: all components need to access the same FS meta-
data structures. We can leverage shared metadata structures
to connect relevant parameters of different components.

More specifically, the parameter values relevant to the
FS configuration are (eventually) stored in the superblock
structure of the file system. For example, the parameter -I
inode-size from mke2fs is stored as the 27th member of
the superblock (s_inode_size). When another component
(e.g., e2fsck) loads the s_inode_size from the superblock
to access it, it is essentially dependent on the -I inode-size
parameter of mke2fs. We map the mke2fs parameter values
to relevant superblock fields by tracking where the parameter
value is being written in the superblock. Similarly, the ac-
cesses to the superblock in other components are also tracked.
Based on the mapping to the same superblock fields (e.g.,
s_inode_size), we can establish the connection between
taint traces from different components.

Note that since CONFD implements the taint analysis at
the LLVM IR level, any file system that can be compiled to
LLVM IR may benefit from it for configuration dependency
analysis. The current prototype uses the Clang frontend of
LLVM which supports C/C++/Objective-C languages [85].

4.1.2 Multilevel Dependency Analysis
Given the taint trace of every configuration parameter, the De-
pendency Analyzer further analyzes the potential correlations
between parameters based on the multilevel dependencies
derived from our study (§3).

Specifically, the self-dependency (SD) for each parameter
is derived from their individual taint traces based on the data
type and value range of the variables. We also examine the
error statement immediately following a range check based
on the observation that an error statement may indicate an
invalid range. For CPD and CCD, we compare taint traces of
multiple parameters. If there are common lines (which are
context-sensitive), we consider them to be dependent. More-
over, after getting the dependent parameters, we also leverage
the subsequent error statements to further analyze the specific
types of dependency (e.g., should be enabled or disabled to-
gether). For example, the two parameters resize_inode and
meta_bg from mke2fs cannot be enabled together, so there
must be a common error statement immediately following
the condition check shared by the two taint traces. All of the
extracted dependencies are stored in the JSON format [61] to
describe both the parameters and the corresponding dependent
relations concisely.

4.1.3 Dependency-guided State Generation

With the dependency information, the State Generator gener-
ates concrete configuration states for further analysis. Instead

204 21st USENIX Conference on File and Storage Technologies USENIX Association

of randomly generating combinations of configurations which
may easily lead to useless states (§5.2.3), it leverages the ex-
tracted multilevel dependencies to generate states selectively.

Specifically, the State Generator uses a tree structure to
maintain different configuration states. The root of the tree
represents a default configuration state, and each child node
on the tree represents a configuration state with exactly one
modification made from its parent. The module operates simi-
lar to a Depth First Search (DFS) on a tree, except it leverages
the dependency information to guide which children nodes
are worth pursuing. For example, given the cross-parameter
dependency (CPD) between the bigalloc and blocksize
parameters of mke2fs, if the current node modifies bigalloc,
then the child node to consider will be a state with a modifi-
cation to blocksize.

Moreover, the module has a number of options that allow
for tuning based on needs. The first option is ‘depth’, which
dictates how deep the DFS is allowed to go. A larger value
results in a greater number of states being generated. The
default ‘depth’ is 3 which worked well in our experiments.
Another option is the ‘policy’ under which the State Generator
operates. There are two basic policies as follows:

Following Dependency. Under this policy, we always honor
the extracted multilevel dependencies when creating a con-
figuration state. For example, sparse_super should al-
ways be enabled if resize_inode is enabled for mke2fs
according to the multilevel dependency, so the module
may generate a state with both parameters (i.e., ‘mk2fs
-O resize_inode,sparse_super’). Essentially, this policy
only generates valid configuration states involving critical
parameters for the target FS ecosystem, which is the basic re-
quirement for running many FS applications or tools properly.
Note that this policy is consistent with recent work on testing
configuration changes which shows that valid configuration
changes may induce production failures [35].

Violating Dependency. Under this policy, we intention-
ally violate the multilevel dependencies when creating a
configuration state. For example, the resize_inode and
sparse_super parameters of mke2fs have a cross-parameter
dependency (CPD): sparse_super must be enabled if we
want to enable resize_inode. To violate the CPD, the
module may intentionally generate a state which disables
the sparse_super parameter while enabling resize_inode
(i.e., ‘mke2fs -O resize_inode,ˆsparse_super’). By
generating invalid configuration states on purpose, we enable
examining the (mis)configuration handling of the target sys-
tem. Note that this policy is inspired by the previous work on
simulating human errors in configuration [4]. However, differ-
ent from the relatively shallow violations (e.g., typos) which
have been largely handled in matured systems, we consider
more subtle violations that involve non-trivial dependencies.

In addition, to provide more flexibility for different use
cases, the State Generator supports customizing the two ba-

sic policies further with different tradeoffs (e.g., the num-
ber of parameters to consider, the type of dependency (i.e.,
SD/CPD/CCD) to use). As mentioned, a key challenge with
analyzing configurations of file systems is that the space is
too huge to exhaust. For example, mke2fs itself has more
than 8 trillion possible parameter combinations. With the
dependency guidance, CONFD can reduce the space to hun-
dreds or tens of thousands depending on the use case (§4.2),
which makes the configuration testing much more man-
ageable in practice. And as will be shown in §5.2.1, the
dependency-guided state generation will be more effective
than dependency-agnostic alternatives for exposing configu-
ration issues.

4.1.4 User Input

ConfD-core needs three types of input information from the
user, which can be specified in one single JSON file. First, to
start the taint analysis, the Taint Analyzer needs a function
name as the entry point. In the case of a utility program, the
function (which may invoke sub-functions) is expected to be
the major function for processing configurations. In the case
of the file system itself, the function can be either a function
for processing configurations, or a function that is interesting
(e.g., a newly added FS function). Second, the taint analysis
also requires the names of the variables representing the con-
figurations and the superblock in the source code, which are
often different across programs based on our experience on
Ext4 and XFS ecosystems. Third, to generate valid config-
uration states, the State Generator needs the command-line
syntax of FS configurations. Note that all the input can be
specified in the JSON format, and it is a one-time effort for
each program to be analysed.

4.2 Leveraging Configuration Dependencies

The dependency information and the dependency-guided con-
figuration states may be used in different ways to address
different issues [4, 13, 33]. As mentioned in §2.2, there are
existing efforts to improve FS ecosystems which cover a
wide range of techniques including fault injection [2, 25],
fuzzing [29, 30], regression test suites [51, 95], etc. While
these tools are excellent for their original design goals, they
are mostly agnostic to configuration dependencies and thus
cannot address tricky configuration-related issues effectively.
The CONFD plugin interface is designed to bridge the gap by
introducing dependency awareness to the traditional method-
ologies and thus amplify the effectiveness.

