
This paper is included in the Proceedings of the
21st USENIX Conference on File and

Storage Technologies.
February 21–23, 2023 • Santa Clara, CA, USA

978-1-939133-32-8

Open access to the Proceedings
of the 21st USENIX Conference on

File and Storage Technologies
is sponsored by

Unsafe at Any Copy: Name Collisions from Mixing
Case Sensitivities

Aditya Basu and John Sampson, The Pennsylvania State University; Zhiyun Qian,
University of California, Riverside; Trent Jaeger, The Pennsylvania State University

https://www.usenix.org/conference/fast23/presentation/basu

https://www.usenix.org/conference/fast23/presentation/basu

Unsafe at Any Copy: Name Collisions from Mixing Case Sensitivities

Aditya Basu∗

aditya.basu@psu.edu
John Sampson∗

jms1257@psu.edu
Zhiyun Qian†

zhiyunq@cs.ucr.edu
Trent Jaeger∗

trj1@psu.edu
∗The Pennsylvania State University †University of California, Riverside

Abstract
File name confusion attacks, such as malicious symlinks and
file squatting, have long been studied as sources of security
vulnerabilities. However, a recently emerged type, i.e., case-
sensitivity-induced name collisions, has not been scrutinized.
These collisions are introduced by differences in name reso-
lution under case-sensitive and case-insensitive file systems
or directories. A prominent example is the recent Git vulnera-
bility (CVE-2021-21300) which can lead to code execution
on a victim client when it clones a maliciously crafted reposi-
tory onto a case-insensitive file system. With trends includ-
ing ext4 adding support for per-directory case-insensitivity
and the broad deployment of the Windows Subsystem for
Linux, the prerequisites for such vulnerabilities are increas-
ingly likely to exist even in a single system.

In this paper, we make a first effort to investigate how and
where the lack of any uniform approach to handling name
collisions leads to a diffusion of responsibility and resultant
vulnerabilities. Interestingly, we demonstrate the existence of
a range of novel security challenges arising from name colli-
sions and their inconsistent handling by low-level utilities and
applications. Specifically, our experiments show that utilities
handle many name collision scenarios unsafely, leaving the
responsibility to applications whose developers are unfortu-
nately not yet aware of the threats. We examine three case
studies as a first step towards systematically understanding
the emerging type of name collision vulnerability.

1 Introduction
A fundamental file system design choice is whether it will
allow file names to be case sensitive or not, and modern file
systems are diverse in their selection. A case-sensitive file
system is one that allows the definition of multiple files whose
names differ only in their case, such as Foo.c and foo.c. In
a case-insensitive file system, only one file can be defined
whose names differ only in their case. Historically, UNIX file
systems are case sensitive, whereas Windows file systems are
case insensitive. Further, case-insensitive file systems may
be either case preserving (e.g. Apple File System (APFS),
NTFS, etc.) or not (FAT), where a case-preserving file sys-
tem preserves the case chosen (i.e., either Foo.c or foo.c),
rather than converting all names to one case choice (e.g., all
lowercase). Importantly, while choices in case sensitivity for

a single file system may appear to be arbitrary or aesthetically
driven, the precise semantics of interactions between two file
systems with different case sensitivities can range from subtle
to ill-defined, with associated consequences.

Practitioners have long had concerns about the implica-
tions of leaving case sensitivity as an open design choice [31]
Historically, these concerns were not considered as pressing
when file systems were associated with their respective oper-
ating systems and associated singular assumptions about case.
However, individual systems now frequently support a mixture
of case-sensitive and case-insensitive file systems, creating
opportunities for files to be moved between file systems with
different cases and file identifier encodings. More troublingly,
several file systems now support allowing the choice of case
for individual directories [12], complicating file operations
by having multiple case and encoding semantics within the
same file system.

Security risks related to this design choice therefore appear
to be increasing. First, the Windows Subsystem for Linux [58]
(WSL) integrates Linux and Windows platforms leading to
expectations that files may be routinely copied from Linux
(i.e., case-sensitive) to Windows (i.e., case-insensitive) file
systems. Second, Linux ext4 now supports case-sensitive and
case-insensitive naming in the same partition, configurable
per directory [12, 34]. Linus Torvalds expressed concerns
about adding such support to ext4 [31], stating that such
features often cause “actual and very subtle security issues”.

