
This paper is included in the Proceedings of the
21st USENIX Conference on File and

Storage Technologies.
February 21–23, 2023 • Santa Clara, CA, USA

978-1-939133-32-8

Open access to the Proceedings
of the 21st USENIX Conference on

File and Storage Technologies
is sponsored by

More Than Capacity: Performance-oriented
Evolution of Pangu in Alibaba

Qiang Li, Alibaba Group; Qiao Xiang, Xiamen University; Yuxin Wang,
Haohao Song, and Ridi Wen, Xiamen University and Alibaba Group; Wenhui Yao,

Yuanyuan Dong, Shuqi Zhao, Shuo Huang, Zhaosheng Zhu, Huayong Wang, and
Shanyang Liu, Lulu Chen, Zhiwu Wu, Haonan Qiu, Derui Liu, Gexiao Tian,

Chao Han, Shaozong Liu, Yaohui Wu, Zicheng Luo, Yuchao Shao, Junping Wu,
Zheng Cao, Zhongjie Wu, Jiaji Zhu, and Jinbo Wu, Alibaba Group; Jiwu Shu, Xiamen

University; Jiesheng Wu, Alibaba Group
https://www.usenix.org/conference/fast23/presentation/li-qiang-deployed

https://www.usenix.org/conference/fast23/presentation/li-qiang-deployed

More Than Capacity: Performance-Oriented Evolution of Pangu in Alibaba

Qiang Li⋄, Qiao Xiang†, Yuxin Wang†⋄, Haohao Song†⋄, Ridi Wen†⋄,
Wenhui Yao⋄, Yuanyuan Dong⋄, Shuqi Zhao⋄, Shuo Huang⋄, Zhaosheng Zhu⋄,

Huayong Wang⋄, Shanyang Liu⋄, Lulu Chen⋄, Zhiwu Wu⋄, Haonan Qiu⋄, Derui Liu⋄,
Gexiao Tian⋄, Chao Han⋄, Shaozong Liu⋄, Yaohui Wu⋄, Zicheng Luo⋄,

Yuchao Shao⋄, Junping Wu⋄, Zheng Cao⋄, Zhongjie Wu⋄, Jiaji Zhu⋄, Jinbo Wu⋄,
Jiwu Shu†, Jiesheng Wu⋄,

⋄Alibaba Group, †Xiamen University

Abstract
This paper presents how the Pangu storage system continu-
ously evolves with hardware technologies and the business
model to provide high-performance, reliable storage services
with a 100-µs level of I/O latency. Pangu’s evolution includes
two phases. In the first phase, Pangu embraced the emergence
of solid-state drive (SSD) storage and remote direct memory
access (RDMA) network technologies by innovating its file
system and designing a user-space storage operating system.
As a result, Pangu substantially reduced its I/O latency while
providing high throughput and IOPS. In the second phase,
Pangu evolved from a volume-oriented storage provider to a
performance-oriented one. To adapt to this business model
change, Pangu upgraded its infrastructure with storage servers
of much higher SSD volume and RDMA bandwidth from 25
Gbps to 100 Gbps. It introduced a series of key designs, in-
cluding traffic amplification reduction, remote direct cache
access, and CPU computation offloading, to ensure Pangu
fully harvests the performance improvement brought by hard-
ware upgrades. Other than technology innovations, we also
shared our operating experiences during Pangu’s evolution,
and discussed important lessons learned from them.

1 Introduction
Since Alibaba started developing and deploying the Pangu

storage system in 2009, Pangu has been serving as a unified
storage platform for Alibaba Group and Alibaba Cloud. It
provides a scalable, high-performance, and reliable storage
service for Alibaba’s core businesses (e.g., Taobao, Tmall,
AntFin, and Alimama). Many cloud services, such as Elastic
Block Storage (EBS) [1], Object Storage Service (OSS) [2],
Network-Attached Storage (NAS) [3], PolarDB [4], and Max-
Compute [5], are built on top of Pangu. After over a decade,
Pangu has become a global storage system with a volume of
exabytes and manages trillions of files.
Pangu 1.0: volume-oriented storage service provision. The
development and deployment of Pangu go through two genera-
tions. Pangu 1.0 spanned from 2009 to 2015. It was designed
on an infrastructure composed of servers with commodity

CPUs and hard disk drives (HDD), which have a ms-level
I/O latency, and a Gbps-level datacenter network. Pangu
1.0 designed a distributed kernel-space file system based on
Linux Ext4 [6] and kernel-space TCP [7], and gradually added
support to multiple file types (e.g., TempFile, LogFile, and
random access file) as needed by different storage services.
This period overlaps with the early stage of cloud computing.
Although Pangu 1.0’s performance (i.e., throughput and I/O
latency) reached the limit of HDD and Gbps-level networks,
clients’ primary focus was to get large volumes of space to
store their data, rather than high performance.
New hardware technologies require new designs. Since
2015, we started to design and develop Pangu 2.0 to embrace
the emerging SSD and RDMA technologies. The goal of
Pangu 2.0 is to provide high-performance storage services
with a 100µs-level I/O latency. Although SSD and RDMA
can achieve high-performance, low-latency I/O in storage and
network, we observe that (1) multiple file types used in Pangu
1.0, in particular file types that allow random access, perform
poorly on SSD, which can achieve high throughput and IOPS
on sequential operations; (2) the kernel-space software stack
cannot keep up with the high IOPS and low I/O latency of
SSD and RDMA, due to data copy and frequent interrupts;
and (3) the paradigm shift from server-centric datacenter ar-
chitectures to resource-disaggregated datacenter architectures
poses additional challenges to achieving low I/O latency.
Phase one of Pangu 2.0: embracing SSD and RDMA by
file system refactoring and user-space storage operating
system. To achieve high-performance and low-latency I/O,
in this phase, Pangu 2.0 first proposed new designs in key
components of its file system. To simplify the development
and management of the overall system, it designed a uni-
fied, append-only persistence layer. It also introduced a self-
contained chunk layout to reduce the I/O latency of file write
operations. Second, Pangu 2.0 designed a user-space storage
operating system (USSOS). USSOS uses a run-to-completion
thread model to realize efficient collaboration between the
user-space storage stack and the user-space network stack.
It also proposes a user-space scheduling mechanism for ef-

USENIX Association 21st USENIX Conference on File and Storage Technologies 331

ficient CPU and memory resource allocation. Third, Pangu
2.0 deployed mechanisms to provide SLA guarantees under
dynamic environments. With these innovations, Pangu 2.0
achieved a ms-level P999 I/O latency in phase one.
Phase two of Pangu 2.0: adapting to a performance-
oriented business model with infrastructure updates
and breaking through network/memory/CPU bottlenecks.
Since 2018, Pangu gradually changed its business model from
volume-oriented to performance-oriented. It is because en-
terprises are increasingly moving their businesses to Alibaba
Cloud and they have stringent requirements on storage perfor-
mance and latency. This shift became faster after the COVID-
19 pandemic broke out in 2020. To adapt to this business
model change and the fast expansion of clientele, Pangu 2.0
needed to keep upgrading the infrastructure.

Scaling the infrastructure with original servers and switches
along a Clos-based topology (e.g., FatTree [8]) is not econom-
ical, including a higher total cost of ownership (e.g., rack
space, power, cooling, and labor) and a higher environmental
cost (e.g., a higher carbon emission rate). As such, Pangu
developed in-house high-volume storage servers (96 TB SSD
per server) and upgrades network bandwidth from 25 Gbps
to 100 Gbps.

To fully harvest the performance improvement brought by
these upgrades, Pangu 2.0 proposed a series of techniques to
cope with the performance bottleneck at network, memory,
and CPU and fully utilize its massive resources. Specifically,
Pangu 2.0 optimized network bandwidth by reducing the net-
work traffic amplification ratio and dynamically adjusting the
priorities of different traffic. It coped with the memory bot-
tleneck by proposing remote direct cache access (RDCA). It
addressed the CPU bottleneck by eliminating the data tax of
data (de)serialization and introducing CPU wait instruction
to synchronize hyper-threading.
High performance in production. By the end of phase
one, Pangu 2.0 successfully supported the elastic SSD block
storage service with a 100µs-level I/O latency and 1M IOPS.
During Alibaba’s Double 11 Festival in 2018, Pangu 2.0
supported the Alibaba database service with a latency of 280
µs. For the OTS storage service [9], with the same hardware,
its I/O latency in Pangu 2.0 is lower than that in Pangu 1.0
by an order of magnitude. For write-intensive services (e.g.,
EBS cloud drive), the P999 I/O latency is less than 1 ms.
For read-intensive services (e.g., online search), the P999 I/O
latency is less than 11 ms.

In phase two, by upgrading the network from 2×25 Gbps to
2×100 Gbps and breaking through the bottlenecks of network,
memory and CPU, the normalized effective throughput per
Taishan storage server increases by 6.1×.

2 Background
2.1 Overview of Pangu

Pangu is a large-scale distributed storage system. It con-
sists of Pangu Core, Pangu Service, and Pangu Monitoring

……
Chunk ……

Chunkserver
Chunk Chunk ……

Chunkserver
Chunk

Client Masters
(Distributed

Metadata
Services)

Pangu Core
Append-Only Persistent File System

Pangu
Monitoring

System

Service on Pangu
OSS\NAS\EBS\Cloud-Native Service ……

Client……

Figure 1: The architecture of Pangu.

System (Figure 1). Pangu Core consists of clients, masters,
and chunkservers, and provides an append-only persistence
semantic. The clients provide SDK to Pangu cloud storage
services (e.g., EBS and OSS), and are responsible for receiv-
ing file requests from these services and communicating with
the masters and the chunkservers to fulfill these requests. Sim-
ilar to other distributed file systems (e.g., Tectonic [10] and
Colossus [11]), the clients in Pangu are heavyweight and play
a key role in the replica management, SLA guarantee, and
data consistency management of Pangu.