The current prototype of CONFD includes six plugins. As
summarized in Table 5, the first two plugins (#1 and #2) are
built from scratch, the next two plugins (#3 and #4) are based
on open-source research prototypes (R), and the last two (#5
and #6) are designed for enhancing standard test suites (S).
We discuss them in more details below:

USENIX Association 21st USENIX Conference on File and Storage Technologies 205

Plugin ID Description Base Tool (type) CONFD Plugin
#1 Configuration specification checker for Linux file systems N/A ConfD-specCk
#2 Misconfiguration handling checker for Linux file systems N/A ConfD-handlingCk
#3 An open-source fault injector for file system utilities rfsck [25] (R) ConfD-rfsck
#4 An open-source fuzzer for file systems gt-hydra [29] (R) ConfD-gt-hydra
#5 Regression test suite for Linux file systems xfstests [95] (S) ConfD-xfstests
#6 Regression test suite for Ext4 utilities e2fsprogs/tests [51] (S) ConfD-e2fsprogs

Table 5: Summary of CONFD Plugins. ‘Base Tool’ means existing tools that have been integrated with CONFD through the
corresponding plugins; ‘R’ means open-source Research prototype, ‘S’ means Standard test suites for file systems and utilities.

Plugin #1: Configuration Specification Checker. The spec-
ifications for the configurations of Linux file systems are
maintained through the Linux man-pages project [84]. Un-
fortunately, due to a variety of reasons (e.g., constant sys-
tem upgrades, feature additions, bug fixes), the specifications
may become inaccurate easily, which may confuse end users
and/or lead to configuration-induced failures [35, 64]. The
ConfD-specCk plugin is designed to mitigate the problem.
It parses the Linux man-pages related to the file system con-
figurations (e.g., mke2fs, mkfs.xfs) and checks a subset of
multilevel dependencies (Table 4) based on keywords. For
example, resize_inode and meta_bg cannot be enabled to-
gether for mke2fs (i.e., CPD), so meta_bg should appear in
the description of resize_inode with ‘disable’ (or similar
keywords) and vice versa. Similarly, value ranges (i.e., SD)
and other value dependencies (e.g., cluster_size needs to
be ‘equal’ or ‘greater’ than block_size) should also be spec-
ified in the descriptions accordingly. Such dependencies from
man-pages are stored in the JSON format for further compari-
son with the dependencies extracted from the source code by
ConfD-core (§4.1). A mismatch implies a potential specifica-
tion issue.

Plugin #2: Misconfiguration Handling Checker. A well
designed file system should be able to handle wrong config-
urations from end users (either by mistake or by intention)
gracefully. Failing to handle misconfigurations elegantly im-
plies misconfiguration vulnerabilities that could hurt system
reliability and/or security [13]. The ConfD-handlingCk plu-
gin is designed to expose the potential issues in misconfigura-
tion handling. Thanks to the built-in ‘Violating Dependency’
policy (§4.1.3), the plugin can directly leverage the invalid
configuration states generated by CONFD which violate inher-
ent configuration dependencies. It applies such automatically
generated misconfigurations to drive the target file systems
and utilities, and records the symptoms accordingly for post-
moterm analysis.

Plugin #3: Dependency-aware Fault Injector. Fault injec-
tion techniques have been applied to improve both file systems
and utilities [2, 15, 25, 28, 51]. By systematically generating
corrupted file system states, they enable analyzing the ro-
bustness of FS ecosystems thoroughly. However, given the
complexity of file system metadata, one open challenge is how
to generate vulnerable states efficiently. To mitigate the chal-

lenge, we integrate one open-source fault injector rfsck [25]
with CONFD through the ConfD-rfsck plugin. Instead of
relying on the default configuration, ConfD-rfsck leverages
dependency-guided configurations to generate input images
to initiate the fault injection campaign. Since the input im-
ages are configured with dependent parameters identified by
CONFD, they represent more complicated states that are more
difficult to remain consistent under fault. Note that the plugin
only needs to provide an FS image with a different configu-
ration as input to rfsck. No modification to the source code
of rfsck is required. As will be shown in §5.2, this simple
strategy can help trigger vulnerabilities effectively.

Plugin #4: Dependency-aware FS Fuzzer. Fuzzing tech-
niques have also been applied to improve the reliability of
file systems [11, 29]. Nevertheless, fuzzing file systems is
still challenging due to the lengthy state exploration time
needed to exercise a practical file system under each con-
figuration (e.g., it may take multiple weeks to trigger one
bug [29]). In other words, the time penalty for exploring a
less interesting configuration state is high. To mitigate the
challenge, we integrate one open-source fuzzer gt-hydra 2

with CONFD through the ConfD-gt-hydra plugin. Similar
to plugin #3, ConfD-gt-hydra leverages dependency-guided
configurations generated by CONFD to create FS images with
more complicated dependencies and thus more chances of
vulnerability for fuzzing. The plugin only changes the config-
urations of the input images for gt-hydra; no modification
to the source code of the base tool is needed.

Plugin #5 & #6: Dependency-aware Regression Test Suites.
Besides research prototypes, there are standard regression test
suites developed for file systems (e.g., xfstests [95] and
e2fsprogs/tests [51]), which include carefully designed
workloads and test oracles to ensure the quality of the tar-
get. Nevertheless, existing test suites only use a subset of
configuration parameters and they are mostly dependency-
agnostic. To address the limitation, we create two plugins:
ConfD-xfstests and ConfD-e2fsprogs, for xfstests and
e2fsprogs/tests respectively. The plugins scan the test
scripts and automatically replace the built-in FS configura-
tions of the test cases with the configuration states generated

2To avoid confusion, we use gt-hydra to refer to the Hydra fuzzing
framework created by GaTech researchers [29], and use FB-HYDRA to refer
to the Hydra configuration management framework created by Facebook [31].

206 21st USENIX Conference on File and Storage Technologies USENIX Association

Target FS Self Dependency (SD) Cross-Parameter Dep. (CPD) Cross-Component Dep. (CCD) All Level Combined
Ecosystem Extracted FP Extracted FP Extracted FP Extracted FP

Ext4 17 0 48 1 (2.1%) 46 3 (6.5%) 111 4 (3.6%)
XFS 18 2 (11.1%) 10 3 (30.0%) 15 4 (26.7%) 43 9 (20.9%)

Total 35 2 (5.7%) 58 4 (6.9%) 61 7 (11.5%) 154 13 (8.4%)

Table 6: Multilevel Configuration Dependencies Extracted by CONFD. This table shows the numbers of multilevel dependen-
cies extracted from Ext4 and XFS ecosystems automatically. ‘FP’ means False Positive rate.

Target FS # of Uncorrectable Images Reported
Ecosystem rfsck (1) ConfD-rfsck (25)

Ext4 11 < 11 (4) = 11 (4) > 11 (17)

Table 7: Comparison of Two FS Fault Injectors. rfsck
explores 1 default configuration state and reports 11 uncor-
rectable images. ConfD-rfsck explores 25 configuration
states; it reports > 11 uncorrectable images (i.e., better than
rfsck) in 17 out of 25 configuration states.

by CONFD. The two plugins use the ‘Follow Dependency’
policy of CONFD to drive the test cases deeply into the target
functionalities without early termination due to superficial
configuration errors. In doing so, we reuse the well designed
test logic and enhance the test suites with dependency aware-
ness. If any test case fails with the valid configurations pro-
vided by CONFD, the result is saved for postmortem analysis.