Indeed, security issues caused by moving files from case-
sensitive to case-insensitive file systems are starting to appear.
For example, the git distributed version control system has
suffered from multiple vulnerabilities (e.g., CVE-2014-9390,
CVE-2021-21300), caused by how git clones repositories
from case-sensitive file systems to case-insensitive file sys-
tems.

To exploit this, an adversary creates a repository in a case-
sensitive file system with a directory whose name will collide
(i.e., only differs in case) with a symbolic link (to another
directory) added by git when the repository is cloned to
a case-insensitive file system. The name collision between
the directory and the symbolic link enables adversaries to
overwrite the scripts that git executes. Such attacks can
alter both the target resource’s content and/or its metadata,
including its permission assignments.

USENIX Association 21st USENIX Conference on File and Storage Technologies 183

mailto:aditya.basu@psu.edu
mailto:jms1257@psu.edu
mailto:zhiyunq@cs.ucr.edu
mailto:trj1@psu.edu

Researchers have long been aware of hazards that may oc-
cur during file system name resolution [3, 4], particularly that
programmers must validate safe use of symbolic links and
check for "squatted" files when creating a new files. Many de-
fenses have been proposed [7–9, 30, 40–42, 50–52, 55]. How-
ever, to the best of our knowledge, ours is the first work
studying how case interplays cause name collisions that lead
to incorrect, and in some cases, vulnerable behaviors. We
show that utilities and applications currently do not recognize
unsafe use of case-insensitive file systems, leading to these
problems. This paper demonstrates the potential implications
of the name collision problem, focusing on Linux and its
supported file systems, thereby motivating both more and
broader (e.g., other OS-FS combination) investigations. We
identify potential gaps in the existing contract between the ap-
plications and the underlying file system that results in unsafe
behaviors (see §8). We make the following contributions:

• We examine the security and correctness implications of
name collisions, when two distinct file system resources
with two distinct names map to to a single name, due to
file system case sensitivity and/or encoding mismatches.

• We show that improper handling of case-[in]sensitivity
and encoding can result in silent data loss and corruption,
symbolic link traversal, unexpected hardlink creation, in-
secure merging of directory contents, and data disclosure
due to incorrect overwriting of file system resources.

• We developed an automated method to test common
Linux utilities for unsafe reactions to name collisions,
finding a wide variety of responses, many of which are
unsafe and possibly exploitable.

• We demonstrate novel exploits on three programs dpkg,
rsync, and Apache httpd, showing how they operate
incorrectly in the face of name collisions and how they
would be exploited when deployed on case-insensitive
directories.

2 Background: From Cases to Collisions
Beyond traditional, i.e. operating-system-entailed, decisions
made with respect to case sensitivity, even Linux files sys-
tems now represent a surprising diversity of case sensitivity
decisions. In particular, the desire to support some non-native
applications, such as WINE and Samba from Windows sys-
tems, has motivated Linux file systems to support the case-
insensitive file naming used in these non-native file systems.

The ability to create case-insensitive file systems has long
been possible in some Linux file systems, such as ZFS, JFS,
and ciopfs. However, these options are applied to the entire
filesystem, rather than just the relevant directories for individ-
ual applications. In 2019, Linux kernel version 5.2 added sup-
port for per-directory case-insensitivity to ext4 [12, 34]. Later
in 2019, similar support was added to the Flash-Friendly File
System (F2FS) in Linux kernel version 5.4 [13, 14]. For case-
insensitive directories, these file systems are case-preserving
in nature.

2.1 Motivations for Increasing Case Diversity
Samba Samba [45] implements the Common Internet File
System (CIFS) protocol which allows for sharing file systems
over a network. Its primary use is sharing files with Win-
dows clients that expect a case-insensitive file system. Hence,
Samba implements user-space case-insensitive lookups even
if the underlying file system is case-sensitive. Furthermore, it
allows turning on/off case-sensitivity and case-preservation
on a per-mount basis [46]. Note that this feature only works
for non-Windows clients, which means that the actual file
system can contain files differing only in case. This can lead
to unexpected behaviors where Samba will choose to show
only a subset of files. Deleting files which have collisions
will now show the alternate versions, thereby giving rise to
inconsistent behavior from the end user’s perspective.