The masters manage all the metadata in Pangu and use a
Raft-based protocol to maintain metadata consistency [12].
For better horizontal scalability and extensibility (e.g., hun-
dreds of billions of files), the Pangu masters decompose the
monolithic metadata service into two separate services: the
namespace service and the stream meta service, where a
stream is an abstraction of a group of chunks. Both services
first partition metadata by directory tree to achieve metadata
locality, then further partition these groups using hashing to
achieve good load balancing [13]. While the namespace
service provides information on files (e.g., directory tree
and the namespace), the stream meta service provides the
mapping from files to chunks (i.e., the locations of chunks).
Chunkservers store data in chunks and are equipped with
a customized user-space storage file system (USSFS). The
USSFS provides high-performance, append-only storage en-
gines for different hardware (e.g., SMRSTORE for HM-SMR
drives [14]). In the early days (i.e., phase one of Pangu 2.0),
each file is stored in chunkservers with three replicas, and later
a garbage collection worker (GCWorker) performs garbage
collection and stores the file using erasure coding (EC). In
phase two of Pangu 2.0, we gradually replace the 3-way repli-
cation with EC in key businesses (e.g., EBS) to reduce the
traffic amplification in Pangu (§4.1.2).

On top of the Pangu Core, the Pangu Service provides tradi-
tional cloud storage services (e.g., EBS, OSS, and NAS) and
cloud-native storage services through a cloud-native-oriented
file system (i.e., Fisc [15]). The Pangu Monitoring System
(e.g., Perseus [16]) provides real-time monitoring and AI-
assisted root cause analysis services to both the Pangu Core
and the Pangu Service. The infrastructure of Pangu Core,
the Pangu Service, and the Pangu Monitoring System are
interconnected using high-speed networks [17, 18].

332 21st USENIX Conference on File and Storage Technologies USENIX Association

2.2 Design Goals of Pangu 2.0
To cope with the emergence of hardware technologies and

the shift of business model, Pangu 2.0 aims to achieve the
following goals:
• Low latency: Pangu 2.0 aims to leverage the low latency

characteristics of SSD and RDMA, to reach an average
100µs-level I/O latency in a computation-storage disaggre-
gated architecture, and provide a ms-level P999 SLA even
under environment dynamics such as network traffic jitters
and server failures.

• High throughput: Pangu 2.0 aims to reach an effective
throughput on storage servers that approaches their capac-
ity.

• Unified high-performance support to all services: Pangu
2.0 aims to provide unified high-performance support to
all services running on top of it, such as online search, data
streaming analytics, EBS, OSS, and database.

2.3 Related Work
Many distributed storage systems have been designed and

deployed [10, 19–21]. Some are open-sourced ones (e.g.,
HDFS [20] and Ceph [22]), and some are proprietary ones
used by different industry organizations (e.g., GFS [19], Tec-
tonic [10], and AWS [23]).

Pangu is a proprietary storage system of Alibaba Group.
It provides storage infrastructure support for Alibaba’s core
businesses and Alibaba Cloud. In the past few years, we
have shared our experiences in different aspects of Pangu,
such as the large-scale deployment of RDMA [17], the key-
value engine for scale-out cloud storage services [24], the
co-design of network and storage software stack for the EBS
storage service [18], and some key designs of the names-
pace metadata service [13]. This paper focuses on intro-
ducing our experience in evolving Pangu to provide unified
low-latency, high-throughput storage services to support all
Alibaba’s businesses and Alibaba Cloud, in response to the
emergence of hardware technologies and the shift of Pangu’s
business model.

3 Phase One: Embracing SSD and RDMA
In this section, we introduce how Pangu embraces the

emergence of SSD and RDMA to provide high-performance,
reliable storage services with low I/O latency. Compared with
HDD and TCP, SSD and RDMA technologies substantially
reduce the I/O latency in storage and network, respectively.
However, integrating these two technologies into Pangu, a
large, distributed storage system with a mature architecture, is
not without challenges. To this end, Pangu introduces a series
of new designs in key components of its file system (§3.1)
and develops a user-space storage operating system (§3.2) to
achieve a high-throughput, high IOPS performance with a
100µs-level I/O latency. It also deploys novel mechanisms to
provide such SLA guarantees under dynamic environments,
e.g., straggler and transient/permanent failures (§3.3).

SATA SSD NVMe SSD OpenChannel SSD Optane HDD

Unified, Append-Only Persistence Layer

Pangu (Distributed Storage System)

Object Store Master File Store Master

……

Table Store Master

OSS Client NAS Client OTS Client

Figure 2: Various businesses are based on the unified persis-
tence layer.

3.1 Append-Only File System
As shown in Figure 1, the core base layer of Pangu con-

sists of the masters, chunkservers, and clients. Pangu first
introduces a unified, append-only persistence layer with an
append-only interface called FlatLogFile to simplify its archi-
tecture (§3.1.1). FlatLogFile is friendly to SSDs with high
throughput and low latency. Then Pangu adopts a variety of
designs to improve its performance. Specifically, the Pangu
client is heavyweight to meet the requirements of different
storage services (§3.1.2). Based on FlatLogFile, Pangu adopts
the append-only chunks and uses a self-contained chunk lay-
out to manage chunks on chunkservers (§3.1.3). Pangu im-
plements distributed metadata management on the master to
realize efficient metadata operation (§3.1.4).

3.1.1 Unified, Append-Only Persistence Layer
The persistence layer of Pangu provides interfaces to all

Pangu’s storage services (e.g., EBS, OSS, and NAS). In the
early development of Pangu, the persistence layer provides
different interfaces to different storage services. For example,
it provides the LogFile interface to low-latency NAS services,
and the TempFile interface to high-throughput Maxcompute
data analytics services. However, this design brings substan-
tial development and management complexities. Specifically,
for every storage service, Pangu developers must design and
implement a new interface. That is a complex, labor-intensive
and error-prone process.

To simplify the development and management of Pangu and
make sure all storage services can achieve high-performance,
low-latency I/O on SSD, motivated by the layered architec-
ture of computer networks, Pangu introduces a unified file
type called FlatLogFile (Figure 2). Specifically, FlatLog-
File has an append-only semantic, and upper-layer services
(e.g., OSS) can equip a key-value-like mapping to update
their data and a garbage collection mechanism to compress
their historical data. FlatLogFile provides a simple, unified
interface for storage services to perform data operations. Fur-
thermore, Pangu developers must ensure that data operations
via FlatLogFile, especially the write operations, can be exe-
cuted efficiently and reliably on storage media. As such, all
upgrades and changes to storage services are transparent to
Pangu developers, substantially simplifying the development
and management of Pangu.

USENIX Association 21st USENIX Conference on File and Storage Technologies 333

……
Sector Unit 1 Sector Unit 2 Sector Unit 3 Sector Unit N

Chunk Data

Padding

Footer

CRCChunk ID ……Length

Figure 3: The self-contained chunk layout.

Under the hood, we observe that SSD can achieve high
throughput and IOPS on sequential operations due to its in-
trinsic characteristics of the storage unit and flash transaction
layer. To make sure data operations via FlatLogFile can be ex-
ecuted on SSD efficiently, we align the sequential operations
on FlatLogFile to achieve high performance.
3.1.2 Heavyweight Client

We design Pangu’s client as a heavyweight one. It is re-
sponsible for the data operations with chunkservers and the
metadata information retrieval and updates with the masters.
After getting the chunk information from the masters, a Pangu
client is in charge of the corresponding replication protocol
and EC protocol. The client is equipped with retry mech-
anisms (e.g., backup read in §3.3) to cope with occasional
jitters in Pangu (e.g., network packet drop) in order to im-
prove the I/O SLA. It also deploys probing mechanisms to
periodically get the latest chunkserver status from the masters
and evaluate the quality of services of chunkservers. Simi-
lar to the client of Facebook’s Tectonic file system [10], the
Pangu client can select appropriate write or read parameters
to meet the specific requirements of different storage services
(e.g., EBS and OSS).
3.1.3 Append-only Chunk Management

Typical file systems (such as Ext4 [6]) store files in blocks.
A file and its metadata are written to the storage media sep-
arately with two SSD write operations. Not only does it
increase the latency of the file write, it also shortens the lifes-
pan of SSDs. As such, adopting this design in Pangu 2.0
would result in high latency for file access, and lead to a high
hardware replacement cost.

To address this issue, Pangu chooses to store files in chunks,
which have the append-only semantic based on FlatLogFile,
on chunkservers, and designs a self-contained chunk layout,
where each chunk stores both data and its own metadata. As
such, a chunk can be written into the storage media in one op-
eration instead of two, substantially reducing the write latency
and improving the lifespan of the storage media. Figure 3
shows the layout of the chunk. A chunk includes multiple
sector units, where each sector unit includes 3 elements: data,
padding, and footer. The footer stores chunk metadata, such
as chunk ID, chunk length, and the CRC checksum.

The self-contained chunk layout also allows the
chunkserver to recover from failures by itself. Specifically,
when a client writes consecutive self-contained chunks to
the storage media, the chunkserver stores a copy of the
metadata of these chunks in the memory, and periodically

takes checkpoints of this information to the storage media.
When a failure happens and leads to some unfinished write
operations, the chunkserver loads the metadata from the
checkpoints and compares it with the metadata in chunks. If
discrepancies happen, the chunkserver checks the CRC of the
chunks to recover to the latest correct state.
3.1.4 Metadata Operation Optimization

The Pangu masters provide two metadata services: the
namespace service is responsible for directory tree and file
management, and the stream service is responsible for chunk
information. Stream is an abstraction of a group of chunks.
Chunks in the same stream belong to the same file. Both
services use a distributed architecture for better scalability.
They partition metadata by considering metadata locality and
load balancing (i.e., partition by directory tree first and then
by hashing). We design multiple mechanisms to optimize the
efficiency of metadata operations.
Parallel metadata processing. Both namespace and stream
services adopt parallelization processing (e.g., InfiniFS [13])
to meet the low-latency requirement of metadata access.
Specifically, Pangu uses a hash algorithm to map highly co-
hesive metadata to different metadata servers. It also uses a
new data structure that supports predictable directory IDs and
allows clients to perform path parsing efficiently in parallel.

