
This paper is included in the Proceedings of the
21st USENIX Conference on File and

Storage Technologies.
February 21–23, 2023 • Santa Clara, CA, USA

978-1-939133-32-8

Open access to the Proceedings
of the 21st USENIX Conference on

File and Storage Technologies
is sponsored by

Perseus: A Fail-Slow Detection Framework
for Cloud Storage Systems

Ruiming Lu, Shanghai Jiao Tong University; Erci Xu, Alibaba Inc. and Shanghai
Jiao Tong University; Yiming Zhang, Xiamen University; Fengyi Zhu, Zhaosheng

Zhu, Mengtian Wang, and Zongpeng Zhu, Alibaba Inc.; Guangtao Xue, Shanghai
Jiao Tong University; Jiwu Shu, Xiamen University; Minglu Li, Shanghai Jiao Tong

University and Zhejiang Normal University; Jiesheng Wu, Alibaba Inc.
https://www.usenix.org/conference/fast23/presentation/lu

https://www.usenix.org/conference/fast23/presentation/lu

PERSEUS: A Fail-Slow Detection Framework for Cloud Storage Systems
Ruiming Lu1*, Erci Xu3,1*, Yiming Zhang2†, Fengyi Zhu3, Zhaosheng Zhu3,

Mengtian Wang3, Zongpeng Zhu3, Guangtao Xue1†, Jiwu Shu2, Minglu Li1,4, and Jiesheng Wu3

1Shanghai Jiao Tong University, 2Xiamen University,
3Alibaba Inc., and 4Zhejiang Normal University

Abstract
The newly-emerging “fail-slow” failures plague both soft-

ware and hardware where the victim components are still
functioning yet with degraded performance. To address this
problem, this paper presents PERSEUS, a practical fail-slow
detection framework for storage devices. PERSEUS leverages
a light regression-based model to fast pinpoint and analyze
fail-slow failures at the granularity of drives. Within a 10-
month close monitoring on 248K drives, PERSEUS managed
to find 304 fail-slow cases. Isolating them can reduce the
(node-level) 99.99th tail latency by 48%. We assemble a
large-scale fail-slow dataset (including 41K normal drives
and 315 verified fail-slow drives) from our production traces,
based on which we provide root cause analysis on fail-slow
drives covering a variety of ill-implemented scheduling, hard-
ware defects, and environmental factors. We have released
the dataset to the public for fail-slow study.

1 Introduction
Large-scale storage systems are susceptible to various fail-
ures [2, 3, 5, 7, 21, 32, 34, 35, 41, 42, 48]. Both academia and
industry have made great efforts on identifying [26,28,39], de-
tecting [9, 10, 20, 27], and fixing [8, 13, 44, 46] different kinds
of failures (e.g., fail-stop [2, 18, 31, 37], fail-partial [6, 38, 40],
and Byzantine [14]) in the field.

Recently, the fail-slow failures [19], also known as gray
failures [24] or limpware [16], have been receiving an in-
creasing amount of attention [23, 29, 36]. In fail-slow fail-
ures, a software or hardware component (while functioning)
delivers lower-than-expected performance. With faster hard-
ware devices (e.g., Optane SSD [49] and Z-SSD [11]) and
software stack (e.g., kernel bypassing [47]), the impact of
fail-slow failures (e.g., caused by malfunctioning NANDs or
unfit scheduling), which might be masked as noise previously,
are more likely to be noticed. Recent studies [30, 36] indicate
that annual fail-slow occurrences can be as frequent as annual
fail-stop events (1%∼2%).

Accurately detecting fail-slow failures is challenging. Per-
formance variations caused by internal factors (e.g., SSD
garbage collection) or external factors (e.g., workload burst)

*Equal contribution.
†Corresponding authors.

can have similar symptoms as fail-slow failures. Unlike fail-
stop failures where the criteria (e.g., software crash [2], data
loss [34]) are well-defined, determining fail-slow failures is
usually empirical in practice and thus inherently inaccurate.
Moreover, fail-slow failures are often transient [19], making it
difficult for on-site engineers to identify, let alone reproduce
or reason the root causes.

Although several work [23, 29, 36] has attempted to de-
tect fail-slow failures, they are impractical and inefficient
for large-scale deployment in our production cloud environ-
ment. First, these techniques require source code access
(e.g., static analysis in OmegaGen [29]) or software modifica-
tion (e.g., modifying software timeouts in IASO [36]), while
cloud vendors like us do not touch tenants’ code. Even for
in-house infrastructures, inserting certain code segments is
still time-consuming, as the systems can run dozens of inter-
nal services with different software stacks. Second, existing
techniques can only detect fail-slow failures at the node level
(e.g., IASO), thus still requiring nontrivial manual efforts to
locate the culprits [19].

In this paper, we share our experiences in developing a
practical, fine-grained, and general fail-slow detection frame-
work that is applicable to a wide range of of services and
devices (with minor or no adjustment) in the Alibaba cloud
data centers. We start with analyzing the characteristics of the
known fail-slow failures in our fleet. We then discuss three
unsuccessful attempts at identifying fail-slow failures in the
field, including using an empirical threshold, performing peer-
evaluation-based detection [22], and refactoring IASO [36].

With the lessons learned from our earlier efforts, we design
and implement PERSEUS, a non-intrusive fail-slow detec-
tion framework. We first leverage classic machine learning
techniques (PCA [1], DBSCAN [43], and polynomial re-
gression [17]) to establish a mapping between latency vari-
ation and workload pressure. With the mapping, PERSEUS
can automatically derive an accurate and adaptive threshold
for each node to identify slow entries within the monitor-
ing traces. Further, based on the slow entries, PERSEUS
constructs the corresponding fail-slow events and utilizes a
scoreboard mechanism to evaluate the severity of such events.

PERSEUS has been deployed in our cloud for over ten
months, monitoring an increasing number of drives up to
around 300K by now. PERSEUS has already identified more

USENIX Association 21st USENIX Conference on File and Storage Technologies 49

than 300 fail-slow drives. By isolating and/or replacing the
identified fail-slow drives, we significantly reduce the node-
level tail latency. The 95th, 99th, and 99.99th write latencies
drop by 31%, 46%, and 48%, respectively.

We compare PERSEUS to previous fail-slow detection meth-
ods as follows. We assemble a large-scale fail-slow dataset
(including 315 verified fail-slow drives and around 41K of
their cluster-wise peer drives) from our production traces, and
build a test benchmark based on the dataset. The benchmark
evaluations indicate that PERSEUS outperforms all previous
methods, achieving a precision of 0.99 and a recall of 1.00.
We also evaluate the effectiveness of components and the
sensitivity of parameters in PERSEUS. The results show that
PERSEUS can serve as a non-intrusive (based on monitoring
traces), fine-grained (per-drive), general (one set of parame-
ters fits all) and accurate (high precision and recall) fail-slow
detection framework for the cloud storage systems.

We have also analyzed the reasons for fail-slow failures
and discover a wide variety of root causes including ill-
implemented scheduling (e.g., unnecessary resource con-
tention), hardware flaws (e.g., bad sectors for HDDs), and
environmental factors (e.g., temperature and power).

This paper makes the following contributions.

• We share our lessons on detecting fail-slow failures in large-
scale data centers from three unsuccessful attempts.

• We propose the design of PERSEUS, a non-intrusive, fine-
grained and general fail-slow detection framework.

• We assemble a large-scale fail-slow dataset1 and build a
fail-slow test benchmark.

• We provide an in-depth root cause analysis of fail-slow
failures from the perspective of various factors.

2 Background
2.1 System Architecture
In this paper, we explore fail-slow detection methods on a
subset of Alibaba Internet Data Centers (IDCs). These IDCs
span across the globe and each IDC includes multiple storage
clusters. Atop each cluster, a distributed file system (DFS) is
deployed to support a dedicated service (e.g., block storage,
NoSQL, or big data analysis). Each cluster consists of tens of
racks (at most 200), and each rack contains dozens of nodes
(at most 48). There are three types of storage nodes: (1)
All-flash: a node contains 12 NVMe SSDs to store data; (2)
Hybrid: a node contains 60-120 HDDs for data storage and
2 SSDs as write cache; (3) All-HDD: a node contains 70-80
HDDs to store data. By default, data storage drives in each
node are of the same model. At most three drives from the
same node can be taken down for repairing at a time. Table 1
lists the basic information and distribution of the drives. Note
that we name drive models as vendor-model. For example,
I-A stands for model A of vendor I.

1We release our dataset at https://tianchi.aliyun.com/
dataset/144479.

Class Model Ven-
dor% Total% Layer

/Type
Cap.
(GB)

NVMe
SSD

I-A 3.58 1.80 32L 1920
I-B 6.96 3.49 64L 1920
I-C 0.76 0.38 32L 3840
I-D 82.57 41.38 64L 4000
I-E 6.13 3.07 64L 7680
II-A 52.24 2.40 48L 1920
II-B 47.76 2.19 48L 3840

SATA
HDD

III-A 100 13.28 CMR 12000
IV-A 100 32.01 CMR 12000

Table 1: Summary of drive statistics in our dataset.
(§2.1). Vendor%: percentage of drive models in the same
vendor; Total%: percentage of drive models in the total pop-
ulation; Layer/Type: number of stacking layers for 3D TLC
NAND SSD, or recording type for HDD; Cap.: capacity.