Samba’s requirement of case-insensitive matching, which is
done in user-space, incurs a huge performance overhead [37]
thereby motivating the support for case-insensitivity in the
ext4 file system [34–36]. Other programs/systems such as
Wine [57], Network File System (NFS), SteamOS [48, 49]
and Android [32, 59] would also benefit from in-kernel case-
insensitivity support.

ext4 For ext4, the idea is that the filesystem at large can
be configured to be "casefolding," which permits the mix-
ing of case-sensitive and case-insensitive directories in the
same file system. When creating an ext4 file system, the case-
fold option is applied, e.g., mkfs -t ext4 -O casefold
/dev/sda. Setting the +F inode attribute on an empty di-
rectory makes it case-insensitive, e.g., mkdir foo; chattr
+F foo. Note that case-insensitive directories can contain
case-sensitive directories. This means that for a given path,
/foo/bar/bin/baz, any of foo, bar and bin can either be
case-sensitive or case-insensitive.

tmpfs tmpfs recently added case-insensitivity support [33].
The use cases are similar to that of ext4 with the addition of
supporting sandboxing and container tools such as Flatpak.

2.2 Name Collisions
A name collision occurs when a file system maps two distinct
names of two distinct resources to the same name. Name
collisions can cause problems to occur if the names of dis-
tinct resources collide when those resources are replicated
to a target directory that does not provide a 1:1 mapping for
all replicated objects. Suppose one directory has two files
with distinct names in that file system. Should those files
be copied to a second directory in which the two file names
collide (i.e., are mapped to the same name), then only one file
will be created, which may be either of the original files or an
unpredictable combination of the two files’ content and meta-
data. Variation in case sensitivity between two file systems is
a common origin of collisions, but diversity in other encoding
properties, such as character choice (e.g., FAT does not sup-

184 21st USENIX Conference on File and Storage Technologies USENIX Association

port “, :, ∗, etc. 1) and canonicalization processes, can lead
to the same effect. For example, NTFS uses UTF-16 while
APFS (macOS) and ext4 (Linux) use UTF-8 and older file
systems can use other encoding schemes, such as iso8859-1.

Modern encoding schemes such as Unicode (e.g., UTF-8,
UTF-16, etc.) have support for non-English characters that
requires case folding [6] to perform case-insensitive match-
ing. Unlike traditional techniques, case folding uses lookup
tables to transform each character of the filename to a pre-
determined case. Furthermore, individual characters in Uni-
code can have multiple binary representations. Hence, a nor-
malization scheme also needs to be applied to the case folded
filename to ensure that the same characters are encoded us-
ing identical binary sequences. Consider the filenames floß,
FLOSS and floss. All can coexist on a case-sensitive file
system supporting reasonable character encodings, but since
case-folding for both floß and FLOSS is floss, attempting
to move these files to a case-insensitive system may only
preserve one of the original triple.

In addition, case folding rules and normalization tech-
niques can differ across file systems. The locale (or language)
also influences the case folding rules. Due to such differences,
‘temp_200K’ (where K = Kelvin Sign or Unicode code point
U+212A) and ‘temp_200k’ are considered identical on NTFS
and APFS, but on ZFS2 these filenames are considered differ-
ent when using case-insensitive lookups. As a result, when
two files of these names are copied from a ZFS file system to
an NTFS file system, they will collide and only one filename
and only one file will be created. For clarity and concise-
ness, we will use examples of ASCII-based, case-insensitive
matching throughout the rest of the paper.

We propose a taxonomy for name confusions, shown in
Figure 1, that captures the types of incorrect program be-
haviors that may stem from the ambiguous uses of names
for file system resources. Name collisions are a subset of
this broader class. Name confusions may be caused by three
reasons: (1) because multiple names may refer to the same
resource (i.e., aliasing); (2) because an adversary may create
a resource of that name before the victim (i.e., squat); and
(3) because the multiple resources may be associated with
the same name (i.e., collisions). Of these, however, name
collisions are the least explored for their correctness and se-
curity implications. As Linux is adding more support for
case-insensitivity, it is crucial to understand the pitfalls and
problems such functionality may incur. This work aims to
study these issues.