We also introduce several techniques to accelerate how
clients retrieve chunk information from the stream service.
Big chunks with variable lengths. Pangu 2.0 chooses to
use big chunks. This decision has three benefits. It reduces
the number of metadata. It avoids unnecessary I/O latency
caused by clients frequently requesting chunks. It also helps
improve the lifespan of SSD. However, simply increasing the
chunk size will increase the risk of fragmentation. As such,
We introduce variable-length chunks (e.g., sizes ranging from
1 MB to 2 GB). For example, the chunk size of the EBS
service has a 95% quantile of 64 MB and a 99% quantile of
286.4 MB. Variable-chunk length reduces the probability of
fragmentation and maintains compatibility with Pangu 1.0.
Caching chunk information at clients. Each client main-
tains a local metadata cache pool to reduce the number of
metadata query requests. The pool is updated using an LRU-
based mechanism. When an application wants to access the
data, the client first queries its metadata cache. It issues a new
request to the masters to get the up-to-date metadata when (1)
its cache is not hit; or (2) the cache is hit, but in response to
the request, the corresponding chunkserver notifies the client
that its cached metadata becomes stale (e.g., due to replica
migration).
Chunk information request batching. We let each client
aggregate multiple chunk information requests over a short
interval and send them in a batch to the masters to improve the
query efficiency. The masters process the batched requests in
parallel, aggregate the results and send them back to the client.
The client disaggregates the results and dispatches them to
corresponding applications.

334 21st USENIX Conference on File and Storage Technologies USENIX Association

Speculative chunk information prefetching. We design a
greedy, probabilistic prefetching mechanism to reduce the
number of chunk information requests. When the masters
receive a read request, they respond to the client with the meta-
data of the related chunk and the metadata of other chunks.
When the masters receive a write request, the masters respond
with more available chunks than the client requested. In this
way, the client can switch chunks without requesting new
chunks if it encounters write exceptions.
Data piggybacking to reduce one RTT. We are motivated
by QUIC [25] and HTTP3 [26] to use data piggybacking to
improve the write latency. Specifically, after a client retrieves
the chunk address from the masters, it merges the chunk
creation request and the data to write into one request and
sends it to the chunkserver. As a result, we are able to reduce
the write latency by one RTT.

3.2 Chunkserver USSOS
In Pangu, the chunkserver is responsible for carrying out all

the data operations. As such, it is essential to carefully design
the run-time operating system to ensure that data operations
can be finished with low latency and high throughput. With
the emerging high-speed network technology and storage me-
dia, sticking to the traditional design that puts data operations
through kernel space is inefficient. In particular, this would in-
cur not only frequent system interrupts, which consume CPU
resources, but also unnecessary data duplication between the
user space and kernel space.

To cope with these issues, we resort to the kernel-bypassing
design to develop a high-performance user-space storage op-
eration system [17] for the chunkserver, which provides a
unified user-space storage software platform. Aside from real-
izing device management and run-to-completion thread model
[17, 18] in USSOS, Pangu also realizes user-level memory
management (§3.2.1), lightweight user-space scheduling strat-
egy (§3.2.2), and a customized high-performance append-only
user-space storage file system (USSFS) for SSDs (§3.2.3).

3.2.1 User-Level Memory Management
Chunkserver USSOS is built based on existing user-space

technologies (e.g., RDMA in the network stack, DPDK [27],
and SPDK [28] in the storage stack). But we go beyond and
unify these two stacks to further reduce the latency and im-
prove the performance of data operations. First, we make
use of the run-to-completion thread model. In the traditional
pipeline thread model, a request is decomposed into individual
stages and each stage runs on a thread. In contrast, in USSOS,
the request is run on one thread from beginning to end in the
run-to-completion model, reducing the overhead caused by
context switch, inter-thread communication, and inter-thread
synchronization. Second, the thread requests a huge-page
memory space to serve as a shared memory between the net-
work and the storage stacks. To be concrete, data received
from the network can be stored in this shared huge-page mem-
ory using RDMA protocol. After sending the metadata of the

huge-page memory (e.g., its address and size), data can be
written directly from the huge-page memory to the storage me-
dia via SPDK frame. This way, we achieve zero copy between
the network and the storage stacks during the data transmis-
sion and storage procedure. Besides, through the user-level
shared huge-page memory for I/O data, data transmission
operations among different roles (e.g., the chunkserver and
the garbage collection worker) can also achieve zero copy.
3.2.2 User-Space Scheduling Mechanism

In a real production environment, we encounter perfor-
mance glitches brought by problems like task scheduling.
Here, we introduce three key designs to optimize CPU
scheduling in USSOS to improve the performance of Pangu.
Preventing a task from blocking the subsequent ones. As
explained in §3.2.1, the run-to-completion thread model helps
achieve zero-copy between the user-space network and stor-
age stacks by using shared huge-page memory. However,
each chunkserver has a fixed number of working threads. A
new request is dispatched to a working thread based on the
hash value of the file in the request. Requests assigned to
the same working thread are executed in a first-in-first-serve
order. As such, given one request, if one of its tasks takes too
much time (e.g., table lookup, table search, traversal, memory
allocation, monitoring, and statistics), it will hog resources
and block subsequent tasks. This issue degrades the perfor-
mance of this request and leaves other requests to starve. To
solve this problem, we take different measures for different
scenarios. For heavy tasks, Pangu introduces the heartbeat
mechanism to monitor the execution time of tasks and set an
alarm. If a task runs out of time slice, it would be put into
a background thread to remove it from the critical path. For
system overhead, Pangu uses TCMalloc’s cache [29] to allow
high-frequency operations to be completed in the cache.
Priority scheduling to guarantee high QoS. Pangu assigns
different QoS objectives for different requests (e.g., user re-
quests are assigned a high-priority objective while GC re-
quests are assigned a low one). However, a request with a
low-priority objective may block a high-priority request that
arrives later and is assigned to the same working thread. As a
result, it is hard to guarantee that requests with higher QoS
objectives can always receive higher priorities. To address
this problem, USSOS creates priority queues. Then tasks can
be put into the corresponding priority queue according to their
QoS objectives.
Polling and event-driven switching (NAPI). USSOS adopts
a switching mechanism between polling and event-driven
modes to reduce the overhead of massive interrupt processing
with a low CPU utilization [30]. Specifically, NIC provides a
fd monitored by applications and notifies the applications of
data arrival through the fd event. Applications are in the event-
driven mode by default. When they receive a notification from
NIC, they enter the polling mode. If they do not receive any
I/O request for some time, they switch back to the event-
driven mode and notify the NIC.

USENIX Association 21st USENIX Conference on File and Storage Technologies 335

Client

1
2
3

chasing
{time t}

② 3

①
① ③ 3 ①

④

data flow control flow

1

 ...

Chunkserver1 Chunkserver2 Chunkserver3

1
2
3

chunk

Figure 4: An illustrating example of chasing with
MaxCopy = 3 and MinCopy = 2.
3.2.3 Append-Only USSFS

Previous file systems (e.g., Ext4) could not make full use
of the append-only FlatLogFile (§3.1.1) and SSDs with high
throughput and low latency. Therefore, Pangu goes beyond
and customizes the USSFS, a compact and high-performance
user-space storage file system.

With the append-only semantic of FlatLogFile, USSFS sup-
ports append-only write and provides a set of chunk-based
semantics, such as open, close, seal, format, read, and append,
instead of standard POSIX semantics like Ext4. On this ba-
sis, it supports the append-only sequential write, which fully
leverage of the sequential write-friendly feature of SSDs, and
random read of successfully written data. Meanwhile, USSFS
adopts different mechanisms to maximize the performance
of SSDs. First, it can fully utilize the self-contained chunk
layout (§3.1.3) to significantly reduce the number of data op-
erations without using mechanisms such as page cache and
journal. Second, it does not establish a hierarchical relation-
ship between inodes and file directories like Ext4. All oper-
ations on files are recorded to log files. The corresponding
metadata can be rebuilt by replaying the logs when mounting
the file system. Third, we use the polling mode instead of
an interrupt notification mechanism like Ext4 to maximize
the performance of SSDs. Moreover, considering that the
capacity of a single SSD node is tens or even hundreds of
terabytes and the size of the chunk is usually 64 MB, we set
the minimum space allocation granularity in USSFS as 1 MB.
This choice considers both the size of memory used by space
management metadata and SSD space utilization.

3.3 High Performance SLA Guarantee
Pangu introduces multiple mechanisms to provide high

performance and a ms-level P999 SLA guarantee [31] in
failure scenarios. Chasing copes with abnormal jitters (e.g.,
network flash and packet retransmission caused by network
incast). In these scenarios, exceptions occur in the cluster
operating environment, but the system can recover to a normal
state automatically in a short time. Non-stop write aims at
unavailable chunks. Backup read reduces latency when the
read request can not return within a limited time. Blacklisting
isolates the chunkservers which provide poor service or fail.
Chasing. We design this mechanism to reduce the im-
pact of system jitters on write latency. It allows the client
to return success to the application when MinCopy out of
MaxCopy replicas are successfully written in chunkservers,

where 2×MinCopy > MaxCopy. Figure 4 illustrates how
chasing works with MaxCopy = 3 and MinCopy = 2. Sup-
pose the application asks the client to write data [1,2,3] to 3
chunk replicas. At time T , chunkserver 1 and 2 return suc-
cess to the client’s write operation but chunkserver 3 has not.
The client returns success to the application. But it keeps
the chunk in its memory and waits for another period t, an
empirical ms-level threshold. If chunkserver 3 returns success
to the client before T + t, the client releases the chunk from
its memory. If chunkserver 3 does not finish the write, but the
unfinished part is smaller than an empirical threshold k, the
client issues a retry on chunkserver 3. If the unfinished part is
larger than k, the client will seal this chunk at chunkserver 3
so that this chunk will not have subsequent append operation.
The client then notifies the masters, who will replicate the
data on a different chunk from chunkserver 1 or 2 to ensure
there are a total of 3 replicas eventually.

Our analysis shows that with a careful choice of t and k,
chasing substantially reduces the write tail latency without
increasing the risk of data loss. Specifically, taking the case of
MaxCopy = 3 as an example, after two replicas are success-
fully written to chunkservers, three replicas are in the system,
whereas the third one is in the memory of the client. During
[T,T + t], data loss can only happen when the SSDs of the
two chunkserver replicas are damaged and the last replica
in the client memory also fails or the cluster powers down.
Because SSDs’ annual failure rate (i.e., ∼ 1.5% [32–37]) and
servers’ annual downtime rate (i.e., < 2% [38, 39]) are close,
the probability of data loss when two replicas are written suc-
cessfully and the third replica is chasing is approximately the
same as that when all three replicas are written successfully.
Pangu has deployed chasing for over a decade and has not
experienced any data loss caused by chasing. Recent studies
also started to investigate this early-write-acknowledgment
mechanism [40–42].
Non-stop write. We design this mechanism to reduce the
write latency when a chunk write fails. When the failure hap-
pens, the client seals the chunk and reports the successfully
written data length to the masters. It then uses a new chunk to
continue writing the unfinished data. If the data written to the
sealed chunk is corrupted, we use other replicas to duplicate
a copy of this data to the new chunk in the background traffic.
If no replica is available, the client writes this data to the new
chunk again.
Backup read. To reduce the read latency under dynamic en-
vironments, the client sends additional read requests to other
chunkservers as backups before receiving the response of the
previously sent read request. This mechanism has two key
parameters, the number and waiting time of sending backup
read requests. To this end, Pangu calculates the latency of
different disk types and I/O sizes and uses this information to
dynamically adjust the time to send backup read requests. It
also limits the number of backup read requests to control the
system’s load.