Note that CONFD plugins are not limited to the six above.
By modularizing the core module of CONFD (Figure 3), we
expect that other software may benefit from CONFD conve-
niently via plugins (see §6 for more discussion).

5 Experimental Results

In this section, we describe the experimental results of ap-
plying CONFD to analyze Ext4 and XFS. First (§5.1), we
show that CONFD can extract 154 multilevel configuration
dependencies from the target systems effectively with a low
false positive rate (8.4%). Second (§5.2), we demonstrate
that CONFD can help address configuration-related issues
more effectively compared to existing dependency-agnostic
solutions. Through the experiments, we have identified var-
ious configuration-related issues including 17 specification
issues, 18 configuration handling issues, and 10 regression
test failures induced by valid configurations.

5.1 Can CONFD extract multilevel dependen-
cies?

Table 6 summarizes the multilevel configuration dependencies
extracted by CONFD from Ext4 and XFS automatically. As
shown in the table, we were able to extract 154 unique depen-
dencies in total, including 35 Self Dependency (SD), 58 Cross-
Parameter Dependency (CPD), and 61 Cross-Component De-
pendency (CCD). The multilevel dependencies have been
observed on both Ext4 and XFS, which is consistent with our

ID Symptom of Triggered?
Uncorrectable Corruption rfsck ConfD-rfsck

1 Unable to mount the FS N Y (6)
2 Invalid file data N Y (24)
3 Truncated file data Y (11) Y (250)

Total 11 280

Table 8: Comparison of Corruption Symptoms Triggered.
ConfD-rfsck triggered (‘Y’) more types of corruptions. The
counts are in parentheses.

manual study (§3).
We manually examined all the 154 dependencies extracted

by CONFD automatically and found that the overall false
positive rate is 8.4% (13/154), which is similar to that of the
previous work on analyzing configuration constraints in other
software systems [13, 33]. Note that CONFD is designed to
handle the unique configuration methods of FS ecosystems
(§2 and §3.2) which is arguably more challenging to analyze
compared to the targets of existing work.

5.2 Can CONFD help address configuration
issues?

5.2.1 Dependency-agnostic vs. Dependency-guided

In this section, we compare the effectiveness of two
open-source research prototypes (i.e., rfsck [25] and
gt-hydra [29]) with and without CONFD support. We focus
on the two research prototypes and the corresponding plug-
ins for comparison because they provide quantitative metrics
to measure the effectiveness straightforwardly. We defer the
results of other plugins to the next section.

In the first experiment, we applied fault injectors rfsck and
ConfD-rfsck to analyze Ext4 and its checker utility e2fsck.
The fault injectors interrupt the checker operation and ex-
amine if the interrupted checker could lead to uncorrectable
corruptions on the file system (i.e., cannot be fixed by another
run of checker). They report the number of repaired FS images
containing uncorrectable corruptions (i.e., “uncorrectable im-
age”). Each uncorrectable image implies a vulnerability in
the FS ecosystem that could lead to data loss [25].

The result of the experiment is summarized in Table 7.
rfsck reports 11 uncorrectable images with the default con-
figuration. ConfD-rfsck can explore different configuration
states and we analyze the reports generated under 25 con-
figuration states for comparison. In 4 out of the 25 states,

USENIX Association 21st USENIX Conference on File and Storage Technologies 207

Target FS # of Issues Reported (in two weeks)
gt-hydra ConfD-gt-hydra

Ext4 1 17

Table 9: Comparison of Two FS Fuzzers. ConfD-gt-hydra
reports more hangs given the same fuzzing time.

ConfD-rfsck generates less than 11 uncorrectable images;
in 4 states, ConfD-rfsck generates the same amount of un-
correctable images (i.e., ‘= 11’); in the majority states (17),
ConfD-rfsck generates more uncorrectable images (i.e., ‘>
11’), which suggests it is more effective in exposing potential
vulnerabilities in the FS ecosystem.

Table 8 further compares the symptoms of uncorrectable
corruptions triggered by rfsck and ConfD-rfsck. Overall,
ConfD-rfsck triggers three different types of symptoms,
while rfsck only triggers one symptom in our experiment.
Since different symptoms typically imply different vulnerabil-
ities in metadata protection and/or recovery in the FS ecosys-
tem, the result also suggests that the dependency-guided con-
figuration states used by ConfD-rfsck can help improve the
effectiveness of rfsck.

In the second experiment, we applied gt-hydra and
ConfD-gt-hydra to fuzz the Ext4 file system. The fuzzers
systematically generate various inputs (i.e., FS metadata cor-
ruptions and system calls) to explore different code paths in
the file system for triggering latent bugs [29]. We run each
fuzzer continuously for two weeks. The fuzzers report the
number of reliability issues detected on the target file system
within the running period. The issues may include different
types depending on the bug checkers used. We use the default
SYMC3 checker which can detect crash inconsistency bugs.
Meanwhile, since the fuzzers are based on the AFL fuzzer
[38], they also report crash and hang issues (detected by AFL)
by default. Note that the only difference ConfD-gt-hydra
introduces is the dependency-guided configurations, i.e., it
does not change the test logic or criteria for reporting issues.
Therefore, both the types of issues (e.g., ‘crash’, ‘hang’, ‘crash
inconsistency’) and the number of issues reported can be used
as the metric to evaluate effectiveness.

The result of the fuzzing experiment is summarized in Ta-
ble 9. To make the comparison fair, we limit the two fuzzers
to the same total execution time (i.e., two weeks each). We set
the ConfD-gt-hydra to switch to a new dependency-guided
configuration state every 12 hours, which leads to 28 critical
configuration states being explored within two weeks. While
each configuration in ConfD-gt-hydra is explored with only
1/28 of the time used by gt-hydra for its configuration, the
overall result of ConfD-gt-hydra is better: gt-hydra only
detects 1 issue on Ext4 by the end of the two week period,
while ConfD-gt-hydra detects 17 issues in total. Interest-
ingly, all issues reported in the experiment are ‘hang’. This is
expected because triggering more complicated semantic bugs
may require multiple weeks.

CONFD Plugin # of Issue Reported
(Type of Issue Reported) Ext4 XFS Total
ConfD-specCk (undoc./wrong dep.) 13 4 17
ConfD-handlingCk (bad reaction) 13 5 18
ConfD-xfstests (test case failure) 5 4 9
ConfD-e2fsprogs (test case failure) 1 N/A 1
ConfD-rfsck (uncorrectable image) 280 – 280
ConfD-gt-hydra (hang) 17 – 17

Table 10: Summary of Issues. This table summarizes
configuration-related issues observed via CONFD plugins.