3 From Collisions to Calamities
Name collisions can impair system functionality by modi-
fying the content and/or metadata of files and directories in
unexpected ways. Some name collisions have already led to

1http://elm-chan.org/fsw/ff/doc/filename.html
2By default, the ZFS file system does not perform normalization. We use

this default behavior for the given example.

Name Confusion (NC)

Alias

Symlink Hardlink Bind mount

Squat

File Other

Collision

Case Encoding

Figure 1: Taxonomy of name confusion vulnerabilities di-
vided into alias (i.e., multiple names for a resource), collision
(i.e., multiple resources for a name), and squat (temporal
ambiguities in names vs. resources) classes

security vulnerabilities [24]. In this section, we define the
conditions in which a name collision occurs, the conditions
under which such a collision may be exploitable by an adver-
sary, and describe a known vulnerability that is caused by a
name collision.

3.1 Causes of Name Collisions
A process may cause a name collision under the following
conditions.

• There exists a source resource (e.g., file or directory) in
a case-sensitive file system, whose name is source name.

• The process uses a relocation operation to place the
source resource in a target directory, where the target
directory is a case-insensitive or case-preserving direc-
tory. Examples of relocation operations include copy
(e.g., cp, rsync, or an archive operation, such as tar or
unzip) or move (e.g., mv).

• The relocation operation produces a destination name
from the source name for the name of the source resource
when placed in the target directory.

• There is a target resource with a target name whose
name differs from the source name, but maps to the
same name as the destination name does in the target
directory (e.g., due to differences in case-folding rules
between the source and target directory).

• If the process is authorized to modify the target resource,
the process’s relocation operation results in a name col-
lision between the target and source resources.

• If the relocation operation proceeds despite the name
collision, then the target resource’s content and/or its
metadata may be modified using the source resource
content and/or metadata.

When these conditions are met, a name collision occurs
such that the target resource in the target directory will be
modified using the source resource. In most cases, modifying
a target resource using a source resource of a different name
is an unexpected result. We test how common Linux utilities
react to name collisions and examine case studies where name
collisions cause incorrect operation.

Given the above conditions, there are several clear scenar-
ios where the movement of files involving the following types
of file systems (following the categorization in §2.2) could
result in name collisions:

USENIX Association 21st USENIX Conference on File and Storage Technologies 185

http://elm-chan.org/fsw/ff/doc/filename.html

• Case-sensitive and case-insensitive file systems.
• Two distinct case-insensitive file systems with different

case folding rules, e.g. ZFS to NTFS, etc.
• Two file system whose locales are different but they still

use the same file system format (such as ext4).
• A single file system that supports per-directory case-

insensitivity, e.g. ext4.

Clearly, name collisions may impact system functionality
by causing collateral damage to resources supposedly un-
related to the operation, even removing the target resource
entirely. In addition, name collisions may be used to exploit
the process performing the relocation operation in a version
of a confused deputy attack [25]. An adversary only requires
write access to the source directory to produce source names
that may lead to name collisions to perform an attack. We
note that adversaries require fewer permissions to perform at-
tacks using name collisions than other name confusion classes,
which require write access to a directory used in name resolu-
tion of the target resource [54]. Thus, remote attacks using
file system archives, such as tarballs and zip files, as well
as file repositories, such as GitHub, can be the sources of
attacks.

In practice, to perform a successful attack using a name
collision, the victim process has to help the adversary in
two ways. First, the victim process has to use the source
resource in a relocation operation planted by an adversary
as described above. In addition to archives, other activities,
such as backups, may provide opportunities for exploitation
of name collisions. In addition, ad hoc user actions copying
files, e.g., from Linux to Windows in the Windows Subsystem
for Linux, may result in unexpected and exploitable collisions.
Second, the target directory of the relocation operation has
to be predictable by the adversary to enable them to produce
a source name that leads to a colliding destination name.
Archives make this task much easier because the archive itself
may be crafted to provide the target resource that is exploited
by creating a collision with another archive file. A recent
vulnerability in the git distributed revision control system
demonstrates exactly this, as described below.