336 21st USENIX Conference on File and Storage Technologies USENIX Association

0 1 2 3 4 5
Time (minute)

240
250
260
270
280

Av
er

ag
e

La
te

nc
y

(u
s)

Figure 5: The average latency of database access to Pangu
on Double 11 Festival in 2018.

0 2 4 6 8 10 12
Time (hour)

0

2000

4000

6000

8000

Av
er

ag
e

La
te

nc
y

(u
s) Pangu 1.0 Pangu 2.0

Figure 6: The average latency of OTS querying of Pangu 1.0
and Pangu 2.0 under the same stress test.

Blacklisting. To avoid sending I/O requests to chunkservers
with poor service quality, Pangu introduces two blacklists,
deterministic blacklist and non-deterministic blacklist. When
Pangu determines that a chunkserver is unserviceable (e.g.,
SSDs of a chunkserver are damaged), this server will be added
to the deterministic blacklist. If a chunkserver can provide
service, but its latency exceeds a certain threshold, it will be
added to the non-deterministic blacklist with a probability
that increases with its service latency. If the server’s latency
exceeds the median latency of all servers by several times, it is
directly added to the non-deterministic blacklist with a proba-
bility of one. To release servers from these blacklists, clients
send I/O probes to those servers periodically (e.g., every sec-
ond). If a server on the deterministic blacklist successfully
returns the response of this request, it will be removed from
this blacklist. For a server on the non-deterministic blacklist,
Pangu decides whether to remove the server from the black-
list based on the time it takes to receive the response to this
request.

Pangu limits the total number of servers on the blacklists
to ensure system availability. For each server, it introduces
a grace period for adding/removing it to/from the blacklist
to maintain system stability. In addition, because the failed
servers in the TCP and RDMA links may be different, Pangu
maintains separate blacklists for TCP and RDMA links, re-
spectively, and takes I/O probes on both links to update them.

3.4 Evaluations
Figure 5 shows the latency of database (DB) access to

Pangu under the peak of 550,000 transactions per second dur-
ing the Double 11 Festival in 2018. This peak value is at least
one order of magnitude larger than that of non-festival days.
The DB consists of millions of databases (e.g., databases
of Taobao merchants), each of which contains millions of
e-commerce users’ data. During this process, the DB needs
to query orders and record transactions for those users. Under
such a peak transactions rate, the access latency is less than
280 µs, which proves the high performance of Pangu 2.0.

0 10 20 30
Time (day)

200
400
600
800

La
te

nc
y

(u
s)

Average P999

Figure 7: The write latency of EBS business.

0 10 20 30
Time (day)

0
1000
2000
3000
4000

La
te

nc
y

(u
s) Average P999

Figure 8: The read latency of online search business.

Figure 6 shows the latency of the cloud product OTS [9]
querying with the same SSD and 25 Gbps network. Under
the same query pressure, after upgrading from Pangu 1.0 to
Pangu 2.0, the query latency is reduced by nearly an order of
magnitude. This is mainly due to the low latency of read and
write operations and the improved processing capability of a
single thread in Pangu 2.0.

Figures 7 and 8 show the average latency and long tail
latency of two clusters (online EBS and online search busi-
ness) within one month. Online EBS is write-intensive and
its online read/write ratio is nearly 1:10, which expects to
achieve high throughput on write. As shown in Figure 7, its
long tail latency is less than 1 ms. Online search business
mainly services for the query and recommendation of Alibaba
e-commerce (e.g., search for goods on Taobao and Tmall),
which expects to achieve high throughput on read. As shown
in Figure 8, the long tail latency of read is less than 5 ms
within one month. The results exhibit that Pangu 2.0 has a
good guarantee for latency SLA.

4 Phase Two: Adapting to Performance-
Oriented Business Model

Since 2018, Pangu gradually changes its role from a
volume-oriented storage provider to a performance-oriented
provider. This change in business model and the fast expan-
sion of Pangu’s clientele require Pangu to keep upgrading
the infrastructure. However, scaling the infrastructure with
original servers and switches along a Clos-based topology is
not economical in many ways, including a higher financial
and environmental cost (e.g., a higher carbon emission rate).
As such, Pangu develops its in-house storage server Tais-
han. A Taishan server is equipped with 2×24 core Skylake
CPUs, 12×8 TB commodity SSDs, 128 GB DDR memory,
and 2×dual-port 100 Gbps NICs. Although we could con-
tinue to increase its storage volume at the moment, we choose
not to do so to maintain a high-level write IOPS/GB to suit
the need of the performance-oriented business model. With
optimizations made by SSD manufacturers (e.g., caching and
channel), the SSD throughput of a single Taishan server can
reach more than 20 GB/s.

USENIX Association 21st USENIX Conference on File and Storage Technologies 337

With such high-performance storage servers, it is natural
to observe that other resources (e.g., network, memory, and
CPU) become the performance bottleneck of Pangu. As such,
we upgrade the network of Pangu from 25 Gbps RDMA to
100 Gbps. However, contrary to common perception, it is
non-trivial to provide high-performance, low-latency I/O in
such an upgraded infrastructure. That is because new hard-
ware also comes with new technical challenges in large-scale
deployment. To this end, we propose and deploy a series of
novel techniques to optimize the operation of Pangu’s massive
network (§4.1), memory (§4.2), and CPU resources (§4.3).

4.1 Network Bottleneck
Pangu optimizes the network in two aspects: network band-

width expansion (§4.1.1) and traffic optimization (§4.1.2).

4.1.1 Bandwidth Expansion
To match the throughput of all SSDs on a single storage

node, Pangu upgrades the network bandwidth from 25 Gbps
to 100 Gbps to increase its network capability. The success
of network bandwidth expansion depends on the improving
of software and hardware. For hardware, Pangu adopts high-
performance NIC/RNIC, optical modules (QSFP28 DAC,
QSFP28 AOC, QSFP28 [43]), single-mode/multi-mode fiber,
and high-performance switches. For the network software
stack, Pangu first adopts lossless RDMA and proposes various
mechanisms to achieve large-scale RDMA deployment, such
as shutting down NIC ports or temporialy switching from
RDMA to TCP for a short time (e.g., several seconds) when
there are too many pause frames on the RDMA network [17].
However, these mechanisms cannot handle other issues of the
pause frame based flow control (e.g., deadlocks [44] and head-
of-line blocking [45, 46]). As such, Pangu upgrades to lossy
RDMA, in which pause frames are disabled, to avoid these
problems and improve performance. More details about this
bandwidth expansion (e.g., how we address the interoperabil-
ity issue of heterogeneous network hardware and software)
can be found in our early paper [17].

4.1.2 Traffic Optimization
Other than increasing the network capability, we also tackle

the network bottleneck by reducing the traffic amplification
ratio. Specifically, the traffic amplification ratio is computed
as the amount of data transmitted through the network divided
by the actual file size. Take the workflow of the EBS service as
an example (Figure 9). First, the EBS client sends a file (1x) to
the Pangu client (step (a)). Second, the Pangu client transfers
the file to 3 storage nodes to write 3 replicas (3x). Third, the
garbage collection worker (GCWorker) reads the file (1x) and
performs GC on it. For ease of exposition, we ignore the file
size change before and after GC. In the end, the file is written
back to storage nodes in the form of EC(8,3) (1.375x), which
provides at least the same level of fault tolerance as 3-replica
but uses less storage space. As such, the traffic amplification
ratio of a file write can be up to 6.375x (1x+3x+1x+1.375x).
In other words, the maximum data access bandwidth of EBS

……

(c1)
1x

Front-end Traffic Background Traffic
Business Client

SSD SSD……
Chunkserver

SSD SSD……
Chunkserver

(b1) 1.5x (b2) 0.5*1.5xWrite EC (4,2)

(d1) (d2)
0.5*1.375x

Write
EC (8,3)

 (a) Send 1x
Pangu Client

GCWorker

 (c2)
0.5*1x

Compression

Compression

Read

GC

1.375x Write
EC (8,3)

Figure 9: Pangu optimizes network traffic with 3 techniques:
EC, compression, and balance between background and front-
end traffic. The entire life cycle of a file we define is as
follows. First, the business client sends a file (step a) to the
Pangu client. Second, the Pangu client writes the file to the
chunkserver in way b1 (b2 after compression). Third, the
GCWorker reads the file from the chunkserver in way c1 (c2
after client compression) and performs garbage collection.
Finally, the GCWorker writes the file in way d1 (d2 after
GCWorker compression).

in a 100-Gbps network is less than 16 Gbps. To cope with the
issue of the high traffic amplification ratio limiting the service
capability of Pangu, we introduce two optimizations: EC and
data compression.
Use EC to replace 3-replica. Using EC to replace the 3-
replica mechanism can substantially reduce the network traffic
amplification while achieving a good level of fault tolerance.
Take Figure 9 as an example. If we use EC (4,2) (step (b1))
to replace the 3-replica step, the network traffic amplification
ratio can be reduced from 6.375x to 4.875x, the sum of step
(a), (b1), (c1), and (d1).