Service #Entries (M) Total%
Log service 0.58 0.16
Big data 2.05 0.57
E-commerce 4.04 1.13
Table storage 9.32 2.61
Stream processing 12.77 3.58
Database 13.61 3.81
Object storage 30.13 8.44
Data warehouse 31.86 8.92
Block storage 252.80 70.78

Total 357.16 100.00

Table 2: Cloud services and daily entries (§2.2). #Entries
(M): number of entries in millions. Each entry has five fields
(i.e., avg_latency, avg_throughput, drive_ID, node_UID,
timestamp).

2.2 Dataset Description

In our data centers, a monitoring daemon is placed in each
node to collect operational statistics, mainly the latency and
throughput of each drive. The daemons calculate the average
statistics every 15 seconds and record them as time-series
data entries. The daemons run three hours a day (from 9PM
to 12AM). A drive generates 720 entries (= 180 min × 4
entries/min) per day. In total, we have compiled around
100 billion entries as our dataset. Table 2 lists the daily
distribution of 9 cloud services.

2.3 Impact of Fail-Slow Failures

Fail-slow failures, especially the transient ones, can often be
ignored or misinterpreted as performance variations. Addi-
tionally, storage stacks usually have multiple levels (software,
firmware, and hardware) of fault tolerance, such as retry and
redundancy, silently masking the fail-slow failures. However,
fail-slow failures can have a much more significant impact on
I/O performance in the wild. Next, we will use a representa-
tive example from our object storage service to demonstrate

50 21st USENIX Conference on File and Storage Technologies USENIX Association

https://tianchi.aliyun.com/dataset/144479
https://tianchi.aliyun.com/dataset/144479

Slow Normal Average

15

20

25

Sun Mon Tue Wed Thu Fri Sat Sun

Day of the week

m
s

(a) Read Latency

5

10

15

20

Sun Mon Tue Wed Thu Fri Sat Sun

Day of the week
m

s

(b) Write Latency

Figure 1: Fail-slow impact on I/O latency (§2.3). The fig-
ures show (a) read and (b) write latency three days before and
after isolating the fail-slow HDD (in red) in one node. Lines
in grey refer to the latency distribution of normal peers from
the same node. The vertical dashed line refers to the time
when the fail-slow drive was taken down for replacement.

Percentile p50 p90 p95 p99 p9999

5

10

15

20

Sun Mon Tue Wed Thu Fri Sat Sun

Day of the week

W
ri
te

 la
te

n
cy

 (
m

s)

Figure 2: Fail-slow impact on tail latency (§2.3). The fig-
ure shows the node-level write latency (of the same node as
in Figure 1) at different percentiles. The vertical dashed line
refers to the isolation time.

the effect of fail-slow failures and consequently the impor-
tance of fail-slow failure detection.

Figures 1a and 1b show the read and write latency of a
fail-slow HDD (the red line) against the latency of the peer
HDDs (the gray lines) from the same node. The vertical
dashed line indicates when the fail-slow drive was isolated
(and taken down for replacement). While the fail-slow drive
shows much higher read/write latency than the mean (the
blue line) of all the drives (2.06∼3.65× higher for write and
1.01∼1.50× higher for read), its other metrics, such as IOPS,
remain normal.

It was the utilization rate rather than the latency that di-
rectly led us to identify this fail-slow failure. Our monitoring
system indicated that the victim node had been receiving
much fewer writes than other nodes. The log analysis fur-
ther suggested that the load balancer of the distributed object
storage system prefers not to allocate writes to the victim
node due to its abnormally high retry rate caused by high
tail latencies. Figure 2 presents the 50th, 90th, 95th, 99th,
and 99.99th percentile latency of the victim node before and
after the dashed line when the fail-slow drive was isolated.
Before isolating the fail-slow drive, the 99.99th tail latency is
2.43∼3.29× that of the median at the node level.

This example, along with other similar cases, shows that
fail-slow failures impact not only the victim drive but also the

20

30

40

50

60

70

21:25 21:30 21:35 21:40 21:45

Time (H:M)

u
s

(a) Write latency

2

4

6

8

10

12

14

21:25 21:30 21:35 21:40 21:45

Time (H:M)

M
B

/s

(b) Write throughput

Figure 3: Sudden latency increase due to heavy load
(§3.2). The figures present the time series of (a) write la-
tency and (b) write throughput of an NVMe SSD. Red points
in grey boxes refer to time segments where drive latency is
higher than a naive alarming threshold (i.e., 45 µs).

entire node for a long period of time. This motivates us to
explore effective measures for detecting fail-slow failures in
our cloud.

3 Unsuccessful Attempts & Lessons
In this section, we first describe the design goals of the de-
tection framework, and then discuss three unsuccessful early
attempts. We conclude this section with a series of lessons to
guide the design of PERSEUS.

3.1 Design Goals
From our perspective, a practical fail-slow detection frame-
work should have the following properties.
• Non-intrusive. As cloud vendors, neither can we alter users’

software nor require them to run specific modified versions
of software stacks. Therefore, we can only rely on external
performance statistics (e.g., drive latency) for detection.

• Fine-grained. Fail-slow root cause diagnosis can often be
time-consuming (e.g., days to even weeks [19, 36]). We
expect the framework to pinpoint the culprit.

• Accurate. The framework should have satisfying precision
and recall to avoid unnecessary diagnosis on false positives.

• General. The framework can be deployed on both SSD and
HDD clusters and quickly applied to different services (e.g.,
block/object storage and database) with minor adjustments.

3.2 Attempt 1: Threshold Filtering
Methodology. Intuitively, we can set up a hard threshold on
drive latency to identify fail-slow drives based on the Service
Level Objectives (SLOs). To avoid mislabeling due to one-off
events such as SSD internal GC, we further specify a mini-
mum slowdown span for a suspicious drive to be considered
as fail-slow.
Limitation. Enforcing a hard threshold on device latency is
clearly non-intrusive and fine-grained. However, the accuracy
of threshold-identified fail-slow is low, as the latency is highly
influenced by the workloads. Here, we use the latency and
throughput traces of an NVMe SSD from the block storage
service as an example. The left of Figure 3 illustrates the

USENIX Association 21st USENIX Conference on File and Storage Technologies 51

Candidate drive 2 × Median Peers from the same node

❶ ❷ ❸

0

25

50

75

100

125

22:15 22:20 22:25 22:30 22:35

Time (H:M)

W
ri
te

 la
te

n
cy

 (
u

s)

Figure 4: Peer evaluation (§3.3). The figure shows peer
evaluation results by comparing the candidate drive latency
(in red) with node-level median latency (in blue) using a
5-minute sliding window. The candidate is slow (> 50%
latency records higher than 2×Median) in three time windows
(labeled with numbers in grey boxes).

latency variation of the drive where the horizontal dashed
line indicates the threshold (45µs). The right of Figure 3 is
the corresponding throughput. We can see that three latency
spikes occur at around 21:29, 21:34, and 21:40 as the latency
increases up to 65µs. By comparing latency with throughput,
it is clear that the workload pressure causes these spikes.

Hence, the dilemma is as follows. Setting a relaxed thresh-
old easily mislabels normal performance variations as fail-
slow events. Meanwhile, a strict one could leave many fail-
slow cases undiscovered. Further, using a set of thresholds
for different scenarios through fine-tuning can be fairly time-
consuming as our experiments show that latency variation is
a factor of drive models and workloads. In practice, we use
threshold-based detection as a fail-safe measure like timeout.

3.3 Attempt 2: Peer Evaluation
Methodology. The problem of the first attempt is not having
an adaptive threshold for detection. To address this problem,
we explored the idea of peer evaluation [22,30]. The rationale
behind this approach is that, with load balancing across the
distributed storage system, drives from the same node should
receive similar workload pressure. Since fail-slow failures are
relatively rare [19] and the majority of drives in a node should
be normal, we can identify the fail-slow drive by comparing
the performance between drives from the same node.

Specifically, we first calculate the node-level median la-
tency at each entry timestamp (every 15 seconds). We then
evaluate whether there are drives constantly (more than half
of the time) delivering abnormal performance—twice slower
than the median in our case—during the monitoring window
(e.g., 5 minutes). If so, the detection framework reports a
fail-slow event, and the monitoring window moves forward
to start the next round of evaluation.

Figure 4 provides an example of peer evaluation detec-
tion, including the fail-slow drive (the red line), the adaptive
threshold (2×median, the blue line), and the normal drives
(grey lines). The three shaded regions (numbered ¶, ·, and
¸) indicate three monitoring windows when the victim drive

experiences a fail-slow event.
Limitation. Peer evaluation can obtain an adaptive threshold
(the blue line in Figure 4), but it requires more empirical pa-
rameters than threshold filtering, such as the slowdown degree
and the monitoring window span, for tuning. Although it is
possible to fine-tune the parameters on a few clusters for spe-
cific storage services, the effort would be prohibitively large
if we want to extend peer evaluation to other drive models of
different services. For example, it took on-site engineers two
hours to fine-tune a cluster with around 300 nodes, and this
set of parameters fails to work on another cluster even under
the same service with the exact same models of drives.