Target FS # of Undocumented/Wrong Dep. Total
Ecosystem SD CPD CCD

Ext4 7 4 2 13
XFS 2 2 0 4

Total 9 6 2 17

Table 11: Specification Issues. This table summarizes the
undocumented or wrong dependencies observed. ‘SD’, ‘CPD’,
and ‘CCD’ are defined in Table 4.

In summary, the two sets of comparison experiments above
show that CONFD can amplify the effectiveness of existing FS
tools for identifying vulnerabilities quickly, which is particu-
larly valuable for time-consuming methodologies like fault
injection or fuzzing. Note that in all experiments, we do not
randomly generate combinations of configurations. This is
because a naive algorithm without any knowledge of inherent
dependencies can easily lead to time-wasting configurations,
as will be demonstrated further in §5.2.3.

5.2.2 Summary of Configuration Issues

Table 10 summarizes the configuration-related issues trig-
gered by CONFD plugins in our experiments. Overall, we
observed more than 300 issues of various types. The issues
are diverse because the plugins are created for different pur-
poses or based on different base tools (Table 5). Note that
all the issues require dependency-guided configuration states
generated by CONFD to manifest. In other words, continu-
ously running the original research prototypes or standard test
suites cannot expose the issues. Also, since we do not change
the test logic of the base tools, the enhancement is purely con-
tributed by the dependency information from CONFD. Since
ConfD-rfsck and ConfD-gt-hydra have been discussed in
§5.2.1, we focus on others below.

Table 11 summarizes the specification issues detected by
ConfD-specCk. We have identified 17 inaccurate specifica-
tion issues in total. The issues mainly manifest as undocu-
mented critical dependencies or wrong dependencies, which
may occur to both Ext4 and XFS and involve SD, CPD, and
CCD. For example, there is a CPD extracted by CONFD
which specifies that two parameters of mke2fs (i.e., meta_bg
and resize_inode) cannot be used together, but this CPD is
missing from the Linux man-pages. As another example, there

208 21st USENIX Conference on File and Storage Technologies USENIX Association

ID Reaction Description Observed?
1 Early Termination the utility program exits w/o pinpointing the configuration error Y
2 Functional Failure the utility fails functional testing w/o pinpointing the configuration error Y
3 Silent Violation the system changes input configurations to different values w/o notifying users Y
4 Silent Ignorance the system ignores input configurations N
5 Crash/Hang the system crashes or hangs N
6 Partial Report the utility partially identify the violated configuration dependencies Y

Table 12: Suboptimal Reaction of Configuration Dependency Violation. This table summarizes the bad handling behaviors
observed when the configuration dependencies are violated. The first five are based on the definitions from [13].

is a CCD which implies that resize2fs may not be used for
Ext4 when the bigalloc feature is enabled through mke2fs.
Violating the CCD may corrupt the file system, which is un-
fortunately not mentioned in the specification.

Table 12 summarizes the suboptimal handling of misconfig-
urations identified through ConfD-handlingCk. We follow
the criteria in the literature [13]: when a misconfiguration
occurs (i.e., a dependency is violated), the system should
pinpoint either the offending parameter’s name/value or its lo-
cation information; failing to do so implies misconfiguration
vulnerabilities. Specifically, there are six types of misconfigu-
ration vulnerabilities based on different reactions, including
‘Early Termination’, ‘Functional Failure’, ‘Silent Violation’,
‘Silent Ignorance’, ‘Crash/Hang’, and ‘Partial Report’. The
first five types are based on the definitions from [13], while
the last one is unique in our study because we consider more
complicated multilevel dependencies.

As an example, the mke2fs parameter -E encoding en-
ables the casefold feature and set the encoding in Ext4. But
if the user tries to disable the casefold feature when using
the -E encoding, instead of showing an error or warning, the
utility enables the casefold feature silently without inform-
ing the user. We consider this as ‘Silent Violation’.

When more than one dependency is violated, utilities of-
ten only show a partial message (i.e., ‘Partial Report’). For
example, the mkfs.xfs parameter sunit involves two depen-
dencies: (1) it does not allow unit suffixes, and (2) it cannot
be specified together with su. But when both dependencies
are violated, the utility may only show one of the violations.

In total, we have observed 4 out of the 6 types of suboptimal
reactions, which suggests that FS ecosystems are not immune
from misconfiguration vulnerabilities reported in other prac-
tical systems. Note that ConfD-handlingCk leverages the
static analysis of CONFD to violate specific dependencies
carefully, which avoids many duplicate and valid configura-
tion states for testing. This reduces the manual effort needed
for the post-mortem analysis.

In terms of ConfD-xfstests and ConfD-e2fsprogs, we
have observed 10 new test case failures which can be induced
by valid configuration states generated by CONFD. For ex-
ample, ConfD-xfstests triggers an Ext4 corruption when
applying the online defragmentation tool e4defrag to the file
system with the bigalloc feature enabled. Note that a FS

Framework # of States # of Duplicate # of Invalid
FB-HYDRA 56,592 42,745 (75.5%) 15,146 (26.8%)

CONFD 30 0 0

Table 13: Comparison of State Generation.

test case may involve multiple utilities. Due to the complexity
of the test case and the FS ecosystems, a test case may fail
for various subtle reasons (e.g., timing at mount) in practice,
which is time-consuming to diagnose even for developers [47].
In our experiments, we observed more than 10 newly failed
test cases after changing with valid configurations. We only
count the cases that we have manually verified and repro-
duced at the time of this writing. Also, since CONFD limits
the change to the configuration states without modifying the
test logic, it may help narrow down the root cause of a test
case failure to the configuration-related code paths.

5.2.3 State Generation: FB-HYDRA vs. CONFD
One unique feature of CONFD is it generates configuration
states based on multilevel dependencies, which is critical for
analyzing configuration issues given the huge configuration
space. To the best of our knowledge, the FB-HYDRA con-
figuration management framework [31] provides the most
similar functionality. It includes a “multirun” feature to sup-
port running an application with different configurations in
different runs automatically. We compare the configuration
states generated by FB-HYDRA and CONFD in this section
to demonstrate the difference.

Table 13 shows the states generated by FB-HYDRA and
CONFD for the same program (i.e., mke2fs) given the same
set of configuration parameters. For simplicity, we only use
10 parameters with limited ranges in this experiment. As
shown in the table, even with this simplified scenario, FB-
HYDRA may generate many duplicated or invalid states.
This is because FB-HYDRA is agnostic to the configuration
constraints of mke2fs. Specifically, FB-HYDRA maintains
a list for each parameter and its possible values. It passes all
lists to the itertools.product() function which returns
the cartesian product of the values in the lists. Such a sim-
ple algorithm is incompatible with FS ecosystems. For ex-
ample, ‘mke2fs -b 1024 -C 2048’ and ‘mke2fs -C 2048
-b 1024’ are equivalent in practice but are considered as dif-
ferent in FB-HYDRA. Moreover, invalid states can easily

USENIX Association 21st USENIX Conference on File and Storage Technologies 209

be created by FB-HYDRA due to violation of dependencies,
which suggests the importance of dependency analysis.