Two challenges arise during this replacement. First, storing
small files in EC is expensive because of the large number
of zero-paddings needed to perform EC on data with a fixed
length. We introduce multiple mechanisms to cope with this
waste of space, including small write request aggregation and
dynamic switching between EC and 3 replicas. Second, com-
puting EC introduces a non-negligible latency. To this end,
Pangu adopts Intel ISA-L [47], which reduces the latency of
computing EC by 2.5 to 3 times compared with Jerasure [48].
Compressing FlatLogFile. We observe that FlatLogFile
is highly redundant. As such, both the Pangu client and
GCWorker compress the file before writing it to further reduce
the traffic (e.g., step (b2) and (d2) in Figure 9). We choose
the LZ4 algorithm [49] to achieve efficient (de)compression.
Empirical data in Pangu shows that the average compression
rate can reach 50%. As such, in the example above, the
traffic amplification ratios of step (b2), (c2) and (d2) can all
be reduced by half. As a result, the traffic amplification ratio
can be further reduced from 4.875x to 2.9375x, i.e., the sum
of step (a), (b2), (c2), and (d2).
Dynamic bandwidth allocation between front-end and
background traffic. We dynamically adjust the threshold

338 21st USENIX Conference on File and Storage Technologies USENIX Association

of usable network bandwidth for background traffic. For
example, if there is sufficient empty space in the whole storage
cluster, we temporally decrease the threshold to limit the
bandwidth of background traffic (e.g., the GC traffic), and let
the frontend traffic use more bandwidth. For Taobao, Pangu
sets a low threshold from daytime to midnight to cope with
the large number of front-end access requests. After midnight,
Pangu increases it because the front-end traffic decreases.

4.2 Memory Bottleneck
The fundamental memory bottleneck in Pangu lies in the

high contention of memory bandwidth between network pro-
cesses (i.e., NIC performing DMA operations) and applica-
tion processes (e.g., data copy, data replication, and garbage
collection) in the receiver host. Because NIC cannot acquire
enough memory bandwidth, severe PCIe back-pressure is
generated to the NIC. As a result, the NIC buffer is filled with
in-flight packets. Eventually, it drops the overflowed ones,
triggering the congestion control mechanism in the network
and leading to overall performance degradation (i.e., 30%
network throughput drop, 5%-10% latency increase and 10%
IOPS drop per server). This phenomenon is not unique to
Pangu. Google also recently reported this issue [50].

We tackle this memory bandwidth bottleneck in three steps.
First, we add more small-capacity DRAMs to the server to
fully utilize the memory channels. Second, we switch back-
ground traffic from TCP to RDMA to reduce servers’ memory
bandwidth consumption (§4.2.2). Third, we design remote
direct cache access (RDCA) to move memory out of the re-
ceiver host datapath and let senders access the receiver’s cache
directly (§4.2.3).

4.2.1 Adding Small-Capacity DRAMs
Because the bottleneck is memory bandwidth instead of

memory capacity, we add more DRAMs with small capacity
(e.g., 16 GB) to servers to fully utilize the memory channels
and increase the available memory bandwidth per server. We
also enable non-uniform memory access (NUMA) to avoid
across-sockets memory accesses being constrained by the
ultra path interconnect [51].

4.2.2 Shifting Background Traffic From TCP to RDMA
In the 25-Gbps network, Pangu’s background traffic was

transmitted using TCP. It is to guarantee the QoS of front-end
traffic because there is only one hardware queue for RDMA
transmission on 25-Gbps switches.

With the network being updated to 100 Gbps, Pangu starts
to transmit background traffic using RDMA to reduce the
memory bandwidth consumption of network processes. It is
because TCP needs at least four more memory copies than
RDMA. By switching to RDMA, the memory bandwidth
spent by background traffic is reduced by about 75%. To
guarantee the QoS of front-end traffic, we design a host rate
control mechanism similar to Linux tc [52, 53] to control the
rate of the background traffic being injected into the network.

4.2.3 Remote Direct Cache Access
In addition to increasing the available memory bandwidth

and decreasing unnecessary memory bandwidth consumption,
we propose the remote direct cache access (RDCA) architec-
ture to let senders bypass the receiver’s memory and access
its cache directly. It is supported by an important observation
in Pangu’s production workload: the timespan data spent in
memory after leaving NIC is very short (i.e., hundreds of µs
on average). Assuming a 200 µs average post-NIC times-
pan, for a dual-port 100 Gbps NIC, we only need 5 MB to
temporally store the data leaving NIC. Although other cache
accessing technologies (e.g., DCA [54, 55] and DDIO [56])
have been proposed, they suffer from the leaky DMA problem
(i.e., frequent cache eviction triggered by new arrival mes-
sages [57, 58]). In contrast, RDCA goes beyond substantially
to show that we can recycle a small area of LLC to support
NIC operations at line rate with three components:

Cache-resident buffer pool. The pool uses a shared receiver
queue (SRQ) for receiving small messages and a READ buffer
equipped with a window-based rate control mechanism for
receiving large messages, such that the memory buffer needed
for RDMA operations can fit into the cache.

Swift cache recycle. In order to support 100-Gbps NIC op-
erating at line rate with as few LLC as possible, we design
the swift cache recycle mechanism to reduce data’s post-NIC
timespan by (1) processing data in parallel along a pipeline,
and (2) optimizing processing using hardware offloading and
lightweight (de)serialization.

Cache-pressure-aware escape mechanism. To deal with
occasional jitters (e.g., SSD slow write and application excep-
tions), the escape mechanism monitors the usage of reserved
LLC and takes corresponding actions, including (1) replacing
the cache buffer of straggler data by adding a new buffer to
the cache-resident buffer pool, such that the size of the us-
able cache in RDCA to accommodate newly arriving requests
remains unchanged; (2) actively copying the data of slow-
running applications to memory if too many replacements
happened, such that other applications can use the RDCA
buffer pool and the pool does not take up too much cache; and
(3) let the NIC mark explicit congestion notification (ECN)
in congestion notification packets to indicate congestion if
copying to memory fails or is insufficient in releasing the
cache pressure.

We leverage Intel’s DDIO [56] to implement RDCA on
commodity hardware. Results of extensive evaluation in some
clusters of Pangu show that for typical storage workloads,
RDCA consumes a 12MB LLC cache (20% of the total
cache) per server, decreases the average memory bandwidth
consumption by ∼89% and improves network throughput
by 9%. We find that RDCA is also effective in non-storage
workloads, e.g., it reduces the average latency of collective
communications in latency-sensitive HPC applications by up
to 35.1%. RDCA is rolled out in Pangu at the end of 2022.

USENIX Association 21st USENIX Conference on File and Storage Technologies 339

4.3 CPU Bottleneck
Even with optimizations to break the network and mem-

ory bottleneck, the throughput of Pangu in a 100-Gbps net-
work can still reach only 80% of its theoretical value. It is
because operations such as data serialization and deserializa-
tion, data compression and data CRC computation consume
many CPU resources, making CPU another bottleneck of
Pangu. To this end, Pangu introduces a hybrid design to re-
duce (de)serialization operations (§4.3.1), a special hardware
instruction CPU Wait to make full use of the CPU (§4.3.2),
and a hardware/software co-design [59] to offload CRC com-
puting and data compression to hardware (§4.3.3).

4.3.1 Hybrid RPCs
Serializing and deserializing RPC requests using Proto-

buf [60] in Pangu costs about 30% of CPU overhead. We
observe that this overhead mostly happens in the data path
over a small number of RPC types. As such, we take a hybrid
design to handle this issue. We switch our data path oper-
ations to use a raw structure similar to FlatBuffer [61], to
send and receive data directly without serialization. Pangu
continues to use Protobuf for control operations due to its
flexibility and complexity. As a result, network throughput
for each CPU core increased by about 59%.

4.3.2 Supporting Hyper-Threading Using CPU Wait
Pangu initially did not use hyper-threading (HT) [62], but

started to adopt it as the CPU core resources become scarce.
However, HT has two main performance issues. First, two
HTs on one physical core need to switch contexts. Second,
one HT affects the execution of the other HT when they
execute tasks simultaneously, resulting in increased latency on
both tasks. For example, when a network idle-polling thread
is running on one HT, and a compression thread running on
the other HT from the same physical core is compressing
4 KB data with the LZ4 algorithm [49] and lzbeach [63] at
the same time, the latency of data compression increases by
25%, compared with the case that the compression thread
exclusively occupies the physical core.

To solve these two issues, Pangu introduces the CPU wait
instruction. It consists of monitor and mwait. Pangu needs
less than 5 ms to call them. Revisit the example above. After
introducing CPU wait, the network idle-polling thread will
mwait at the monitored memory address and does not wake up
until the memory address is written by other threads. During
the mwait process, the HT it runs on enters an idle sleep state,
one of the C-States except for C0 [64,65], without interfering
with the other HT. In addition, the time of waking up HTs
with system calls is of ms-level. As such, Pangu can fully
utilize the CPU cores with high performance. In this example,
the network throughput increases by 31.6%, compared with
the case where CPU wait is not used.

4.3.3 Hardware and Software Co-design
For high performance, Pangu offloads some tasks from

CPU to programmable hardware. First, data compression is

2x25Gbps PCIe 3.0
100Gbps

Memory BW
Optimization

PCIe 4.0
200Gbps

Traffic
Optimization

CPU Optim-
ization

0
1
2
3
4
5
6
7

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

①
1.00

②
1.70

③
2.00

④
3.30

⑤
5.00

⑥
6.10

Figure 10: The normalized effective throughput per storage
node of Pangu in the evolution process.

offloaded to FPGA-based computational storage drives [66].
At a 3-GB/s throughput, hardware-based FPGA compression
can save about 10 physical cores (Intel(R) Xeon(R) Platinum
2.5 Ghz). Second, CRC computation is offloaded to RDMA-
capable NICs, which calculates the CRC of each data block.
CPU then aggregates these CRC and performs a lightweight
check [18]. This design ensures low CPU overhead and high
application-level data integrity. At the same throughput, com-
pared with using software, using hardware for CRC computa-
tion can save 30% of CPU overhead.

4.4 Evaluations
Figure 10 shows the normalized effective throughput per

storage node (NETPSN) on the evolution roadmap of the
storage node on EBS and high-performance ESSD [67].
Stage 1. To better illustrate the development of the perfor-
mance of Pangu 2.0, we initialize NETPSN as 1 when Pangu
introduces 2 × 25-Gbps network and 4-TB SSDs.
Stage 2. As SSD’s capacity increases to 8 TB with higher
performance, Pangu introduces a 100-Gbps network. The
network bandwidth is 100 Gbps because the server supports
PCIe gen3. Though the network bandwidth doubles, NETPSN
increases from 1 to 1.7 instead of 2. It is because the memory
bandwidth for read and write reaches 90 GB/s, close to the
maximal memory bandwidth of the server (105 GB/s).
Stage 3. Insufficient memory bandwidth leads to packet
drops at NICs, resulting in a large throughput drop. With
the memory bandwidth optimizations in §4.2, we successfully
increase NETPSN to 2.
Stage 4. After introducing PCIe gen4, the network throughput
increases to 2×100 Gbps. The network bandwidth doubles,
but NETPSN does not, i.e., increased to 3.3 rather than 4, due
to the traffic amplification problem (about 6x).
Stage 5. After the Pangu client adopts EC(4, 2), data compres-
sion, and other optimizations, the traffic amplification ratio
reduces by half (∼3x) (§4.1). However, NETPSN increases
to 5 instead of 6.6. The main reason is that data compression
and other operations consume many CPU resources.
Stage 6. In order to solve the CPU bottleneck, Pangu of-
floads tasks (e.g., data compression and CRC) from CPU to
hardware (§4.3), eventually increasing NETPSN to 6.1.