3.4 Attempt 3: IASO-Based Model
Methodology. IASO is a fail-slow detection framework focus-
ing on identifying performance-degrading nodes [36]). The
design principle of IASO is to leverage software timeouts and
convert them into informative metrics to benchmark fail-slow.
However, directly using IASO is not suitable for us. First,
IASO requires code changes (i.e., intrusive monitoring) to in-
sert or modify certain code snippets of the running instances
(e.g., Cassandra and ZooKeeper), thus leveraging software-
level timeouts to identify fail-slow incidents2. Second, IASO
is node-level detection, whereas our goal is device-level. Nev-
ertheless, we re-factor IASO with our best effort. To avoid
modifying the software, we reuse the fail-slow event reporting
by peer evaluation (i.e., Attempt 2, see §3.3).
Limitation. The IASO-based model delivers rather unsatis-
factory performance (see §5.4 for details) on our assembled
benchmark, with a precision rate of only 0.48. We suspect
the main reason is that using the fail-slow event reporting to
replace the software timeout might not be effective. More-
over, we have explored other possible alternatives, such as
replacing software timeouts with thresholds. However, the
results are still unsatisfactory. Therefore, we assume IASO,
even with refactoring, may not achieve our goals.

3.5 Guidelines for PERSEUS

The aforementioned methods are either labor-intensive (re-
quiring extensive tuning) or ineffective in the field. In this
subsection, we use a series of research questions as guidelines
for designing our next fail-slow detection framework.

RQ1: What metrics should we use?

Throughout the early development of previous attempts, we
mostly focused on the write performance (i.e., the laten-
cy/throughput of write) for two reasons. First, among the
verified fail-slow cases, more than half of them only have
a notable influence on writes. Even for the rest, the impact
on read performance is always much smaller (similar to Fig-
ure 1). Second, fail-slow failures have more severe impacts
on writes. In our storage systems, most clusters require the

2Note that the definition of “non-intrusive” is different in IASO (meaning
low overhead introduced) from ours (meaning no code changes).

52 21st USENIX Conference on File and Storage Technologies USENIX Association

10

35

60

85

110

135

3 4 5 6 7

Throughput (log10, B/s)

L
a
te

n
cy

 (
u

s)

(a) DB clusters

10

35

60

85

110

5.5 6.0 6.5 7.0 7.5

Throughput (log10, B/s)

L
a
te

n
cy

 (
u

s)

(b) DB nodes (same cluster)

10

15

20

25

6.0 6.5 7.0 7.5

Throughput (log10, B/s)

L
a
te

n
cy

 (
u

s)

(c) DB drives (same node)

Figure 5: Distinct LvT distribution (§3.5). The figures show the latency-vs-throughput (LvT) distribution of (a) three clusters
(in yellow, blue and red) from database service, (b) two representative nodes (in blue and red) with clear-cut distribution from
the same cluster (also from database service), and (c) drives (in distinct colors) in one node from database service. Throughput
(unit: B/s) is scaled by log base 10 here and in related figures hereafter.

-0.2

0.0

0.2

0.4

Block Object DB

S
R

C
C

 s
c
o

re

Latency vs. Throughput

Latency vs. IOPS

Figure 6: SRCC scores (§3.5). The figure shows the SRCC
scores between drive write latency and throughput/IOPS from
three major services. Error bars refer to 95th percentile
confidence intervals.

write request to return after all three replicas ACKed (only
<20% of our clusters require 2 replicas). Meanwhile, a read
request will return as soon as one replica returns. In this case,
fail-slow failure impacts the write request more often as one
fail-slow write can lead to a slow write request in most cases
while only 1/3 of the chances for a read request. Note that
write reallocation cannot remedy for fail-slow write requests
as the reallocation is triggered by a timeout (usually much
longer than a fail-slow event). Nevertheless, we still evaluate
fail-slow detection based on the read performance (see §5.5),
and the results confirm the above assumptions.

RQ2: How to model workload pressure?

Simply depending on latency to detect fail-slow failures is
unreliable. Our previous exploration has shown that work-
load pressure can significantly influence the latency variation.
Further, we explore other indexes to model workload pressure
to better understand the latency variation.

Analyzing Figure 3a and Figure 3b inspires us to check the
possibility of using throughput or IOPS to model workload.
Currently, per-drive I/O throughput (unit: byte/sec) and IOPS
(unit: count/sec) are both available and stored in the same
fashion as drive latency (see Section 2.2). In Figure 6, we
measure the per-drive latency correlation with throughput
and IOPS using Spearman’s Rank Correlation Coefficient
(SRCC [15]) across three representative services. A higher
SRCC value indicates a stronger correlation. We can see
that latency is more closely related to throughput than IOPS.
Moreover, in certain services, latency is even negatively cor-

related with IOPS (e.g., block and database). Therefore, we
decide to use throughput for modeling the workload pressure.

RQ3: How to automatically derive adaptive thresholds?

In Attempt 2 (§3.3), we discover that, though peer-evaluation
can provide adaptive thresholds, this solution requires time-
consuming tuning for different service types and drive models.
Now, with workload pressure modeled by throughput, we are
able to build the latency-vs-throughput (LvT) distribution.
Then, we can use regression models on such distribution to
define a statistically normal drive and subsequently use its
upper bound as the adaptive thresholds for various environ-
ments.

To build such regression models, we need to determine the
scope of drives to be included in the LvT distribution. The
tradeoff is that including more samples (e.g., all drives from
the service) can be more statistically confident but subject to
a more diverse distribution—difficult to derive a clear upper
bound. Therefore, we plot the distribution at three different
scales in Figure 5 and discuss their pros and cons as follows.
Service-wise. In Figure 5a, we plot the LvT distribution of
drives from three clusters (marked as red, yellow and blue) in
the database service. First, we can observe that the clusters
from the same service can have drastically different LvT
distributions. For example, samples from the red cluster rarely
overlap with those from the yellow cluster. This indicates
that directly using all drives from the service to build the
distribution is not applicable.
Cluster-wise. In Figure 5a, we notice that even samples from
the same cluster can have clear-cut distributions (i.e., the two
red regions). After statistical analysis, we discover that the
disparity is widespread. For clarity, in Figure 5b, we plot
the LvT distribution of drives from two different nodes (in
red and blue) from the same cluster. The huge gap between
distributions indicates that we also cannot rely on cluster-wise
peer evaluation.
Node-wise. Finally, in Figure 5c, we plot the LvT distribution
of drives from one all-flash node (12 SSDs). Each drive is
represented with a color. We can see the colors are well
clustered together which indicates drives from the same node
follow a similar LvT distribution. Note that we also examine

USENIX Association 21st USENIX Conference on File and Storage Technologies 53

Raw Data ➀ Outlier Detection ➁ Building Regression Model

➂ Identifying Fail-Slow Event ➃ Evaluating Risk

Regression Identify slow records

Input

Model

Empirical

Duration

Degree

Drive Score
D1 70
D2 59
D3 20
…

e.g., Score>50
prompted for

immediate
inspection

DiskN

…
…

Latency
Throughput

21:00 0:00
Timestamp …

Disk1

As Time Series

As LvT Distribution

Slow

Sliding window

Throughput

La
te

nc
y

Throghput

La
te

nc
y

Throghput

La
te

nc
y

Time

La
te

nc
y

Throughput

La
te

nc
y

Figure 7: PERSEUS design diagram (§4.1). From the raw data, PERSEUS seeks to distinguish the slow (in red) from the normal
(in grey) by building a regression model (Á) with preliminary outlier detection (À). With a sliding window, PERSEUS formulates
consecutive slow records into slowdown events (Â), and assigns risk scores based on slowdown duration and degree (Ã).

nodes from other services and confirm that such behaviors
persist across node configurations (e.g., all-flash or hybrid)
and services (e.g., block or object storage). Thus, we decide
to use the node-wise samples to build the LvT distribution.

RQ4: How to identify fail-slow without a criterion?
Unlike fail-stop failures, there are no clear criteria for detect-
ing fail-slow drives. First, both the device (e.g., an SSD) and
the software (i.e., users’ code) can be a blackbox to the on-site
engineers. Second, fail-slow failures can be temporal with
varying symptoms. Moreover, the root causes of fail-slow
failures can be too obscure to diagnose. As a result, we cannot
exclude the possibility of mislabeling fail-slow failures.

Therefore, we rethink our strategy on fail-slow detection.
Instead of relying on the framework to output a binary result
(fail-slow or not), the detection tool should describe the likeli-
hood of a drive to fail-slow. With sufficient accuracy, on-site
engineers can focus on the most severe ones. While this may
still leave some fail-slow drives undiscovered, it is acceptable
as they behave like normal performance variations.

4 PERSEUS

With lessons from previous attempts, we propose PERSEUS,
a non-intrusive, fine-grained and general fail-slow detection
framework. The core idea of PERSEUS is building a polyno-
mial regression on the node-level LvT distribution to automat-
ically derive an adaptive threshold for each node. PERSEUS
can use the threshold to formulate fail-slow events and further
use a scoreboard mechanism to single out the drives with
severe fail-slow failures. In this section, we first introduce the
high-level workflow and then discuss the design of each step
at length.

Our dataset can be viewed as a time-series dataset and
each entry has five fields (i.e., avg_latency, avg_throughput,
drive_ID, node_UID, timestamp). Every day, the monitoring
proxy would gather 720 entries (180 minutes× 4 entries/min)
from each drive (as raw dataset) and send them to PERSEUS

for a four-step detection procedure.