3.2 An Example Collision Vulnerability
Security vulnerabilities due to filename collisions across dif-
ferent file systems have been demonstrated in the wild. Con-
sider a recent vulnerability in the git distributed version
control system (CVE-2021-21300). This vulnerability re-
sults in remote code execution after cloning a maliciously
crafted repository created on a case-sensitive file system to a
case-insensitive file system.

Figure 2 depicts the maliciously crafted repository struc-
ture. Note that this directory structure works correctly on
a case-sensitive file system. However, on case-insensitive
file systems, the presence of the ‘a’ (small) and ‘A’ (capital)
directories creates a collision that exposes a vulnerability.
This collision results in a vulnerability when using git’s

repo/

.git/...............................(contents omitted)
A/

file1

file2

post-checkout..................(executable script)
a...............................(symlink to .git/hooks/)

Figure 2: Example for Git CVE-2021-21300

out-of-order checkout machinery. Git Large File Storage
(LFS) uses out-of-order checkouts for downloading binaries
in the background. Say the repository creator (adversary)
marks ‘A/post-checkout’ for an out-of-order checkout. When
a user clones this repository to a case-insensitive file system
(e.g., NTFS), git performs a sequence of operations that:
(1) replaces ‘A’ with the symbolic link ‘a’ and (2) writes the
script file ‘A/post-checkout’ to ‘.git/hooks/post-checkout’ due
to the symbolic link ‘a’. After the files are downloaded, git
runs the script ‘.git/hooks/post-checkout’ that the adversary
provided, which is obviously undesirable.

In this case, a maliciously crafted git repository can be
designed to provide a target resource of the symbolic link ‘a’,
which when collided by ‘A’ in resolving the source resource
‘A/post-checkout’ redirects the operation to a directory chosen
by the adversary using the symbolic link.

3.3 The State of Defenses for Name Confu-
sions

Currently, operating systems provide no innate defenses to
prevent name collisions, leaving the challenge to program-
mers. However, researchers have studied problems due to
other types of name confusions extensively, proposing a va-
riety of defenses [7–9, 30, 40–42, 44, 50–52]. However, re-
searchers have shown that comprehensive program defenses
are expensive [55] and that system-only defenses will always
be prone to some false positives [5]. Leveraging limited pro-
gram information [28, 53] still results in some false positives.

As a result, library commands for opening files have been
extended in a variety of ways to prevent name confusions
from occurring. The open command has been extended with
flags to detect file squats (i.e., O_EXCL|O_CREAT to detect the
presence of an existing file during file creation) and prevent
unexpected use of aliases (i.e., O_NOFOLLOW to prevent follow-
ing symbolic links). However, the use of squats and aliases
is desirable in some applications, despite their risks. Further
complicating the matter is that adversaries may exploit the
gap between when a program validates a file system resource
and opens that resource to create name confusions, known
as time-of-check-to-time-of-use (TOCTTOU) attacks [4, 39].
The openat command has been added to enable program-
mers to avoid TOCTTOU attacks, by opening a file from a
validated directory (i.e., file descriptor to the directory of the
desired file). However, the successful use of openat requires
the programmer to check for unwanted squats or aliases them-

186 21st USENIX Conference on File and Storage Technologies USENIX Association

selves. An alternative is proposed by the openat2 command
instead controls how files may be opened, such as requiring all
file components accessed to be descendants of the directory
from which the operation originates. However, openat2 can-
not prevent name confusions for some cases (e.g., using links
across file systems). openat and openat2 reduce the attack
surface of squat and alias attacks, but do not eliminate them
entirely, and depend on the programmer’s additional actions
to configure these commands and to check for TOCTTOU
attacks.

At present, the above commands make no effort to help
programmers address name collisions. As a result, utilities
to perform copy and move operations and applications that
may utilize file systems with multiple or mixed (e.g., ext4
and F2FS) case sensitivities or encodings may not detect
and resolve name collisions correctly. We will examine the
possible defenses for name collisions in §8.