These results show that by breaking the bottlenecks of net-
work, memory, and CPU, Pangu achieves high performance
and adapts to the new performance-oriented business model.

340 21st USENIX Conference on File and Storage Technologies USENIX Association

5 Operation Experiences
After introducing the design innovation in Pangu 2.0, we

next introduce the basic operation cycle of Pangu, focusing
on the Pangu monitoring system, and share our experiences in
addressing several important issues during Pangu’s operation.

5.1 Pangu’s Operation Cycle
Pangu’s basic operation cycle consists of five stages: plan-

ning, development, testing, deployment, and monitoring. Be-
fore entering development, new hardware and software solu-
tions go through a rigorous planning phase (i.e., feasibility
analysis, benefit/cost analysis, and social and regulation stud-
ies). We conduct extensive tests on the solutions under various
scenarios between development and deployment. In particu-
lar, Pangu copes with the interoperability issue among hetero-
geneous hardware from different vendors using an in-house,
template-based admission test. New solutions are rolled out in
Pangu’s production environment cluster by cluster. After they
are online, the Pangu monitoring system watches their behav-
iors closely via fine-grained monitoring, thorough root-cause
analysis, fast response, and post-mortem documentation.
Fine-grained monitoring and intelligent diagnosis. In
Pangu 2.0, we improve the Pangu monitoring system with two
key designs to keep up with the high-performance require-
ment (i.e., 100 µs-level I/O latency). First, we increase the
time granularity of monitoring from 15 seconds to 1 second
and extend the Log Service [68] to design an on-demand trac-
ing system. Compared with the coarse-grained monitoring
in Pangu 1.0, this allows us to perform tracings on a per-file-
operation basis to accurately capture fine-grained abnormal
events (e.g., memory allocation exception and log printing
timeout). Second, we embrace AI to better capture the causal
relationship between abnormal events and their root causes.
The inferred root causes are rated by operating teams and fed
back to the trained model to improve its accuracy. This design
substantially improves diagnostic accuracy and reduces the
required human efforts.

5.2 Case Studies
Extensive data integrity checking. Pangu extensively em-
ploys CRC to ensure data integrity, such as end-to-end CRC
along the data path, monthly CRC on all replicates, CRC
on random sampled replicates and CRC on one extra repli-
cate during EC building. Among all the data integrity issues
we encountered, the CPU silent error is a representative one.
Specifically, we find some end-to-end CRC errors and pin-
point their root causes as the silent errors on certain CPUs.
To prevent such errors, we work with Intel to deploy silent
error testing tools that run in production environments when
the overall workload is low, and achieve some success.
Handling SLA jitters in USSOS. During Pangu’s operation,
we encounter and address several issues that contribute to SLA
jitters in USSOS (§3.2), such as memory allocation, periodic
heavyweight tasks and increased USSOS CPU utilization.
First, we find existing memory allocation mechanisms (e.g.,

TCMalloc [29]) become too time-consuming if they enter a
global memory allocation phase (e.g., when a new thread re-
quires memory) or a memory organization phase (e.g., when
too many RDMA queue pairs try to reserve high-order mem-
ory space). To this end, we introduce a user-space memory
allocation pool and optimize RDMA drivers to use anony-
mous pages. Second, for periodic heavyweight tasks (e.g.,
log printing), we move them to asynchronous threads to avoid
affecting the SLA of data operations. Third, we find that the
CPU utilization of USSOS significantly increases when the
memory occupation is high and USSOS needs to perform
memory recollection. As such, we adjust the threshold of
memory recollection to reduce the chance of USSOS entering
memory recollection. We also recollect memory allocated to
the buffer and cache in the background.
Handling correctable machine check exceptions (MCE) in
the USSOS to improve availability. Initially, USSOS (§3.2)
can monitor such hardware failures, but it cannot perceive
how the kernel migrates the physical memory for exception
isolation. As such, errors would happen when USSOS tries
to access the already migrated physical memory based on its
outdated virtual-physical memory address mapping.

To this end, we add a handler to the MCE monitor daemon
in USSOS. Once the number of found correctable MCEs
exceeds a threshold, the user-space process related to them
will pause and let the handler notify the kernel to migrate
the memory. After the migration, the process resumes and
updates its mapping table before accessing memory pages.
This design improves the availability of Pangu with negligible
performance degradation. For example, we observe <330
correctable MCEs in a 2300-server cluster in 22 days.
Heterogeneous memory bandwidths from different ven-
dors. Pangu deploys memories from different vendors. Our
tests show that under a 1:1 memory read/write ratio, the
achievable bandwidths of 128 GB memory from three dif-
ferent vendors are 94 GB/s, 84 GB/s, and 60 GB/s, respec-
tively (i.e., a 57% difference). Such heterogeneous memory
bandwidths would cause performance degradation in clusters.
This observation taught us to pay more attention to the per-
formance of memory, instead of the capacity. It is also our
earliest evidence of congestions in the receiver host datapath
and a direct motivation for RDCA (§4.2.3).
Coping with tail latency surge during Double 11 Festival.
This festival is Alibaba’s largest annual online shopping event.
Guaranteeing Pangu’s high performance under such high-
pressure traffic requires real-time monitoring, diagnosis, and
response to ensure all technical features work in harmony. On
the Double 11 Festival in 2019, we noticed a surge of read tail
latency in the Relational Database Service (RDS) built on top
of Pangu. By analyzing the system traces, we identify the root
cause as the increased simultaneous occurrence of rebalancing
migration of 2 chunks and the failure of chunkserver storing
the remaining unmigrated chunk. As such, clients have to
try and fail to access all three replicas before requesting the

USENIX Association 21st USENIX Conference on File and Storage Technologies 341

IP addresses of the latest chunkservers, increasing latency.
To fix this issue, we let the clients periodically fetch chunk
information of abnormal chunkservers from the masters and
immediately request the latest chunk metadata if their needed
chunks are on abnormal servers. This action works well in
coping with the surge of tail latency back then.

However, this mechanism has its limitation. On the Double
11 Festival 2020, clients experience the surge of tail latency
again. We find that the root cause is that many chunkservers
are determined as abnormal due to an internal issue. Clients
then receive a large amount of information about abnormal
chunkservers and spend many resources processing them (e.g.,
deserialization and address resolution), resulting in long-time
I/O hang. Facing the upcoming peak traffic, we temporar-
ily disable this mechanism and upgrade it after the festival
with a series of improvements, including independent threads
for abnormal server operations and limiting the number of
abnormal servers requested each time.

6 Lessons
Lessons on user-space systems. We develop Pangu’s
chunkserver USSOS (§3.2) to keep up with the high speed
of new network and storage technologies. During its de-
velopment and operation, we learned three lessons. First,
user-space systems are simpler to develop and operate. For
example, our data shows that bug fixing takes about two
months in a kernel-space file system, but a couple of weeks
in USSFS (§3.2.3). Developing new features (e.g., zoned
namespace [69]) in the user space requires fewer developers
and a shorter time. Furthermore, it is also easier to monitor
and trace behaviors of user-space systems and adjust their
parameters accordingly.

Second, developing user-space systems should learn from
the design of the kernel space. In particular, to build a high-
performance USSOS, not only we need to unify the storage
and network stack, we also need to design user-space mod-
ules for memory management, CPU scheduling and hardware
failure handling. The kernel space is pretty good at these
functionalities. As such, user-space systems can benefit by
learning from it.

Third, the performance gain of user-space systems is not
exclusive to high-speed storage such as SSD. Specifically,
we provide a series of mechanisms in Pangu’s USSFS to
accelerate the performance of HDD. For example, USSFS
takes advantage of the self-contained chunk layout (§3.1.3)
to save the number of metadata operations. It leverages the
differences between internal and external tracks of disks to
improve HDD’s write efficiency.
Lesson on performance-cost tradeoff. To meet new busi-
ness requirements, Pangu usually first chooses to add more
hardware to improve its performance based on total cost of
ownership (TCO) balance (e.g., upgrading the network from
25 Gbps to 100 Gbps, increasing the number of memory chan-
nels by placing more small-volume DRAMs and upgrading

servers with more powerful CPUs). Hardware expansion
effectively improves Pangu’s performance, but is not sustain-
able due to the cost incurred. As such, Pangu also spends
substantial efforts, such as traffic optimization (§4.1.2), im-
proving its resource utilization and efficiency.
Lesson on persistent memory (PMem). PMem has many
advantages, such as fast data persisting, RDMA friendliness,
low read latency (6 µs on PMem vs. 80 µs on SSD), low
tail latency, and cache friendliness. As such, we developed
a 30-µs PMem-based EBS service [1] in Pangu. However,
Intel’s decision to kill off its PMem business [70] forces us
to rethink this service. We need to plan more thoroughly
when developing new services (e.g., considering substitutabil-
ity, sustainability, and cost tradeoffs). But we are optimistic
that new storage class memory [71] will emerge with better
solutions to these issues.
Lesson on hardware offloading. The cost vs. benefits trade-
off is a fundamental issue for hardware offloading (§4.3.3),
and has been an ever-lasting debate topic in Pangu since 2018.
The entire development of hardware offloading compression
takes a 20-person team two years, during which we resolve
many issues such as the FPGA hardware cost, the integrity of
compressed data, and the co-existence with other functions in
hardware. In the end, the outcome benefits outweigh this cost
substantially. Hardware offloading significantly reduces the
compression’s average and tail latency, effectively reducing
the network traffic within a low latency. As a result, we can
improve the service provision capability of our infrastructure
by ∼50%. We rolled out hardware compression in Pangu in
2020 at a slow pace, first in internal services (e.g., log/moni-
toring services) and then gradually expanding to core external
services (e.g., EBS). To prevent potential bugs in hardware
from harming data integrity, we perform data decompression
and CRC checking on hardware and conduct routine spot
software CRC checking. Since 2022, all 200 Gbps clusters in
Pangu enable hardware compression by default, and incidents
happen less and less often.