4.1 High-Level Workflow
1. Outlier detection. For each node, PERSEUS first collects
all the entries. Then, we use a combination of Principal
Component Analysis (PCA [1]) and Density-Based Spatial
Clustering of Applications with Noise (DBSCAN [43]) to
identify and then discard outlier entries.
2. Building regression model. Based on the clean dataset
(i.e., excluding the outliers), PERSEUS performs a polynomial
regression to obtain the model and uses the prediction upper
bound as a fail-slow detection threshold. Then, PERSEUS
applies the model onto the raw dataset (i.e., including the
outliers) to identify out-of-bound entries and mark them as
slow entries.
3. Identifying fail-slow events. PERSEUS uses a sliding win-
dow and a slowdown ratio to identify consecutive slow entries
and formulate corresponding fail-slow events.
4. Evaluating risk. Based on a risk-score mechanism [25],
PERSEUS estimates the duration and degree of fail-slow
events and assigns each drive a risk score based on daily
accumulated fail-slow events. On-site engineers can then
investigate the cases based on the severity.

4.2 Outlier Detection
Before applying regression models, a necessary pre-process
is to root out noisy samples (i.e., outliers). While the LvT
samples (i.e., <latency, throughput> pairs) are usually clus-
tered together within a node (see RQ3 in §3.5), entries from
fail-slow drives or under normal performance variations (e.g.,
internal GC) can still be deviating. Therefore, before build-
ing a polynomial regression model, we first screen out the
outliers.
Using DBSCAN. Density-based clustering algorithms (mea-
suring the spatial distance) are promising approaches for
identifying the potentially distinctive groups (i.e., normal vs.
slow). Initially, we employ DBSCAN [43] to label outliers.

54 21st USENIX Conference on File and Storage Technologies USENIX Association

Inlier Outlier Fitted curve Upper bound

0

2

4

6

2.5 3.5 4.5 5.5 6.5 7.5

Throughput (log10)

L
a
te

n
cy

 (
m

s)

(a) DBSCAN

0

2

4

6

2.5 3.5 4.5 5.5 6.5 7.5

Throughput (log10)
L

a
te

n
cy

 (
m

s)

(b) PCA+DBSCAN

Figure 8: Outlier detection (§4.2). The figures show the
performance of the regression model based on two outlier
detection schemes: (a) only DBSCAN and (b) PCA prior to
DBSCAN. All data records come from the same node with one
known fail-slow drive during the day.

In a nutshell, DBSCAN groups points that are spatially close
enough—distances between points is smaller than a minimum
value. Note that <latency, throughput> pairs from long-term
or permanent fail-slow drives can be clustered together but far
away from the main cluster. Hence, we only keep one group
with the most points for further modeling.
Adding PCA. Unfortunately, using the DBSCAN to sift
through the raw dataset can have limited effectiveness. Here,
we choose a sample node with one confirmed fail-slow drive
to illustrate the limitation. In Figure 8a, we apply fine-tuned
DBSCAN (outliers in red points) to the node’s daily raw
dataset and fit the rest of the data (grey points) to polynomial
regression (with a fitted curve in blue and a 99.9% predic-
tion upper bound in green dashed line). In this example, the
DBSCAN algorithm only identifies 63.83% of slow entries.

The root cause is that the throughput and latency are posi-
tively correlated. Thus, the samples (i.e., <latency, through-
put> pairs) can be skewed towards a particular direction.
Hence, outliers (i.e., samples from fail-slow drives) can be
mislabeled as inliers (see the black circle in Figure 8a). There-
fore, we leverage Principal Component Analysis (PCA [1])
to transform the coordinates and penalize the outliers perpen-
dicular to the skewed direction in order to reduce mislabeling.
As a result, applying DBSCAN with PCA effectively detects
92.55% of slow entries (see Figure 8b).
Usage of outliers. Recall that in RQ4, we have discussed
that just using binary detection cannot reflect the extent of
slowdown. Therefore, we do not directly use the binary results
of outlier detection, such as simply labeling outliers as slow
entries (i.e., skipping §4.3) or fail-slow events (i.e., skipping
§4.3 and §4.4). Rather, we exclude the outliers to build a
better-fitted model for measuring slowdown degree of entries.

4.3 Regression Model
As normal drives within a node can have similar latency-vs-
throughput mapping (i.e., well clustered together), we can
use a regression model to describe the behavior of a “normal”
drive and delineate the scope of variation for fail-slow detec-
tion. Classic regression models include linear, polynomial,

❶ ❷

0

2

4

6

22:33 22:36 22:39 22:42

Time (H:M)

L
a
te

n
cy

 (
m

s
)

Data Fit. Upp.

(a) Time series of latency

❶ ❷

0
1
2

4

6

8

22:33 22:36 22:39 22:42

Time (H:M)

S
lo

w
d
o
w

n
 r

a
tio

(b) Time series of slowdown ratio

Figure 9: Identifying slowdown event (§4.4). Figure (a)
shows the original (“Data”) time series of drive latency, to-
gether with the corresponding fitted values (“Fit.”) and upper
bounds (“Upp.”) calculated from the regression model. Fig-
ure (b) shows the time series of slowdown ratio by dividing
upper bound by original data. Records with a slowdown ratio
higher than 1 are deemed as slow. The two grey boxes refer
to a latency spike (¶) and a transient slowdown event (·).

and advanced ones like kernel regression. We do not use
linear regression as the latency dependency on throughput
is obviously nonlinear (e.g., see Figure 8). Moreover, ad-
vanced models (e.g., kernel regression) are unnecessary as the
latency-vs-throughput mapping is primarily monotonic (i.e.,
latency increases along with the throughput). Polynomial
regression is preferable as it handles nonlinearity while retain-
ing model parsimony (i.e., achieving the desired goodness of
fit with just enough parameters).

4.4 Identifying Fail-Slow Event
Distinguishing slow entries. After obtaining the regression
model, we can calculate a prediction upper bound to distin-
guish the slow entries, and use it to detect fail-slow events.
For example, a 99.9% upper bound means that 99.9% of the
variations are deemed normal. In practice, we use a combina-
tion of loose (i.e., 95%) and strict (i.e., 99.9%) upper bounds
to avoid overfitting while identifying as many fail-slow drives
as possible.
Formulating events. Next, we use both real and made-up
examples to illustrate how to formulate fail-slow events. Fig-
ure 9a presents the drive latency (grey line), fitted values (blue
line) and the 99.9% upper bound (green line). Slowdown Ra-
tio (SR) is obtained from dividing drive latency by the upper
bound, entry by entry (every 15 seconds). For example, let
a drive’s latency entries in one minute be [15, 20, 25, 10, 5]
and the corresponding upper bound be [5, 5, 5, 5, 5]. The
SR series would be [3, 4, 5, 2, 1]. Figure 9b presents the SR
series of the candidate drive.

Next, we formulate fail-slow events by using a sliding
window (similar to Attempt 2 in §3.3). The sliding window
has a fixed length (i.e., a minimum span) and starts at the first
entry. Within the span, if a certain proportion of SR series
has a median SR value exceeding the threshold, PERSEUS
would record that the drive has encountered a fail-slow event
within the span and see if the event should be extended to the
next entry.

USENIX Association 21st USENIX Conference on File and Storage Technologies 55

Slowness
Duration (min)

Long-term Moderate Temporal
≥120 [60, 120) [30, 60)

Severe (SR≥5) Extreme High Moderate
Moderate (SR∈[2, 5)) High Moderate Low

Mild (SR∈[1, 2)) Moderate Low Minor

Table 3: Fail-slow risk matrix (§4.5). PERSEUS assigns
risk levels based on daily accumulated slowdown events. For
example, drives at extreme risk for one day should experience
a long-term slowdown (for 120-180 minutes in total) with a
severe slowdown ratio (SR) on average (SR≥5).

As for the example above (i.e., an SR series of [3, 4, 5, 2,
1]), we set the minimum span as one minute (i.e., four entries),
the proportion to be 50%, and the threshold to be 1. Then, the
first four SR entries can form a fail-slow event as more than
50% of the SR values (i.e., 3, 4, 5, 2) have a higher median
(i.e., 3.5) than the threshold (i.e., 1). For the same reason, this
fail-slow event should include the fifth entry (i.e., 1).

In practice, we set the minimum span as 5 minutes, the
proportion to be 50%, and the threshold to be 1, meaning the
event should be slower than the upper bound. Our rationale
is to only formulate fail-slow events under a persistent series
of slowdown entries as one-off spike entries are likely to be
acceptable performance variations. In Figure 9b, while both
¶ and · have high SR values, only · would be marked as a
fail-slow event.

4.5 Risk Score
Recall our discussion on RQ4 and the usage of outlier detec-
tion, we also do not simply rely on the existence of fail-slow
events to label the corresponding drive as “fail-slow.” In fact,
if we simply mark drives with one fail-slow event as fail-slow,
we can easily obtain 6K such “fail-slow” cases on a bad day.