Note that FB-HYDRA has other features that CONFD does
not have (e.g., Python library support). Also, FB-HYDRA sup-
ports plugins which makes it possible to benefit from the state
generation of CONFD (see §6 for more discussion). Therefore,
we view FB-HYDRA and CONFD as complementary.

6 Limitations & Future Work
No study or tool is perfect, and our work is no exception. We
discuss the limitations of our work as well as a few promising
extensions in this section.

Limitations of the multilevel taxonomy. As briefly men-
tioned in §3.1, the multilevel configuration dependencies
should be interpreted with the study methodology in mind, be-
cause they are derived from an incomplete set of configuration-
related issues from two FS ecosystems. It is likely that there
are more complex dependencies in FS ecosystems, which
deserves further investigation.

Limitations of the CONFD framework. The current proto-
type requires a few user inputs (§4.1.4) to guide the automated
dependency analysis, which we hope to reduce through more
sophisticated state analysis. Also, CONFD can only handle
a subset of LLVM IR for taint analysis and it only consid-
ers two parameters at a time for CPD and CCD, which may
lead to incomplete dependency or false positives. We hope to
improve these through more advanced software engineering
efforts in the future, which will likely improve the effective-
ness further. Similarly, there are limitations in plugins. For
example, ConfD-handlingCk only induces at most two vio-
lations for one configuration state for simplicity; there may be
more issues if we consider more than two. ConfD-xfstests
only transforms a subset of the test suite due to the irregu-
lar configuration handling. Despite the limitations, CONFD
has been effective in analyzing dependencies and exposing
configuration-related issues in our experiments, so we believe
that it will be valuable to the community.

Integration with other file systems and tools. As mentioned
in Table 1, many file systems can be configured through dif-
ferent utilities, which could potentially benefit from the multi-
level dependency analysis of CONFD after minor customiza-
tion (e.g., providing FS-specific inputs in JSON format 4.1.4).
Also, CONFD is complementary to other modern tools be-
sides the base tools used in current plugins. For example, FB-
HYDRA [31] uses YAML files to store configurations which
is compatible with the JSON files used by CONFD. Moreover,
it supports a set of plugins called “Sweepers” to manipu-
late the selection of parameters. The dependency-based state
generation in CONFD could be implemented as one special
“Sweeper” for FB-HYDRA [31]. Similarly, the configurations
generated by CONFD could potentially be integrated into
CI/CD frameworks [62] to enable pipelined configuration-
oriented testing and deployment. We leave the integration

with other file systems (e.g., ZFS) and tools as future work.

Support for other software. Configuration dependency is
not limited to file systems. For example, NDCTL [74] is a
utility to configure the libnvdimm subsystem in Linux. We
expect that adding NDCTL to the dependency analysis will
likely help address NVM-specific configuration issues more
effectively. Also, researchers have observed functionality or
correctness dependencies between local file systems and other
software (e.g., databases [16], distributed storage systems [20,
23, 34, 37]), many of which are also related to configurations.
The dependencies studied in this work may serve as a founda-
tion for investigating such configuration-related issues beyond
file systems. Also, since LLVM supports compiling a wide set
of languages (e.g., C++, Rust, Swift) to IR through various
frontends [85], the core analysis of CONFD is expected to be
applicable to software written in other languages as well.

Better configuration design. An alternate perspective of the
configuration challenge studied in this work is that we may
have too many parameters today. One might argue that it is
perhaps better to reduce the parameters to avoid vulnerabili-
ties or confusions, instead of adding new configurations for
more features. Also, one might suggest that (in theory) we
can implement every utility functionality in the file system
itself to avoid tricky cross-component configuration depen-
dencies. Essentially, these are trade-offs of the file system and
configuration design that deserve more investigation from
the community. We hope that by studying real-world configu-
ration issues and releasing the CONFD prototype, our work
can help identify problematic configuration parameters and
further help with the reduction of such parameters to improve
the configuration design in general.

7 Conclusion
We have presented a study on 78 real-world configuration
issues and built an extensible framework called CONFD for
addressing various configuration issues. Our experiments on
Ext4 and XFS demonstrate that CONFD can help address
configuration issues effectively by leveraging configuration
dependencies. In the future, we would like to improve CONFD
further and investigate other systems as discussed in §6. We
hope that CONFD can facilitate follow-up research on address-
ing the increasing challenge of configurations in general.

Acknowledgments
We thank Ethan Miller, our shepherd, and the anonymous
reviewers for their tremendous feedback. We also thank Run-
zhou Han and Wei Xu for their help on validating and re-
producing a few bug cases. This work was supported in part
by National Science Foundation (NSF) under grants CNS-
1855565, CCF-1853714, CCF-1910747 and CNS-1943204.
Any opinions, findings, and conclusions expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the sponsor.

210 21st USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Sanjay Ghemawat et al. “The Google file system”. In:
Proceedings of the 19th ACM Symposium on Operat-
ing Systems Principles (SOSP). 2003.

[2] Vijayan Prabhakaran et al. “IRON File Systems”. In:
Proceedings of the Twentieth ACM Symposium on
Operating Systems Principles (SOSP). 2005.

[3] Haryadi S. Gunawi et al. “SQCK: A Declarative File
System Checker”. In: Proceedings of the 8th USENIX
Conference on Operating Systems Design and Imple-
mentation (OSDI). 2008.

[4] Lorenzo Keller et al. “ConfErr: A tool for assessing
resilience to human configuration errors”. In: Pro-
ceedings of the 38th IEEE International Conference
on Dependable Systems and Networks (DSN). 2008.

[5] Shan Lu et al. “Learning from Mistakes: A Compre-
hensive Study on Real World Concurrency Bug Char-
acteristics”. In: Proceedings of the 13th International
Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS).
2008.

[6] Huning Dai et al. “CONFU: Configuration Fuzzing
Testing Framework for Software Vulnerability Detec-
tion”. In: Int. J. Secur. Softw. Eng.) 1.3 (2010).

[7] Ariel Rabkin et al. “Static extraction of program con-
figuration options”. In: Proceedings of the 33rd Inter-
national Conference on Software Engineering (ICSE).
2011.

[8] Zuoning Yin et al. “An Empirical Study on Configura-
tion Errors in Commercial and Open Source Systems”.
In: Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (SOSP). 2011.

[9] Edmund Clarke et al. “Model Checking and the State
Explosion Problem”. In: Tools for Practical Software
Verification. Jan. 2012.

[10] Daniel Fryer et al. “Recon: Verifying File System
Consistency at Runtime”. In: Proceedings of the 10th
USENIX Conference on File and Storage Technolo-
gies (FAST). 2012.

[11] Christoph Albrecht et al. “Janus: Optimal Flash Pro-
visioning for Cloud Storage Workloads”. In: Proceed-
ings of the 2013 USENIX Conference on Annual Tech-
nical Conference (ATC). 2013.