7 Conclusion
We introduce how we embrace the emerging hardware tech-

nologies and adapt to the shift of business model to evolve the
Pangu to provide high-performance, reliable storage services
with a 100µs-level I/O latency. We also share our experi-
ences operating Pangu 2.0 to shed light on future research in
large-scale, high-performance storage systems.
Acknowledgments. We are extremely grateful for our shep-
herd, Peter Macko, and the anonymous FAST’23 reviewers
for their wonderful feedback. Qiao Xiang, Haohao Song,
Yuxin Wang, and Ridi Wen are supported in part by the Na-
tional Key R&D Program of China 2022YFB2901502, Al-
ibaba Innovative Research Award, NSFC Award 62172345,
Open Research Projects of Zhejiang Lab 2022QA0AB05,
MOE China Award 2021FNA02008, NSF-Fujian-China
2022J01004, and IKKEM Award HRTP-2022-34.

342 21st USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Alibaba Group. Alibaba Cloud Products & EBS.

https://www.aliyun.com/product/disk. Accessed Sept
18, 2022.

[2] Alibaba Group. Alibaba Cloud Products & OSS Ser-
vices. https://www.alibabacloud.com/zh/product/obje
ct-storage-service. Accessed Sept 18, 2022.

[3] Alibaba Group. Alibaba Cloud Products & NAS Ser-
vices. https://www.alibabacloud.com/zh/product/nas.
Accessed Sept 18, 2022.

[4] Alibaba Group. Alibaba Cloud Products & PolarDB.
https://www.alibabacloud.com/zh/product/polardb. Ac-
cessed Sept 18, 2022.

[5] Alibaba Group. Alibaba Cloud Products & MaxCom-
pute. https://www.alibabacloud.com/zh/product/maxc
ompute. Accessed Sept 18, 2022.

[6] Avantika Mathur, Mingming Cao, Suparna Bhat-
tacharya, Andreas Dilger, Alex Tomas, and Laurent
Vivier. The New Ext4 Filesystem: Current Status and
Future Plans. In Proceedings of the Linux symposium,
pages 21–33. Citeseer, 2007.

[7] Wright Stevens. TCP Slow Start, Congestion Avoid-
ance, Fast Retransmit, and Fast Recovery Algorithms.
Technical report, 1997.

[8] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A Scalable, Commodity Data Center Network
Architecture. In SIGCOMM’08, pages 63–74. ACM,
2008.

[9] Alibaba Group. Alibaba Cloud Products & OTS.
https://www.alibabacloud.com/zh/product/table-store.

Accessed Sept 18, 2022.

[10] Satadru Pan, Theano Stavrinos, Yunqiao Zhang,
Atul Sikaria, Pavel Zakharov, Abhinav Sharma,
Shiva Shankar P., Mike Shuey, Richard Wareing,
Monika Gangapuram, Guanglei Cao, Christian Preseau,
Pratap Singh, Kestutis Patiejunas, J. R. Tipton, Ethan
Katz-Bassett, and Wyatt Lloyd. Facebook’s Tectonic
Filesystem: Efficiency from Exascale. In FAST’21,
pages 217–231. USENIX Association, 2021.

[11] Colossus under the Hood: A Peek into
Google’s Scalable Storage System.
https://cloud.google.com/blog/products/storage-data-t
ransfer/a-peek-behind-colossus-googles-file-system.
Accessed Sept 18, 2022.

[12] Diego Ongaro and John Ousterhout. In Search of an Un-
derstandable Consensus Algorithm. In ATC’14, pages
305–319. USENIX Association, 2014.

[13] Wenhao Lv, Youyou Lu, Yiming Zhang, Peile Duan,
and Jiwu Shu. InfiniFS: An Efficient Metadata Service
for Large-Scale Distributed Filesystems. In FAST’22,
pages 313–328. USENIX Association, 2022.

[14] Su Zhou, Erci Xu, Hao Wu, Yu Du, Jiacheng Cui,
Wanyu Fu, Chang Liu, Yingni Wang, Wenbo Wang,
Shouqu Sun, Xianfei Wang, Bo Feng, Biyun Zhu, Xin
Tong, Weikang Kong, Linyan Liu, Zhongjie Wu, Jinbo
Wu, Qingchao Luo, and Jiesheng Wu. Deployed Sys-
tem: SMRSTORE: A Storage Engine for Cloud Object
Storage on HM-SMR Drives. In FAST’23. USENIX
Association, 2023.

[15] Qiang Li, Lulu Chen, Xiaoliang Wang, Shuo Huang,
Qiao Xiang, Yuanyuan Dong, Wenhui Yao, Minfei
Huang, Puyuan Yang, Shanyang Liu, et al. Fisc: A
Large-Scale Cloud-Native-Oriented File System. In
FAST’23. USENIX Association, 2023.

[16] Ruiming Lu, Erci Xu, Yiming Zhang, Fengyi Zhu,
Zhaosheng Zhu, Mengtian Wang, Zongpeng Zhu,
Guangtao Xue, Jiwu Shu, Minglu Li, and Jiesheng
Wu. Deployed System: Perseus: A Fail-Slow Detection
Framework for Cloud Storage Systems. In FAST’23.
USENIX Association, 2023.

[17] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi,
Pengcheng Zhang, Wenwen Peng, Bo Li, Yaohui Wu,
Shaozong Liu, Lei Yan, et al. When Cloud Storage
Meets RDMA. In NSDI’21, pages 519–533. USENIX
Association, 2021.

[18] Rui Miao, Lingjun Zhu, Shu Ma, Kun Qian, Shu-
jun Zhuang, Bo Li, Shuguang Cheng, Jiaqi Gao,
Yan Zhuang, Pengcheng Zhang, Rong Liu, Chao Shi,
Binzhang Fu, Jiaji Zhu, Jiesheng Wu, Dennis Cai, and
Hongqiang Harry Liu. From Luna to Solar: the Evolu-
tions of the Compute-to-Storage Networks in Alibaba
Cloud. In SIGCOMM’22, pages 753–766. ACM, 2022.

[19] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google File System. In SOSP’03, pages
29–43. ACM, 2003.

[20] Dhruba Borthakur. HDFS Architecture Guide . https:
//hadoop.apache.org/docs/r1.2.1/hdfs_design.htmll. Ac-
cessed Sept 15, 2022.

[21] Microsoft. Azure Storage. https://azure.microsoft.co
m/en-us/products/category/storage/. Accessed Sept 18,
2022.

[22] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A Scalable,
High-Performance Distributed File System. In OSDI’06,
pages 307–320. USENIX Association, 2006.

USENIX Association 21st USENIX Conference on File and Storage Technologies 343

https://www.aliyun.com/product/disk
https://www.aliyun.com/product/disk
https://www.alibabacloud.com/zh/product/object-storage-service
https://www.alibabacloud.com/zh/product/object-storage-service
https://www.alibabacloud.com/zh/product/nas
https://www.alibabacloud.com/zh/product/polardb
https://www.alibabacloud.com/zh/product/polardb
https://www.alibabacloud.com/zh/product/maxcompute
https://www.alibabacloud.com/zh/product/maxcompute
https://www.alibabacloud.com/zh/product/table-store
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.htmll
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.htmll
https://azure.microsoft.com/en-us/products/category/storage/
https://azure.microsoft.com/en-us/products/category/storage/

[23] AWS. Cloud Storage on AWS. https://aws.amazon.c
om/products/storage/. Accessed Sept 18, 2022.

[24] Zhu Pang, Qingda Lu, Shuo Chen, Rui Wang, Yikang
Xu, and Jiesheng Wu. ArkDB: A Key-Value Engine
for Scalable Cloud Storage Services. In SIGMOD’21,
pages 2570–2583. ACM, 2021.

[25] Chromium Contributor. Jim Roskind. QUIC:
Design Document and Specification Rationale.
https://docs.google.com/document/d/1RNHkx_VvK
WyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit.
Accessed Jan 3, 2023.

[26] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio
Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor
Kouranov, Ian Swett, Janardhan Iyengar, et al. The
QUIC Transport Protocol: Design and Internet-Scale
Deployment. In SIGCOMM’17, pages 183–196. ACM,
2017.

[27] Intel. Data Plane Development Kit. https://dpdk.org/.
Accessed Aug 25, 2022.

[28] SPDK. Storage Performance Development Kit. https:
//www.spdk.io/. Accessed Aug 25, 2022.

[29] Sanjay Ghemawat and Paul Menage. TCMalloc:
Thread-Caching Malloc. http://goog-perftools.sourcef
orge.net/doc/tcmalloc.html. Accessed Aug 25, 2022.

[30] J. Yang, D. B. Minturn, and F. Hady. When Poll Is
Better than Interrupt. In FAST’12, pages 1–7. USENIX
Association, 2012.

[31] Luiz Barroso, Mike Marty, David Patterson, and
Parthasarathy Ranganathan. Attack of the Killer Mi-
croseconds. Communications of the ACM, 60(4):48–54,
2017.

[32] Backblaze. The SSD Edition: 2022 Drive Stats Mid-
year Review. https://www.backblaze.com/blog/ssd-dri
ve-stats-mid-2022-review/. Accessed Sept 18, 2022.

[33] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash
Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben
Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid.
SSD Failures in Datacenters: What? When? and Why?
In SYSTOR’16, pages 1–11. ACM, 2016.

[34] Mingzhe Hao, Gokul Soundararajan, Deepak
Kenchammana-Hosekote, Andrew A Chien, and
Haryadi S Gunawi. The Tail at Store: A Revelation
from Millions of Hours of Disk and SSD Deployments.
In FAST’16, pages 263–276. USENIX Association,
2016.

[35] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash Reliability in Production: The Expected and the
Unexpected. In FAST’16, pages 67–80. USENIX Asso-
ciation, 2016.

[36] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng
Wu. Lessons and Actions: What We Learned from
10K SSD-Related Storage System Failures. In ATC’19,
pages 961–976. USENIX Association, 2019.