Therefore, we adopt the idea of establishing a risk score
mechanism from performance regression testing [25]. In
Table 3, slowdown duration and severity are classified into
different risk levels (in shades of grey). For example, in our
case, according to the daily slowdown span, the duration of
fail-slow is classified into temporal (from 30 to 60 minutes),
moderate (from 60 to 120 minutes) and long-term (from 120
to 180 minutes). Besides, based on the average slowdown
ratio of the day, the slowness of fail-slow is evaluated as mild
(1≤SR<2), moderate (2≤SR<5), or severe (SR≥5).

To examine fail-slow, a per-drive risk score is calculated
by assigning different weights to risk levels:

Risk Score = Nextreme×100 + Nhigh×25 +

Nmoderate×10 + Nlow×5+ Nminor×1
Nextreme refers to #days at extreme risk level.

(1)

If a drive whose risk scores exceed a minimum value (i.e.,
min_score) within the most recent N days, the drive will be
recommended for immediate isolation and hardware inspec-
tion. Note that all drives in our fleet, HDDs and SSDs, use
the same scoring mechanism.

Service Device #Node #Fail-slow
Stream processing NVMe SSD 47 1
Table storage NVMe SSD 87 1
Big data NVMe SSD 119 1
Data warehouse NVMe SSD 663 1
Database NVMe SSD 96 2
E-commerce NVMe SSD 223 6
Log service SATA HDD 34 36
Object storage SATA HDD 1426 42
Block storage NVMe SSD 734 225
Total - 3429 315

Table 4: Test dataset size (§5.1).

5 Evaluation
5.1 Fail-slow Benchmark
One significant challenge of testing fail-slow detection frame-
works is the lack of a benchmark. Existing fail-slow
datasets [19, 36] only record high-level administrative in-
formation of fail-slow incidents and thus cannot be used for
evaluation. Therefore, we build and release a large-scale fail-
slow detection benchmark based on verified fail-slow drives
and production-level traces.
Benchmark size. Table 4 presents a summary of our bench-
mark. Specifically, our dataset includes 886 million opera-
tional traces of 15 consecutive days from 41K drives and 25
clusters. Among them, 315 drives (237 SSDs and 78 HDDs)
are verified fail-slow and thus labeled as positive; the rest
are normal peer drives from the same clusters. Among the
verified cases, 304 are detected by PERSEUS. All fail-slow
drives are verified by either on-site engineers or manufac-
turers. Their root causes include software scheduling bugs,
hardware defects, and environmental factors.
Workload heterogeneity. The benchmark covers 9 major
services (see Table 4). These services can have drastically
different I/O accessing patterns and subsequently various LvT
distributions.
Benchmark setup. In our dataset, 252 fail-slow drives are
caused by software scheduling (see Section 6.1). To avoid po-
tential concerns that PERSEUS may be specific to the Alibaba
stack, we set up two scopes: (1) the full test dataset, and (2) a
subset excluding traces from clusters with software-induced
fail-slow drives. We only show results with the highest evalu-
ation scores in Table 5 and Table 7.

5.2 Test Candidates
We compare PERSEUS with three models based on our early
explorations, namely threshold filtering (§3.2), peer evalua-
tion (§3.3), and the IASO-based model (§3.4). In this section,
we introduce their implementation and configuration details.

5.2.1 Threshold Filtering
We include both statistical and empirical thresholds.
Statistical bound. We derive the following statistics as the
upper bounds: (1) an X th percentile where X ranges from 75

56 21st USENIX Conference on File and Storage Technologies USENIX Association

to 99; or (2) an interquartile range (IQR = 3rd_quartile−
1st_quartile) [30]. Drives are classified as fail-slow if their
median latency during the three-hour monitoring exceeds the
upper bound.
Empirical bound. We manually set a latency upper bound
for each node setup of each service based on the Service Level
Objectives (SLOs) or the suggestions from on-site engineers
(e.g., 300 µs for the all-flash setup in block storage service).

5.2.2 Peer Evaluation
Recall that the peer evaluation approach identifies a fail-slow
drive if its latency is at least X times that of the node median
for a minimum duration (denoted min_dur). To obtain the
best performance, we explore different sets of parameters
(i.e., X from 1.5 to 3 and min_dur from 0 to 150 minutes).

5.2.3 IASO-Based Model
We re-implement IASO [36] strictly following its original
design and only modify parts when necessary. Since IASO
detects fail-slow on a per-node basis, we label the results as
true positive if the node contains a fail-slow drive. We list key
implementation details as follows.
Epoch. The size of each epoch, instead of 5 seconds, is ad-
justed to 15 seconds (the finest granularity of our raw dataset).
Timeout. The timeout signals are converted to the num-
ber of slow drives in a node. During each epoch, the slow
drives refer to the drives whose latency records (i) exceed
pre-defined empirical bounds (Attempt 1 in §3.2) or (ii) are at
least 2× the median latency of all drives from the same node
(Attempt 2 in §3.3). The response is set as the total number
of drives in each node.
DBSCAN configuration. IASO records peer scores (the
higher the slower) among nodes, and only keeps one out-
lier with the highest score for its further mitigation procedure.
Here, since we only evaluate the detection part of IASO, we
retain all outliers classified by the DBSCAN and set different
score thresholds to fine-tune IASO.

5.2.4 PERSEUS

The deployed PERSEUS adopts outlier detection (§4.2) and
uses the combination of two prediction upper bounds (i.e.,
95% and 99.9%) to formulate fail-slow events (§4.4). The
monitoring period (N) is set as 15 days for both upper bounds,
and the alert score (min_score) is set as 90 for the former and
40 for the latter (§4.5). Note that PERSEUS uses the same set
of parameters for all node configurations (e.g., all-flash and
hybrid) across different services (e.g., block/object storage
and big data).

5.3 Evaluation Metrics
We adopt three evaluation metrics: precision rate, recall rate,
and Matthews Correlation Coefficient (MCC [33]). The preci-
sion indicates the percentage of drives identified by a method
is indeed a fail-slow one. The recall is the percentage of real
fail-slow drives identified by a method. Since our test dataset

Metric Thresh- Thresh- Peer IASO- PERSEUS-
Stat Emp Eval Based Deployed

Full-set
Precision 1.00 1.00 0.98 0.48 0.99

Recall 0.52 0.02 0.57 0.24 1.00
MCC 0.72 0.14 0.74 0.32 0.99

Subset (excluding software-induced)
Precision 1.00 1.00 1.00 0.45 0.94

Recall 0.71 0.09 0.65 0.61 1.00
MCC 0.84 0.30 0.80 0.52 0.97

Table 5: Overall evaluation results (§5.4). The table shows
the best evaluation scores of threshold filtering based on
statistical (ThreshStat) and empirical (ThreshEmp) bounds,
peer evaluation (PeerEval), and the IASO-based model. For
PERSEUS, we list the results of the deployed version. Each
method is evaluated on both the full-set and the subset.

is highly unbalanced (i.e., the positive-to-negative ratio is
1:137), we further adopt MCC as it evaluates binary classi-
fication models more fairly on imbalanced datasets and can
offer a more informative and convincing score compared to
other widely adopted metrics like accuracy and F1-score [12].

5.4 Evaluation Results
Table 5 summarizes the performance results. For previous
attempts (Thresh-Stat to IASO-Based columns), we choose
the best performance. For PERSEUS, we use the results of the
deployed version. The upper half includes the results from the
full benchmark tests and the lower half includes results from
the benchmark excluding the scheduling-induced failures.

Threshold-based. We can see that, in both the full-set and
the subset, the two threshold-based approaches can achieve
a precision of 100%. However, the recalls are subpar, espe-
cially the empirical threshold method. This is understandable
as strict thresholds, on the one hand, can expose extremely
slow drives which are highly likely to be caused by fail-slow
failures. On the other hand, such methods can leave drives
with only mild fail-slow symptoms undiscovered.

Peer-evaluation. Using peer evaluation to detect fail-slow
failures also yields high precision but low recall. The reason
is that it generally adopts an adaptive threshold (i.e., X times
the node median) to formulate fail-slow events. Thus, it faces
the same problem as threshold-based methods.

IASO-based. While we have tried our best effort on refac-
toring and fine-tuning IASO, its performance is rather disap-
pointing. With an MCC score of 0.32, IASO even falls behind
using a simple statistical threshold or using a peer-evaluation
method. We believe there are two aspects of reasons. First,
IASO heavily relies on software timeouts which can not be
simply replaced with other metrics (e.g., node-level slow
drives). Second, its algorithm is designed for node-level de-
tection where a finer grained event (e.g., a fail-slow drive)
may not trigger enough alerts.