[12] Lanyue Lu et al. “A Study of Linux File System Evo-
lution”. In: Proceedings of the 11th USENIX Confer-
ence on File and Storage Technologies (FAST). 2013.

[13] Tianyin Xu et al. “Do Not Blame Users for Miscon-
figurations”. In: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles
(SOSP). 2013.

[14] Dongpu Jin et al. “Configurations Everywhere: Im-
plications for Testing and Debugging in Practice”. In:
Proceedings of the 36th International Conference on
Software Engineering (ICSE). 2014.

[15] Thanumalayan Sankaranarayana Pillai et al. “All File
Systems Are Not Created Equal: On the Complex-
ity of Crafting Crash-Consistent Applications”. In:
Proceedings of the 11th USENIX Conference on Op-
erating Systems Design and Implementation (OSDI).
2014.

[16] Mai Zheng et al. “Torturing Databases for Fun and
Profit”. In: Proceedings of the 11th USENIX Confer-
ence on Operating Systems Design and Implementa-
tion (OSDI). 2014.

[17] Changwoo Min et al. “Cross-Checking Semantic Cor-
rectness: The Case of Finding File System Bugs”.
In: Proceedings of the 25th Symposium on Operating
Systems Principles (SOSP). 2015.

[18] James Bornholt et al. “Specifying and checking file
system crash-consistency models”. In: SIGPLAN Not.
51.4 (2016).

[19] Scott Klemmer Tianyin Xu Vineet Pandey. “An HCI
View of Configuration Problems”. In: arXiv. 2016.

[20] Aishwarya Ganesan et al. “Redundancy Does Not
Imply Fault Tolerance: Analysis of Distributed Stor-
age Reactions to Single Errors and Corruptions”. In:
Proceedings of the 15th Usenix Conference on File
and Storage Technologies (FAST). 2017.

[21] Aravind Machiry et al. “DR. Checker: A Soundy
Analysis for Linux Kernel Drivers”. In: Proceedings
of the 26th USENIX Conference on Security Sympo-
sium (SEC). 2017.

[22] Salman Niazi et al. “HopsFS: Scaling Hierarchical
File System Metadata Using NewSQL Databases”.
In: Proceedings of the 15th USENIX Conference on
File and Storage Technologies (FAST). 2017.

[23] Jinrui Cao et al. “PFault: A General Framework for
Analyzing the Reliability of High-Performance Paral-
lel File Systems”. In: Proceedings of the 2018 Inter-
national Conference on Supercomputing (ICS). 2018.

[24] Mikaela Cashman et al. “Navigating the Maze: The
Impact of Configurability in Bioinformatics Soft-
ware”. In: Proceedings of the 33rd ACM/IEEE In-
ternational Conference on Automated Software Engi-
neering (ASE). 2018.

[25] Om Rameshwar Gatla et al. “Towards Robust File
System Checkers”. In: Proceedings of the 16th
USENIX Conference on File and Storage Technolo-
gies (FAST). 2018.

USENIX Association 21st USENIX Conference on File and Storage Technologies 211

[26] Om Rameshwar Gatla et al. “Towards Robust File
System Checkers”. In: ACM Transactions on Storage
(TOS) 14.4 (2018).

[27] Kuei Sun et al. “Spiffy: Enabling File-System Aware
Storage Applications”. In: Proceedings of the 16th
USENIX Conference on File and Storage Technolo-
gies (FAST). 2018.

[28] Shehbaz Jaffer et al. “Evaluating File System Relia-
bility on Solid State Drives”. In: Proceedings of the
2019 USENIX Annual Technical Conference (ATC).
2019.

[29] Seulbae Kim et al. “Finding Semantic Bugs in File
Systems with an Extensible Fuzzing Framework”. In:
Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles (SOSP). 2019.

[30] Wen Xu et al. “Fuzzing file systems via two-
dimensional input space exploration”. In: 2019 IEEE
Symposium on Security and Privacy (SP). 2019.

[31] Omry Yadan. Hydra - A framework for elegantly con-
figuring complex applications. Github. 2019. URL:
https : / / github . com / facebookresearch /
hydra.

[32] Zhen Cao et al. “Carver: Finding Important Param-
eters for Storage System Tuning”. In: Proceedings
of the 18th USENIX Conference on File and Storage
Technologies (FAST). 2020.

[33] Qingrong Chen et al. “Understanding and Discover-
ing Software Configuration Dependencies in Cloud
and Datacenter Systems”. In: Proceedings of the 28th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE). 2020.

[34] Runzhou Han et al. “Fingerprinting the Checker Poli-
cies of Parallel File Systems”. In: IEEE/ACM Fifth In-
ternational Parallel Data Systems Workshop (PDSW).
2020.

[35] Xudong Sun et al. “Testing Configuration Changes
in Context to Prevent Production Failures”. In: PPro-
ceedings of the 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI).
2020.

[36] Duo Zhang et al. “A Study of Persistent Memory
Bugs in the Linux Kernel”. In: Proceedings of the
14th ACM International Conference on Systems and
Storage (SYSTOR). 2021.

[37] Runzhou Han et al. “A Study of Failure Recovery and
Logging of High-Performance Parallel File Systems”.
In: ACM Transactions on Storage (TOS) 18.2 (2022).

[38] American Fuzzy Lop. https://lcamtuf.coredump.
cx/afl/.

[39] Apache Common Configuraitons. https : / /
commons . apache . org / proper / commons -
configuration / userguide / upgradeto2 _ 0 .
html.

[40] Apache Hadoop. https://hadoop.apache.org/.

[41] btrfs-balance. https://man7.org/linux/man-
pages/man8/btrfs-balance.8.html.

[42] btrfs-check. https : / / man7 . org / linux / man -
pages/man8/btrfs-check.8.html.

[43] btrfs-scrub. https : / / man7 . org / linux / man -
pages/man8/btrfs-scrub.8.html.

[44] CFEngine. https : / / github . com / cfengine /
core.

[45] chkdsk. https : / / docs . microsoft . com / en -
us/windows-server/administration/windows-
commands/chkdsk.

[46] defrag. https : / / docs . microsoft . com / en -
us/windows-server/administration/windows-
commands/defrag.

[47] Discussion between Ext4 developers and newbie on
finding bugs on Ext4. https://lore.kernel.org/
linux-ext4/Yx9fUHiiZaKXeLUw@mit.edu/.

[48] disk utility. https : / / www . dssw . co . uk /
reference/diskutil.html.

[49] dump. https : / / www . freebsd . org / cgi / man .
cgi ? query = dump & apropos = 0 & sektion = 8 &
manpath=FreeBSD+13.1-RELEASE+and+Ports&
arch=default&format=html.

[50] e2fsck. https://linux.die.net/man/8/e2fsck.

[51] e2fsprogs-test. https : / / sourceforge . net /
projects/e2fsprogs/files/e2fsprogs-TEST/.

[52] E2fsprogs: Ext2/3/4 Filesystem Utilities. https://
e2fsprogs.sourceforge.net/.