[37] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lillib-
ridge. Understanding the Robustness of SSDs under
Power Fault. In FAST’13, pages 271–284. USENIX
Association, 2013.

[38] Alibaba Group. Alibaba Cloud Products & ECS.
https://www.aliyun.com/product/ecs. Accessed Sept 18,
2022.

[39] Amazon. Amazon EC2. https://aws.amazon.com/cn/
ec2/?nc2=h_ql_prod_fs_ec2. Accessed Sept 18, 2022.

[40] K. V. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, and
K. Ramchandran. EC-Cache: Load-Balanced, Low-
Latency Cluster Caching with Online Erasure Coding.
In OSDI’16, pages 401–417. USENIX Association,
2016.

[41] Takayuki Fukatani, Hieu Hanh Le, and Haruo Yokota.
Delayed Parity Update for Bridging the Gap between
Replication and Erasure Coding in Server-Based Stor-
age. In ADMS@ VLDB, pages 1–9, 2021.

[42] Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowd-
hury, Asaf Cidon, and Kang G Shin. Hydra: Resilient
and Highly Available Remote Memory. In FAST’22,
pages 181–198. USENIX Association, 2022.

[43] QSFP. https://community.fs.com/search?key_word=Q
SFP. Accessed Sept 18, 2022.

[44] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
RDMA over Commodity Ethernet at Scale. In SIG-
COMM’16, pages 202–215. ACM, 2016.

[45] Mark J. Karol, S. Jamaloddin Golestani, and David
Lee. Prevention of Deadlocks and Livelocks in Lossless
Backpressured Packet Networks. IEEE/ACM Trans.
Netw., 11(6):923–934, 2003.

[46] Brent E. Stephens, Alan L. Cox, Ankit Singla, John B.
Carter, Colin Dixon, and Wes Felter. Practical DCB
for Improved Data Center Networks. In INFOCOM’14,
pages 1824–1832. IEEE, 2014.

[47] Intel(R) Intelligent Storage Acceleration Library. https:
//github.com/intel/isa-l. Accessed Sept 18, 2022.

344 21st USENIX Conference on File and Storage Technologies USENIX Association

https://aws.amazon.com/products/storage/
https://aws.amazon.com/products/storage/
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://dpdk.org/
https://www.spdk.io/
https://www.spdk.io/
http://goog-perftools. sourceforge. net/doc/tcmalloc. html
http://goog-perftools. sourceforge. net/doc/tcmalloc. html
https://www.backblaze.com/blog/ssd-drive-stats-mid-2022-review/.
https://www.backblaze.com/blog/ssd-drive-stats-mid-2022-review/.
https://www.aliyun.com/product/ecs.
https://www.aliyun.com/product/ecs.
https://aws.amazon.com/cn/ec2/?nc2=h_ql_prod_fs_ec2.
https://aws.amazon.com/cn/ec2/?nc2=h_ql_prod_fs_ec2.
https://community.fs.com/search?key_word=QSFP
https://community.fs.com/search?key_word=QSFP
https://github.com/intel/isa-l
https://github.com/intel/isa-l

[48] Jerasure: A Library in C Facilitating Erasure Coding for
Storage. https://jerasure.org. Accessed Sept 18, 2022.

[49] LZ4 - Extremely fast compression. https://github.com
/lz4/lz4. Accessed Sept 18, 2022.

[50] Saksham Agarwal, Rachit Agarwal, Behnam Montaz-
eri, Masoud Moshref, Khaled Elmeleegy, Luigi Rizzo,
Marc Asher de Kruijf, Gautam Kumar, Sylvia Rat-
nasamy, David Culler, et al. Understanding Host Inter-
connect Congestion. In HotNets’22, pages 198–204.
ACM, 2022.

[51] Intel. Intel Stratix 10 FPGAs & SoC FPGA.
https://www.intel.com/content/www/us/en/products/d
etails/fpga/stratix/10.html. Accessed Sept 18, 2022.

[52] Bert Hubert et al. Linux Advanced Routing & Traffic
Control HOWTO. Netherlabs BV, 1:99–107, 2002.

[53] Alok Kumar, Sushant Jain, Uday Naik, Nikhil Kasinad-
huni, Enrique Cauich Zermeno, C. Stephen Gunn, Jing
Ai, Björn Carlin, Mihai Amarandei-Stavila, Mathieu
Robin, Aspi Siganporia, Stephen Stuart, and Amin Vah-
dat. BwE: Flexible, Hierarchical Bandwidth Allocation
for WAN Distributed Computing. In SIGCOMM’15,
pages 1–14. ACM, 2015.

[54] Ram Huggahalli, Ravi Iyer, and Scott Tetrick. Direct
Cache Access for High Bandwidth Network I/O. In
ISCA’05, pages 50–59. IEEE, 2005.

[55] Amit Kumar, Ram Huggahalli, and Srihari Makineni.
Characterization of Direct Cache Access on Multi-Core
Systems and 10GbE. In HPCA’09, pages 341–352.
IEEE, 2009.

[56] Intel® Data Direct I/O Technology (Intel® DDIO): A
Primer. https://www.intel.com/content/www/us/en/io/d
ata-direct-i-o-technology.html Accessed Aug 28, 2022.

[57] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin
Walls, Katerina Argyraki, Sylvia Ratnasamy, and Scott
Shenker. ResQ: Enabling SLOs in Network Function
Virtualization. In NSDI’18, pages 283–297. USENIX
Association, 2018.

[58] Amy Ousterhout, Joshua Fried, Jonathan Behrens,
Adam Belay, and Hari Balakrishnan. Shenango: Achiev-
ing High CPU Efficiency for Latency-Sensitive Datacen-
ter Workloads. In NSDI’19, pages 361–378. USENIX
Association, 2019.

[59] Giovanni De Michell and Rajesh K Gupta. Hard-
ware/Software Co-Design. Proceedings of the IEEE,
85(3):349–365, 1997.

[60] Protocol Buffers are a Language-Neutral, Platform-
Neutral Extensible Mechanism for Serializing Struc-
tured Data. https://developers.google.com/protocol-b
uffers/. Accessed Sept 18, 2022.

[61] FlatBuffers is an Efficient cross Platform Serialization
Library. https://google.github.io/flatbuffers/. Accessed
Sept 18, 2022.

[62] William Magro, Paul Petersen, and Sanjiv Shah. Hyper-
Threading Technology: Impact on Compute-Intensive
Workloads. Intel Technology Journal, 6(1):1–9, 2002.

[63] Lzbench, an in-Memory Benchmark of Various Com-
pressors. https://openbenchmarking.org/test/pts/lzbenc
h. Accessed Sept 18, 2022.

[64] Intel. Intel C-states. https://www.intel.com/content/ww
w/us/en/develop/documentation/vtune-help/top/refe
rence/energy-analysis-metrics-reference/c-state.html.
Accessed Sept 18, 2022.

[65] Intel. C-states. https://www.thomas-krenn.com/en/wi
ki/Processor_P-states_and_C-states. Accessed Sept 18,
2022.

[66] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li,
Wenjie Wu, Linqiang Ouyang, Peng Wang, Yijing Wang,
Ray Kuan, et al. POLARDB Meets Computational
Storage: Efficiently Support Analytical Workloads in
Cloud-Native Relational Database. In FAST’20, pages
29–41. USENIX Association, 2020.

[67] Alibaba Group. Alibaba Cloud Products & ESSD. ht
tps://www.aliyun.com/storage/storage/essd/. Accessed
Sept 18, 2022.

[68] Alibaba Group. Alibaba Cloud Products & SLS.
https://www.aliyun.com/product/sls. Accessed Sept 18,
2022.

[69] Matias Bjørling. From Open-Channel SSDs to Zoned
Namespaces. In Proc. Linux Storage Filesyst.
Conf.(Vault), pages 1–18, 2019.

[70] Intel. Intel Reports Second-Quarter 2022 Financial Re-
sults. https://download.intel.com/newsroom/2022/corp
orate/Intel-CEO-CFO-2Q22-earnings-statements.pdf.
Accessed Sept 18, 2022.

[71] Chung H Lam. Storage Class Memory. In ICSICT’10,
pages 1080–1083. IEEE, 2010.

USENIX Association 21st USENIX Conference on File and Storage Technologies 345

https://jerasure.org
https://github.com/lz4/lz4
https://github.com/lz4/lz4
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10.html
https://www.intel.com/content/www/us/en/products/details/fpga/stratix/10.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://google.github.io/flatbuffers/
https://openbenchmarking.org/test/pts/lzbench
https://openbenchmarking.org/test/pts/lzbench
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/energy-analysis-metrics-reference/c-state.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/energy-analysis-metrics-reference/c-state.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/reference/energy-analysis-metrics-reference/c-state.html
https://www.thomas-krenn.com/en/wiki/Processor_P-states_and_C-states
https://www.thomas-krenn.com/en/wiki/Processor_P-states_and_C-states
https://www.aliyun.com/storage/storage/essd/
https://www.aliyun.com/storage/storage/essd/
https://www.aliyun.com/product/sls.
https://www.aliyun.com/product/sls.
https://download.intel.com/newsroom/2022/corporate/Intel-CEO-CFO-2Q22-earnings-statements.pdf.
https://download.intel.com/newsroom/2022/corporate/Intel-CEO-CFO-2Q22-earnings-statements.pdf.

	Introduction
	Background
	Overview of Pangu
	Design Goals of Pangu 2.0
	Related Work

	Phase One: Embracing SSD and RDMA
	Append-Only File System
	Unified, Append-Only Persistence Layer
	Heavyweight Client
	Append-only Chunk Management
	Metadata Operation Optimization

	Chunkserver USSOS
	User-Level Memory Management
	User-Space Scheduling Mechanism
	Append-Only USSFS

	High Performance SLA Guarantee
	Evaluations

	Phase Two: Adapting to Performance-Oriented Business Model
	Network Bottleneck
	Bandwidth Expansion
	Traffic Optimization

	Memory Bottleneck
	Adding Small-Capacity DRAMs
	Shifting Background Traffic From TCP to RDMA
	Remote Direct Cache Access

	CPU Bottleneck
	Hybrid RPCs
	Supporting Hyper-Threading Using CPU Wait
	Hardware and Software Co-design

	Evaluations

	Operation Experiences
	Pangu's Operation Cycle
	Case Studies

	Lessons
	Conclusion