USENIX Association 21st USENIX Conference on File and Storage Technologies 57

0.46 0.81 0.86 0.95 0.90 1 1 1 1 1 1 1 1

0.46 0.81 0.86 0.96 0.97 1 1 1 1 1 1 1 1

0.46 0.81 0.86 0.96 0.97 1 1 1 1 1 1 1 1

0.46 0.81 0.86 0.96 0.97 0.99 1 1 1 1 1 1 1

0.46 0.81 0.86 0.96 0.97 0.99 1 1 1 1 1 1 1

0.46 0.81 0.86 0.96 0.97 0.99 1 1 1 1 1 1 1

1

3

5

7

10

15

L
a
st

 N
 d

a
y
(s

)

(a) Precision

0.96 0.95 0.90 0.62 0.23 0.20 0.19 0.19 0.16 0.13 0.09 0.09 0.09

0.96 0.95 0.95 0.94 0.92 0.71 0.65 0.51 0.21 0.18 0.17 0.17 0.16

0.96 0.95 0.95 0.95 0.94 0.89 0.80 0.67 0.63 0.58 0.56 0.20 0.19

0.96 0.95 0.95 0.95 0.94 0.92 0.87 0.76 0.70 0.64 0.61 0.58 0.57

0.96 0.95 0.95 0.95 0.94 0.93 0.91 0.87 0.81 0.74 0.68 0.64 0.62

0.96 0.95 0.95 0.95 0.95 0.94 0.93 0.91 0.88 0.86 0.82 0.77 0.71

1

3

5

7

10

15

L
a
st

 N
 d

a
y(

s)

(b) Recall

0.66 0.88 0.88 0.77 0.46 0.45 0.43 0.43 0.40 0.36 0.30 0.30 0.30

0.66 0.88 0.90 0.95 0.94 0.84 0.81 0.71 0.45 0.43 0.42 0.41 0.40

0.66 0.88 0.90 0.95 0.95 0.94 0.89 0.82 0.79 0.76 0.75 0.45 0.43

0.66 0.88 0.90 0.95 0.95 0.96 0.93 0.87 0.84 0.80 0.78 0.76 0.75

0.66 0.88 0.90 0.95 0.95 0.96 0.95 0.93 0.90 0.86 0.82 0.80 0.78

0.66 0.88 0.90 0.95 0.96 0.97 0.96 0.96 0.94 0.92 0.91 0.87 0.84

1

3

5

7

10

15

1 5 10 15 20 30 40 50 60 70 80 90 100

Risk score threshold (min_score)

L
a
st

 N
 d

a
y(

s)

(c) MCC

0.0

0.2

0.4

0.6

0.8

1.0

0.751.001.25

x

y

Figure 10: min_score and N of PERSEUS (§5.5). The
heatmaps show evaluation scores of PERSEUS-p999 in Ta-
ble 7 under different min_score and N. The lighter the color,
the higher the score, the better the result.

PERSEUS. Table 5 shows that PERSEUS outperforms all
previous attempts. The high precision and recall indicate
that PERSEUS can successfully detect all fail-slow drives
while rarely mislabeling normal as fail-slow. Therefore, we
conclude that PERSEUS achieves our design goals as a fine-
grained (per-drive), non-intrusive (no code changes), general
(same set of parameters for different setups) and accurate
(high precision and recall) fail-slow detection framework.

5.5 Effectiveness of PERSEUS Design
Now, we take a closer look at the effectiveness of procedures
and sensitivity of parameters in PERSEUS. In Table 6, we
list the main options or ranges of configurable parameters in
PERSEUS. Next, we discuss the effectiveness of PERSEUS’s
procedures by enabling or disabling particular functionalities
and explore different sets of parameters. The evaluation re-
sults are listed in Table 7. Note that the deployed version uses
a combination of p95 and p999 upper bounds.

Outlier detection. By disabling the outlier detection, we can
see that the precision is approximately the same, while the
recall plummets to only 0.51. This indicates that, without
outlier detection, PERSEUS may fail to distinguish samples
from fail-slow drives, thus yielding a low recall.

PCA. Surprisingly, if we enable outlier detection but disable
PCA, we find out the performance becomes even worse than

Parameter Range Description
S1: Outlier detection (§4.2)

PCA On/Off
Transform the coordinates w.r.t. the
principal components.

DBSCAN On/Off Density-based outlier detection.

S3: Identifying fail-slow event (§4.4)

X 95∼99.9
Use the X% prediciton upper bound as
the latency upper bound.

S4: Evaluating risk (§4.5)
min_score 1∼100 Risk score threshold.

N 1∼15
Evaluate the risk score of the most
recent N days.

Table 6: Evaluating PERSEUS’s design choices (§5.5).
The table summarizes the parameter settings of evaluating
PERSEUS’s design choices. PCA and DBSCAN are switched
on and off to demonstrate their effectiveness.

Metric w/o w/o p95 p99 p999 Deployed
Outlier PCA

Full-set
Precision 0.98 0.55 0.99 1.00 1.00 0.99

Recall 0.51 0.43 0.99 0.93 0.93 1.00
MCC 0.71 0.49 0.99 0.96 0.96 0.99

Subset (excluding software-induced)
Precision 0.95 0.36 0.94 0.98 1.00 0.94

Recall 0.82 0.91 0.95 0.92 0.95 1.00
MCC 0.88 0.57 0.95 0.95 0.98 0.97

Table 7: Evaluation results of PERSEUS’s design choices
in Table 6 (§5.5). Only results based on the best sets of
parameters with the highest MCC scores are shown.

simply without outlier detection. This experiment confirms
the importance of correcting mislabeling samples via PCA.

Prediction upper bounds. We set various prediction upper
bounds from p95 to p999. The optimal one on the full-set
is the p95 upper bound, with nearly perfect precision and
recall both at 0.99. For the subset, a stricter bound of p999
is preferred as fail-slow in the subset is usually with severe
slowdowns. In practice, the deployed version uses a combina-
tion of p95 and p999 upper bounds to strike a better balance
on both benchmarks.

Risk score mechanism. Figure 10 evaluates the scoring
mechanism. With a larger min_score and N, the precision
usually increases while the recall decreases. This is because,
as N becomes larger, drives—that have occasional but less se-
vere slowdowns—could be misidentified with enough scores
counted from more days.
Evaluating the read performance. Fail-slow failures im-
pact the write performance more often than the read. Among
the 315 fail-slow drives in our dataset, 49 are fail-slow in
both write and read while 223 are only fail-slow in the write.
Unfortunately, we do not have read traces of the remaining
43 fail-slow ones.

58 21st USENIX Conference on File and Storage Technologies USENIX Association

Runtime overhead. On Intel Xeon 8-core CPU 2.5GHz
with 16GB RAM, the per-node execution time of PERSEUS
is measured as 0.21±0.14 seconds. With low overheads,
PERSEUS can detect fail-slow drives in tens of thousands of
nodes each day on a single machine.

5.6 Benefit of Deployment

The most direct benefit of deploying PERSEUS is reducing tail
latency. By isolating the fail-slow, node-level 95th, 99th and
99.99th write latencies are reduced by 30.67% (±10.96%),
46.39% (±14.84%), and 48.05% (±15.53%), respectively.

6 Root Cause Analysis
We further analyze the root causes of the 315 fail-slow drives
in the test dataset. Among them, 216 SSDs and 36 HDDs
are impacted by ill-implemented software scheduling. The
remaining 42 HDDs and 21 SSDs are verified by our on-site
engineers as hardware-related fail-slow failures and further
sent back to vendors for detailed analysis. Due to the lengthy
diagnosis process, we only obtain root causes for 15 drives (9
HDDs and 6 SSDs).

6.1 Ill-Implemented Scheduler

6.1.1 Case 1: In Open-Channel SSD Cluster

Symptom. In two clusters, PERSEUS has identified a total
of 216 fail-slow drives constantly showing abnormal perfor-
mance. This is unconventional as hardware-related fail-slow
occurrences are usually rare and independent. Further investi-
gation reveals that all detected fail-slow drives are with the
same logical IDs, i.e., disk1 and disk2. After checking the
per-node latency time series, we discover that the latency of
individual drives in these nodes is positively correlated with
their logical IDs, i.e., latency level: disk1 > disk2 > · · · >
disk12. In other words, among those nodes, disk1 is always
the slowest, followed by disk2 and so on.
Root cause. Each node in these two clusters is equipped with
12 open-channel SSDs (OC SSDs), whose Flash Translation
Layer (FTL) is managed by the host. For each node, the host
allocates 12 CPU cores to manage 12 OC SSDs, respectively
(e.g., core0-core11 for SSD0-SSD11). The root cause is that
the OS scheduler places system tasks on CPU cores by do-
main (a domain includes 6 CPU cores). Upon receiving a new
system task (e.g., ps command), the scheduler first checks if
the current core and last-selected core are idle. If not, start-
ing from the first core in the domain, the scheduler iterates
through all cores in order and attempts to preempt a core for
running the task. As a result, OC drives with smaller IDs
(e.g., disk1) are more likely to be preempted and encounter
fail-slow failures.
Fix. We modify the scheduler to no longer preempt the CPU
cores assigned to the OC SSDs. After the fix, OC SSDs in
these clusters no longer suffer fail-slow failures.

6.1.2 Case 2: In All-HDD Cluster

Symptom. In one cluster, PERSEUS has identified 36 fail-
slow HDDs. This cluster is of an all-HDD setup with 76
HDDs in each node. There are three interesting facts about
the distribution of the fail-slow HDDs from this cluster. First,
the fail-slow failures always show up in fixed combinations of
pairs. For example, if there are two fail-slow HDDs in a node,
they would be disk0 and disk75. If there are 6 fail-slow HDDs,
they would be disk0−2 and disk73−75. Second, all fail-slow
HDDs are experiencing a similar level of slowdown. Third,
in each node, the number of fail-slow drives is always twice
the number of offline drives.