[53] e4defrag. https://man7.org/linux/man-pages/
man8/e4defrag.8.html.

[54] Ext4. https://ext4.wiki.kernel.org/index.
php/Main_Page.

[55] format. https : / / docs . microsoft . com / en -
us/windows-server/administration/windows-
commands/format.

[56] fsck. https://man.minix3.org/cgi-bin/man.
cgi?query=fsck.

[57] fsck_apfs. https://www.manpagez.com/man/8/
fsck_apfs/.

[58] fsck_ufs. https://www.freebsd.org/cgi/man.
cgi?query=fsck_ufs.

[59] growfs. https://www.freebsd.org/cgi/man.
cgi?growfs(8).

212 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://commons.apache.org/proper/commons-configuration/userguide/upgradeto2_0.html
https://commons.apache.org/proper/commons-configuration/userguide/upgradeto2_0.html
https://commons.apache.org/proper/commons-configuration/userguide/upgradeto2_0.html
https://commons.apache.org/proper/commons-configuration/userguide/upgradeto2_0.html
https://hadoop.apache.org/
https://man7.org/linux/man-pages/man8/btrfs-balance.8.html
https://man7.org/linux/man-pages/man8/btrfs-balance.8.html
https://man7.org/linux/man-pages/man8/btrfs-check.8.html
https://man7.org/linux/man-pages/man8/btrfs-check.8.html
https://man7.org/linux/man-pages/man8/btrfs-scrub.8.html
https://man7.org/linux/man-pages/man8/btrfs-scrub.8.html
https://github.com/cfengine/core
https://github.com/cfengine/core
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/chkdsk
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/chkdsk
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/chkdsk
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/defrag
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/defrag
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/defrag
https://lore.kernel.org/linux-ext4/Yx9fUHiiZaKXeLUw@mit.edu/
https://lore.kernel.org/linux-ext4/Yx9fUHiiZaKXeLUw@mit.edu/
https://www.dssw.co.uk/reference/diskutil.html
https://www.dssw.co.uk/reference/diskutil.html
https://www.freebsd.org/cgi/man.cgi?query=dump&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=dump&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=dump&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://www.freebsd.org/cgi/man.cgi?query=dump&apropos=0&sektion=8&manpath=FreeBSD+13.1-RELEASE+and+Ports&arch=default&format=html
https://linux.die.net/man/8/e2fsck
https://sourceforge.net/projects/e2fsprogs/files/e2fsprogs-TEST/
https://sourceforge.net/projects/e2fsprogs/files/e2fsprogs-TEST/
https://e2fsprogs.sourceforge.net/
https://e2fsprogs.sourceforge.net/
https://man7.org/linux/man-pages/man8/e4defrag.8.html
https://man7.org/linux/man-pages/man8/e4defrag.8.html
https://ext4.wiki.kernel.org/index.php/Main_Page
https://ext4.wiki.kernel.org/index.php/Main_Page
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/format
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/format
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/format
https://man.minix3.org/cgi-bin/man.cgi?query=fsck
https://man.minix3.org/cgi-bin/man.cgi?query=fsck
https://www.manpagez.com/man/8/fsck_apfs/
https://www.manpagez.com/man/8/fsck_apfs/
https://www.freebsd.org/cgi/man.cgi?query=fsck_ufs
https://www.freebsd.org/cgi/man.cgi?query=fsck_ufs
https://www.freebsd.org/cgi/man.cgi?growfs(8)
https://www.freebsd.org/cgi/man.cgi?growfs(8)

[60] HotHardware: Windows 10 20H2 Update Report-
edly Damages SSD File Systems If You Run ChkDsk.
https://hothardware.com/news/windows-10-
20h2 - update - damages - ssd - file - systems -
chkdsk.

[61] JavaScript Object Notation. https://www.json.
org/json-en.html.

[62] Jenkins. https://www.jenkins.io/.

[63] Lustre. https://www.lustre.org/.

[64] Maintaining Linux man-pages. https : / / www .
kernel . org / doc / man - pages / maintaining .
html.

[65] Wilcox Matthew. DAX: Page cache bypass for filesys-
tems on memory storage. https : / / lwn . net /
Articles/618064/.

[66] mke2fs. https://linux.die.net/man/8/mke2fs.

[67] mkfs.btrfs. https : / / man7 . org / linux / man -
pages/man8/mkfs.btrfs.8.html.

[68] mkfs.xfs. https://man7.org/linux/man-pages/
man8/mkfs.xfs.8.html.

[69] mount. https://man7.org/linux/man-pages/
man8/mount.8.html.

[70] mount. https://www.freebsd.org/cgi/man.
cgi?query=mount.

[71] mount_apfs. https://www.manpagez.com/man/8/
mount_apfs/.

[72] mountvol. https://docs.microsoft.com/en-
us/windows-server/administration/windows-
commands/mountvol.

[73] MySQL NDB Cluster. https://en.wikipedia.
org/wiki/NDB_Cluster.

[74] NDCTL. https://github.com/pmem/ndctl.

[75] newfs. https://www.freebsd.org/cgi/man.
cgi?newfs(8).

[76] NTFS. https://www.ntfs.com/index.html.

[77] OpenStack. https://www.openstack.org/.

[78] OpenStack Swift. https://docs.openstack.org/
swift/latest/.

[79] resize2fs. https : / / linux . die . net / man / 8 /
resize2fs.

[80] restore. https://www.freebsd.org/cgi/man.
cgi?query=restore.

[81] shrink. https : / / docs . microsoft . com / en -
us/windows-server/administration/windows-
commands/shrink.

[82] Soot - A framework for analyzing and transforming
Java and Android. http://soot-oss.github.io/
soot/.

[83] The First and Only Adaptive Computational Stor-
age Platform. https : / / www . xilinx . com /
applications / data - center / computational -
storage/smartssd.html.

[84] The Linux man-pages Project. https : / / www .
kernel . org / doc / man - pages / maintaining .
html.

[85] The LLVM Compiler Infrastructure. https://llvm.
org/.

[86] Trim. https://en.wikipedia.org/wiki/Trim_
(computing).

[87] Windows 10 2004/20H2: Microsoft fixes chkdsk issue
in update KB4592438. https://borncity.com/
win / 2020 / 12 / 21 / windows - 10 - 2004 - 20h2 -
microsoft-fixes-chkdsk-issue-in-update-
kb4592438/.

[88] Windows 10 20H2: ChkDsk damages file system on
SSDs with Update KB4592438 installed. https://
borncity.com/win/2020/12/18/windows-10-
20h2-chkdsk-damages-file-system-on-ssds-
with-update-kb4592438-installed/.

[89] XFS. https://xfs.wiki.kernel.org/.

[90] xfs_admin. https : / / man7 . org / linux / man -
pages/man8/xfs_admin.8.html.

[91] xfs_fsr. https://man7.org/linux/man-pages/
man8/xfs_fsr.8.html.

[92] xfs_growfs. https : / / man7 . org / linux / man -
pages/man8/xfs_growfs.8.html.