Root cause. In each node of this cluster, the OS assigns each
HDD a thread to manage its I/O. The assignment follows a
simple algorithm:

Thread_ID = Disk_ID mod #Drives. (2)

Therefore, as each node has 76 HDDs, normally thread0
manages disk0 and so on. However, when a drive is put
offline, the number of drives changes and the assignment acts
accordingly. For example, assume disk20 crashes and the total
number of drives now becomes 75. Then, disk0 and disk75
would share thread0 (0 ≡ 75 mod 75) and thus suffer from
fail-slow failures due to I/O contention. Similarly, two or
three drives crash can result in corresponding two or three
pairs of fail-slow occurrences.

Fix. We modify the assignment policy to only allow one
HDD per thread and thus avoid the fail-slow occurrences.

6.2 Hardware Defects
Bad sector. Bad sectors are usually an artifact of physical
damage (e.g., manufacturing defect or scratched by the read-
/write head) [40]. To deal with them, disk firmware maintains
a pool of spare sectors to reallocate the original data on bad
sectors. Moreover, firmware remaps the logical address of
bad sectors to the physical address of spare sectors. Upon
host requests on an unmarked bad sector, the disk will suffer
from long seek time (i.e., time spent for reallocating data).
According to field events, three HDDs are reported to have
a large number of bad sectors, resulting in repeated remap-
ping and reallocating, and obviously fail-slow failures. Note
that one can not simply infer the root causes based on the
occurrences of such errors. The reason is that the hardware
defects are usually neither necessary nor sufficient conditions
for fail-slow failures.
Rotor eccentricity. Disk motor spins the platter at high speed
(e.g., 7200 RPM for consumer-level HDDs). If the rotor in
the spindle motor rotates with eccentricity, it will cause a lot
of noise and vibration. For such disks, the read/write heads
would frequently fail to locate targeted positions, resulting in
considerable I/O delay. Two fail-slow HDDs are reported to
suffer from slight rotor eccentricity in our field events.

USENIX Association 21st USENIX Conference on File and Storage Technologies 59

Bad capacitors. SSD adopts a small amount of DRAM as
an internal write-back cache to boost both read and write
performance. If the DRAM capacitors are malfunctioning,
SSD will be forced to stop using the cache since it is volatile
(i.e., data loss upon power down), causing severe performance
degradation. Instead, SSDs now only ACK after data have
been directly flushed to the NAND successfully, incurring
long latencies on writes. In total, four SSDs are found to have
bad capacitors.
Read-only mode. Drives with severe errors (e.g., in the face
of too many bad sectors) are reset to (temporal) read-only
mode to prevent further data loss. Upon read-only mode,
drives are blocked from executing any write command. As a
result, two SSDs are found to be stuck in read-only mode.

6.3 Environment

Temperature and power are common sources of fail-slow
incidents [19, 48]. According to field events, one fail-slow
HDD suffered from temperature throttling due to high envi-
ronmental temperature. Another three HDDs were related to
insufficient power supply events.

7 Limitation
Multiple fail-slow occurrences. PERSEUS leverages an im-
portant precondition that fail-slow failures should be rare in
the field. However, if a key component on the critical data
path (e.g., HBA card) breaks down, all drives would be im-
pacted and result in severe delays. In this case, PERSEUS may
not be able to detect the performance anomalies as the LvT
distribution can be skewed for all drives. At the moment, we
are investigating the possibility to perform inter-node LvT
distribution to enhance PERSEUS’s ability on discovering
multiple fail-slow occurrences within the same node.

Generalizability. Utilizing the LvT distribution to identify
fail-slow drives also depends on the fact that all drives within
the node have the same drive models and similar workloads.
In our storage systems, drives have the same configuration,
and multiple levels of load balancing assure that the workload
on each drive is similar within the same node. While this
is a common practice for large-scale storage systems [30,
32, 35, 48], it might not be the case for small-scale servers
(e.g., private cloud), where drives in the same node can have
drastically different workloads and configurations. Under
such circumstances, the accuracy of PERSEUS can be affected.

Comprehensiveness. PERSEUS currently uses traces from
9PM to 12AM each day to reduce interference (see Sec-
tion 2.2). It is possible that some fail-slow failures could
only be triggered during a particular time window or under
heavier workloads. We are working on designing a more effi-
cient daemon to collect traces during busy hours for PERSEUS.
Moreover, we are exploring other device-level metrics to en-
rich what PERSEUS can take as key inputs.

8 Related Work
Fail-slow failure study and diagnosis. As an emerging
failure mode, fail-slow failure has received growing atten-
tion from academia and industry. Early literature mainly
focuses on diagnosing fail-slow as an overlooked failure
mode [16, 19, 24]. For example, Huang et al. define gray
failure in the cloud with an abstract model [24]. Do et al. [16]
measure system-level performance degradation brought by
limpware, and address the necessity to develop limpware-
tolerant systems. Gunawi et al. [19] perform qualitative analy-
sis on 101 hardware-incident reports from various institutions
and reveal the underlying fail-slow root causes in various
types of hardware. Our motivational study in Section 2.3
specifically evaluates the fail-slow impact on drive perfor-
mance (i.e., I/O latency). Moreover, our work provides a
more diverse root cause analysis on fail-slow in storage de-
vices.
Fail-slow failure detection. There have been a few studies
addressing fail-slow detection and localization [4, 23, 29,
36, 45, 50]. For example, Panda et al. [36] convert software-
level timeout signals into fail-slow metrics and adopt peer
evaluation to detect fail-slow nodes. Huang et al. design
Panorama to detect production failures by increasing the in-
site observability [23]. Different from the above, PERSEUS
detects fail-slow specifically in storage devices and is merely
based on performance metrics like latency and throughput.

9 Conclusion
In this paper, we first share our unsuccessful attempts in
developing robust and non-intrusive fail-slow detection for
large-scale storage systems. We then introduce the design of
PERSEUS, which utilizes classic machine learning techniques
and scoring mechanisms to achieve effective fail-slow detec-
tion. Since deployment, PERSEUS has covered around 250K
drives and successfully identified 304 fail-slow drives.

Acknowledgements
We would like to thank our shepherd Sangyeun Cho, and
the anonymous reviewers for their insightful comments
and suggestions. This research was supported by NSFC
(62102424, 62072306), the Alibaba Innovation Research
(AIR) program, National Key R&D Program of China
(2022YFB4500302), Program of Hunan Postdoc Innovation
(2021RC2069), and Program of Shanghai Academic Research
Leader (20XD1402100). The authors would also like to thank
Amber Bi and Shiming Wang for their feedbacks on early
versions of this paper.

60 21st USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Hervé Abdi and Lynne J. Williams. Principal component

analysis. WIREs Computational Statistics, 2010.

[2] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj
Patel, Thanumalayan Sankaranarayana Pillai, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Corre-
lated crash vulnerabilities. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[3] Jacob Alter, Ji Xue, Alma Dimnaku, and Evgenia
Smirni. Ssd failures in the field: Symptoms, causes,
and prediction models. In Proceedings of the Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2019.

[4] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang (Harry) Liu, Jitu Padhye, Boon Thau Loo,
and Geoff Outhred. 007: Democratically finding the
cause of packet drops. In Proceedings of the 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2018.

[5] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, Garth R. Goodson,
and Bianca Schroeder. An analysis of data corruption
in the storage stack. In Proceedings of the 6th USENIX
Conference on File and Storage Technologies (FAST),
2008.

[6] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Shankar Pasupathy, and Jiri Schindler. An analysis of
latent sector errors in disk drives. In Proceedings of the
2007 ACM International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS),
2007.

[7] Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin
Agrawa, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Michael M. Swift. Analyzing the effects
of disk-pointer corruption. In Proceedings of the 38th
Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), 2008.

[8] Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu.
Read disturb errors in mlc nand flash memory: Charac-
terization, mitigation, and recovery. In Proceedings of
the 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2015.

[9] Tushar Deepak Chandra and Sam Toueg. Unreliable
failure detectors for reliable distributed systems. Journal
of the ACM, 1996.

[10] Wei Chen, S. Toueg, and M. Kawazoe Aguilera. On the
quality of service of failure detectors. In Proceedings
of the 30th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2000.

[11] Wooseong Cheong, Chanho Yoon, Seonghoon Woo,
Kyuwook Han, Daehyun Kim, Chulseung Lee, Youra
Choi, Shine Kim, Dongku Kang, Geunyeong Yu, Jae-
hong Kim, Jaechun Park, Ki-Whan Song, Ki-Tae Park,
Sangyeun Cho, Hwaseok Oh, Daniel D.G. Lee, Jin-
Hyeok Choi, and Jaeheon Jeong. A flash memory con-
troller for 15µs ultra-low-latency ssd using high-speed
3d nand flash with 3µs read time. In Proceedings of
the IEEE International Solid State Circuits Conference
(ISSCC), 2018.

[12] David Chicco and Giuseppe Jurman. The advantages of
the matthews correlation coefficient (mcc) over f1 score
and accuracy in binary classification evaluation. BMC
Genomics, 2020.

[13] Brian Choi, Randal Burns, and Peng Huang. Under-
standing and dealing with hard faults in persistent mem-
ory systems. In Proceedings of the 16th European Con-
ference on Computer Systems (EuroSys), 2021.

[14] Allen Clement, Edmund Wong, Lorenzo Alvisi, and
Mirco Marchetti. Making byzantine fault tolerant sys-
tems tolerate byzantine faults. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2009.

[15] GW Corder and DI Foreman. Nonparametric Statistics:
A Step-by-Step Approach. Wiley, 2014.

[16] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, and Haryadi S. Gunawi. Limplock:
Understanding the impact of limpware on scale-out
cloud systems. In Proceedings of the 4th Annual Sym-
posium on Cloud Computing (SoCC), 2013.

[17] Norman R Draper and Harry Smith. Applied Regression
Analysis. Wiley, 1998.

[18] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto,
Agung Laksono, Anang D. Satria, Jeffry Adityatama,
and Kurnia J. Eliazar. Why does the cloud stop com-
puting? lessons from hundreds of service outages. In
Proceedings of the 7th ACM Symposium on Cloud Com-
puting (SoCC), 2016.

[19] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin
Harms, Robert B. Ross, Andree Jacobson, Robert Ricci,
Kirk Webb, Peter Alvaro, H. Birali Runesha, Mingzhe
Hao, and Huaicheng Li. Fail-slow at scale: Evidence
of hardware performance faults in large production sys-
tems. In Proceedings of the 16th USENIX Conference
on File and Storage Technologies (FAST), 2018.

[20] Trinabh Gupta, Joshua B. Leners, Marcos K. Aguilera,
and Michael Walfish. Improving availability in dis-
tributed systems with failure informers. In Proceedings

USENIX Association 21st USENIX Conference on File and Storage Technologies 61

of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2013.

[21] Shujie Han, Patrick P. C. Lee, Fan Xu, Yi Liu, Cheng
He, and Jiongzhou Liu. An in-depth study of correlated
failures in production SSD-based data centers. In Pro-
ceedings of the 19th USENIX Conference on File and
Storage Technologies (FAST), 2021.

[22] Mingzhe Hao, Gokul Soundararajan, Deepak
Kenchammana-Hosekote, Andrew A. Chien, and
Haryadi S. Gunawi. The tail at store: A revelation
from millions of hours of disk and ssd deployments. In
Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST), 2016.

[23] Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong
Zhou, and Yingnong Dang. Capturing and enhancing in
situ system observability for failure detection. In Pro-
ceedings of the 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2018.

[24] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray failure: The achilles’ heel of cloud-
scale systems. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems (HotOS), 2017.

[25] Peng Huang, Xiao Ma, Dongcai Shen, and Yuanyuan
Zhou. Performance regression testing target prioritiza-
tion via performance risk analysis. In Proceedings of the
36th International Conference on Software Engineering
(ICSE), 2014.

[26] Volodymyr Kuznetsov, Vitaly Chipounov, and George
Candea. Testing Closed-Source binary device drivers
with DDT. In Proceedings of the 2010 USENIX Annual
Technical Conference (USENIX ATC), 2010.

[27] Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K.
Aguilera, and Michael Walfish. Detecting failures in
distributed systems with the falcon spy network. In
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP), 2011.

[28] Jiaxin Li, Yuxi Chen, Haopeng Liu, Shan Lu, Yiming
Zhang, Haryadi S. Gunawi, Xiaohui Gu, Xicheng Lu,
and Dongsheng Li. Pcatch: Automatically detecting
performance cascading bugs in cloud systems. In Pro-
ceedings of the 13th European Conference on Computer
Systems (EuroSys), 2018.

[29] Chang Lou, Peng Huang, and Scott Smith. Understand-
ing, detecting and localizing partial failures in large
system software. In Proceedings of the 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2020.

[30] Ruiming Lu, Erci Xu, Yiming Zhang, Zhaosheng Zhu,
Mengtian Wang, Zongpeng Zhu, Guangtao Xue, Minglu
Li, and Jiesheng Wu. NVMe SSD failures in the field:

the Fail-Stop and the Fail-Slow. In In Proceedings of the
2022 USENIX Annual Technical Conference (USENIX
ATC 22), 2022.

[31] Ao Ma, Fred Douglis, Guanlin Lu, Darren Sawyer,
Surendar Chandra, and Windsor Hsu. RAIDShield:
Characterizing, monitoring, and proactively protecting
against disk failures. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST),
2015.

[32] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and
Bianca Schroeder. A study of SSD reliability in large
scale enterprise storage deployments. In Proceedings
of the 18th USENIX Conference on File and Storage
Technologies (FAST), 2020.

[33] Brian Matthews. Comparison of the predicted and
observed secondary structure of t4 phage lysozyme.
Biochimica et Biophysica Acta (BBA)-Protein Structure,
1975.

[34] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu.
A large-scale study of flash memory failures in the field.
In Proceedings of the 2015 ACM International Con-
ference on Measurement and Modeling of Computer
Systems (SIGMETRICS), 2015.

[35] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash
Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben
Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid.
Ssd failures in datacenters: What? when? and why? In
Proceedings of the 9th ACM International on Systems
and Storage Conference (SYSTOR), 2016.

[36] Biswaranjan Panda, Deepthi Srinivasan, Huan Ke,
Karan Gupta, Vinayak Khot, and Haryadi S. Gunawi.
Iaso: A fail-slow detection and mitigation framework
for distributed storage services. In Proceedings of the
2019 USENIX Annual Technical Conference (USENIX
ATC), 2019.

[37] Thanumalayan Sankaranarayana Pillai, Ramnatthan Ala-
gappan, Lanyue Lu, Vijay Chidambaram, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Appli-
cation crash consistency and performance with CCFS.
In Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST), 2017.

[38] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram,
Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Iron file sys-
tems. In Proceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP), 2005.

[39] Matthew J. Renzelmann, Asim Kadav, and Michael M.
Swift. SymDrive: Testing drivers without devices. In
Proceedings of the 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
2012.

62 21st USENIX Conference on File and Storage Technologies USENIX Association

[40] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill.
Understanding latent sector errors and how to protect
against them. In Proceedings of the 8th USENIX Con-
ference on File and Storage Technologies (FAST), 2010.

[41] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash reliability in production: The expected and the
unexpected. In Proceedings of the 14th USENIX Con-
ference on File and Storage Technologies (FAST), 2016.

[42] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich
Weber. Dram errors in the wild: A large-scale field
study. In Proceedings of the 2009 ACM International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), 2009.

[43] Erich Schubert, Jörg Sander, Martin Ester, Hans Kriegel,
and Xiaowei Xu. Dbscan revisited, revisited: Why and
how you should (still) use dbscan. ACM Transactions
on Database Systems, 2017.

[44] Riza O. Suminto, Cesar A. Stuardo, Alexandra Clark,
Huan Ke, Tanakorn Leesatapornwongsa, Bo Fu, Da-
niar H. Kurniawan, Vincentius Martin, Maheswara
Rao G. Uma, and Haryadi S. Gunawi. Pbse: A robust
path-based speculative execution for degraded-network
tail tolerance in data-parallel frameworks. In Proceed-
ings of the 8th ACM Symposium on Cloud Computing
(SoCC), 2017.

[45] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang,
Haitao Wu, Karl Deng, Dongming Bi, and Dong Xiang.
NetBouncer: Active device and link failure localization
in data center networks. In Proceedings of the 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2019.

[46] Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui
Gu, Chitra Venkatramani, and Deepak Rajan. Prepare:
Predictive performance anomaly prevention for virtual-
ized cloud systems. In Proceedings of the 32nd Inter-
national Conference on Distributed Computing Systems
(ICDCS), 2012.

[47] Benjamin Walker. Spdk: Building blocks for scalable,
high performance storage applications. In Storage De-
veloper Conference, 2016.

[48] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesh-
eng Wu. Lessons and actions: What we learned from
10k ssd-related storage system failures. In Proceed-
ings of the 2019 USENIX Annual Technical Conference
(USENIX ATC), 2019.

[49] Jinfeng Yang, Bingzhe Li, and David J. Lilja. Exploring
performance characteristics of the optane 3d xpoint stor-
age technology. ACM Transactions on Modeling and
Performance Evaluation of Computing Systems, 2020.

[50] Qiao Zhang, Guo Yu, Chuanxiong Guo, Yingnong Dang,
Nick Swanson, Xinsheng Yang, Randolph Yao, Murali

Chintalapati, Arvind Krishnamurthy, and Thomas An-
derson. Deepview: Virtual disk failure diagnosis and
pattern detection for azure. In Proceedings of the 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2018.

USENIX Association 21st USENIX Conference on File and Storage Technologies 63

	Introduction
	Background
	System Architecture
	Dataset Description
	Impact of Fail-Slow Failures

	Unsuccessful Attempts & Lessons
	Design Goals
	Attempt 1: Threshold Filtering
	Attempt 2: Peer Evaluation
	Attempt 3: Iaso-Based Model
	Guidelines for Perseus

	Perseus
	High-Level Workflow
	Outlier Detection
	Regression Model
	Identifying Fail-Slow Event
	Risk Score

	Evaluation
	Fail-slow Benchmark
	Test Candidates
	Threshold Filtering
	Peer Evaluation
	Iaso-Based Model
	Perseus

	Evaluation Metrics
	Evaluation Results
	Effectiveness of Perseus Design
	Benefit of Deployment

	Root Cause Analysis
	Ill-Implemented Scheduler
	Case 1: In Open-Channel SSD Cluster
	Case 2: In All-HDD Cluster

	Hardware Defects
	Environment

	Limitation
	Related Work
	Conclusion