[93] xfs_repair. https : / / man7 . org / linux / man -
pages/man8/xfs_repair.8.html.

[94] xfsprogs. https://www.linuxfromscratch.org/
blfs/view/svn/postlfs/xfsprogs.html.

[95] xfstests. https://github.com/kdave/xfstests.

[96] zfs-create. https://www.freebsd.org/cgi/man.
cgi?query=zfs-create.

[97] zfs-destroy. https://www.freebsd.org/cgi/man.
cgi?query=zfs-destroy.

[98] zfs-mount. https://www.freebsd.org/cgi/man.
cgi?query=zfs-mount.

[99] zfs-rollback. https://www.freebsd.org/cgi/
man.cgi?query=zfs-rollback.

[100] zfs-set. https://www.freebsd.org/cgi/man.
cgi?query=zfs-set.

USENIX Association 21st USENIX Conference on File and Storage Technologies 213

https://hothardware.com/news/windows-10-20h2-update-damages-ssd-file-systems-chkdsk
https://hothardware.com/news/windows-10-20h2-update-damages-ssd-file-systems-chkdsk
https://hothardware.com/news/windows-10-20h2-update-damages-ssd-file-systems-chkdsk
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.jenkins.io/
https://www.lustre.org/
https://www.kernel.org/doc/man-pages/maintaining.html
https://www.kernel.org/doc/man-pages/maintaining.html
https://www.kernel.org/doc/man-pages/maintaining.html
https://lwn.net/Articles/618064/
https://lwn.net/Articles/618064/
https://linux.die.net/man/8/mke2fs
https://man7.org/linux/man-pages/man8/mkfs.btrfs.8.html
https://man7.org/linux/man-pages/man8/mkfs.btrfs.8.html
https://man7.org/linux/man-pages/man8/mkfs.xfs.8.html
https://man7.org/linux/man-pages/man8/mkfs.xfs.8.html
https://man7.org/linux/man-pages/man8/mount.8.html
https://man7.org/linux/man-pages/man8/mount.8.html
https://www.freebsd.org/cgi/man.cgi?query=mount
https://www.freebsd.org/cgi/man.cgi?query=mount
https://www.manpagez.com/man/8/mount_apfs/
https://www.manpagez.com/man/8/mount_apfs/
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/mountvol
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/mountvol
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/mountvol
https://en.wikipedia.org/wiki/NDB_Cluster
https://en.wikipedia.org/wiki/NDB_Cluster
https://github.com/pmem/ndctl
https://www.freebsd.org/cgi/man.cgi?newfs(8)
https://www.freebsd.org/cgi/man.cgi?newfs(8)
https://www.ntfs.com/index.html
https://www.openstack.org/
https://docs.openstack.org/swift/latest/
https://docs.openstack.org/swift/latest/
https://linux.die.net/man/8/resize2fs
https://linux.die.net/man/8/resize2fs
https://www.freebsd.org/cgi/man.cgi?query=restore
https://www.freebsd.org/cgi/man.cgi?query=restore
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/shrink
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/shrink
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/shrink
http://soot-oss.github.io/soot/
http://soot-oss.github.io/soot/
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.kernel.org/doc/man-pages/maintaining.html
https://www.kernel.org/doc/man-pages/maintaining.html
https://www.kernel.org/doc/man-pages/maintaining.html
 https://llvm.org/
 https://llvm.org/
https://en.wikipedia.org/wiki/Trim_(computing)
https://en.wikipedia.org/wiki/Trim_(computing)
https://borncity.com/win/2020/12/21/windows-10-2004-20h2-microsoft-fixes-chkdsk-issue-in-update-kb4592438/
https://borncity.com/win/2020/12/21/windows-10-2004-20h2-microsoft-fixes-chkdsk-issue-in-update-kb4592438/
https://borncity.com/win/2020/12/21/windows-10-2004-20h2-microsoft-fixes-chkdsk-issue-in-update-kb4592438/
https://borncity.com/win/2020/12/21/windows-10-2004-20h2-microsoft-fixes-chkdsk-issue-in-update-kb4592438/
https://borncity.com/win/2020/12/18/windows-10-20h2-chkdsk-damages-file-system-on-ssds-with-update-kb4592438-installed/
https://borncity.com/win/2020/12/18/windows-10-20h2-chkdsk-damages-file-system-on-ssds-with-update-kb4592438-installed/
https://borncity.com/win/2020/12/18/windows-10-20h2-chkdsk-damages-file-system-on-ssds-with-update-kb4592438-installed/
https://borncity.com/win/2020/12/18/windows-10-20h2-chkdsk-damages-file-system-on-ssds-with-update-kb4592438-installed/
https://xfs.wiki.kernel.org/
https://man7.org/linux/man-pages/man8/xfs_admin.8.html
https://man7.org/linux/man-pages/man8/xfs_admin.8.html
https://man7.org/linux/man-pages/man8/xfs_fsr.8.html
https://man7.org/linux/man-pages/man8/xfs_fsr.8.html
https://man7.org/linux/man-pages/man8/xfs_growfs.8.html
https://man7.org/linux/man-pages/man8/xfs_growfs.8.html
https://man7.org/linux/man-pages/man8/xfs_repair.8.html
https://man7.org/linux/man-pages/man8/xfs_repair.8.html
https://www.linuxfromscratch.org/blfs/view/svn/postlfs/xfsprogs.html
https://www.linuxfromscratch.org/blfs/view/svn/postlfs/xfsprogs.html
https://github.com/kdave/xfstests
https://www.freebsd.org/cgi/man.cgi?query=zfs-create
https://www.freebsd.org/cgi/man.cgi?query=zfs-create
https://www.freebsd.org/cgi/man.cgi?query=zfs-destroy
https://www.freebsd.org/cgi/man.cgi?query=zfs-destroy
https://www.freebsd.org/cgi/man.cgi?query=zfs-mount
https://www.freebsd.org/cgi/man.cgi?query=zfs-mount
https://www.freebsd.org/cgi/man.cgi?query=zfs-rollback
https://www.freebsd.org/cgi/man.cgi?query=zfs-rollback
https://www.freebsd.org/cgi/man.cgi?query=zfs-set
https://www.freebsd.org/cgi/man.cgi?query=zfs-set

	Introduction
	Limitations of the State of the Art
	Our Efforts & Contributions

	Background & Related Work
	Background
	Related Work

	Configuration Dependencies in File Systems
	Methodology
	Findings

	Extracting & Using Multilevel Configuration Dependencies
	Extracting Configuration Dependencies
	Metadata-assisted Taint Analysis
	Multilevel Dependency Analysis
	Dependency-guided State Generation
	User Input

	Leveraging Configuration Dependencies

	Experimental Results
	Can ConfD extract multilevel dependencies?
	Can ConfD help address configuration issues?
	Dependency-agnostic vs. Dependency-guided
	Summary of Configuration Issues
	State Generation: FB-HYDRA vs. ConfD

	Limitations & Future Work
	Conclusion