4 Overview
In this paper, we aim to explore the impact that name colli-
sions may have on file system security. To do this, we propose
to examine three research questions.

RQ1: How do applications invoke utilities that may allow
unsafe name collisions? In §6, we examine Linux packages
to determine the most common options that applications em-
ploy for the utilities used to perform copies. We examine how
frequently application packages use utilities in copy opera-
tions by scanning their scripts for such operations, as shown
in Table 1.

RQ2: When do the utilities for performing copy opera-
tions allow unsafe name collisions? Recall that §3.1 defines
the conditions under which an unsafe name collision may
occur. This research question asks whether the utilities that
applications may use to perform copy operations (e.g., cp
and tar) prevent unsafe effects when a name collisions occur.
For these utilities and the common options found in RQ1, we
examine a variety of name collision scenarios to determine
whether the utilities allow name collisions and their unsafe
effects to occur as shown in Table 2a.

RQ3: What correctness and security problems are caused
by name collisions? In §7, we examine three case studies
where we show how name collisions cause programs to be-
have incorrectly. In particular, we show concretely how ap-
plications can be vulnerable to name collisions when target
resources are deployed on case-insensitive or case-preserving
file systems.

Impacts: A preview of our result is that: (1) many appli-
cations rely on these utilities to copy file system resources
and repositories/archives; (2) the utilities used to copy file
system resources and repositories/archives often allow unsafe
name collisions, although the specific responses vary in ad
hoc ways; and (3) applications currently lack defenses against
name collisions, which can lead to incorrect operation and
exploitable vulnerabilities.

5 Testing for Name Collisions
This section details an automated tool for testing the responses
of common Linux utilities used for relocation operations to
name collisions. As described in §3.1, a name collision is
caused by creating a source name that will be converted to a
destination name by the relocation operation that is equal to
a target name in the target directory of the operation. Thus,
our aim is develop a method to automate the generation of
source resources with names that will lead to name collisions
when relocated to case-insensitive targets and identify when
operations allow the name collision to occur, detecting the
effects of those operations.

5.1 Test Case Generation
The individual test cases are generated to test file system
resources of various types, including regular files, directories,
symbolic links (to files and directories), hard links, pipes, and
devices. In addition, we have found that creating collisions
in non-trivial directory structures may also lead to incorrect
behaviors. Figure 3 shows an example test case where the
directories as well as their contents result in a collision when
transferred to a case-insensitive file system. As a result, we
aim to generate test cases that result in name collisions at
different depths of the directory being copied, as evidenced
by the collision between directory names at depth 2 (i.e., "dir"
and "DIR") and the impact on colliding resources of different
types (i.e., a regular file "foo" and a pipe "foo").

INPUT

src/

dir/

foo*

DIR/

foo|

COPY EFFECT

target/

dir/

foo*|

Figure 3: An example of squashing case-sensitive directory
names and file names of two different types. Here, ‘*’ means
a regular file and ‘|’ means file type is a named pipe.

Since we are testing the behavior of various utilities that
perform relocation operations, we can control the source and
target names in creating test cases. As a result, the choice
of names is trivial. We create source directories that contain
both the target resource (i.e., a resource copied first from the
source to the target) and the source resource (i.e., a resource
copied later by the utility to collide with the target resource
(i.e., now in the target directory). This is similar to the way
name collisions would occur when copying an archive or
repository that causes a collision, as the git vulnerability.
Since different utilities may process resources in different
orders, we generate test cases with both orderings of resources
that may cause collisions.

The only decisions then are what are the resource types of
the source and target resources and where to place them in the
source directory hierarchy to cause the desired collision to be
created. Symbolic links, pipes, and devices only create inter-

USENIX Association 21st USENIX Conference on File and Storage Technologies 187

esting behaviors when used as target resources. For symbolic
links, the unsafe effect is to follow the link to another file
system resources, which only happens with the symbolic link
as the target resource. For pipes and devices, the unsafe effect
is to send the source resource’s content to the pipe or device,
which also is only possible if these are target resources.

As a result, the automated test generation produces test
cases consisting of source and target resources of all combina-
tions of potentially unsafe resource types and places these test
cases at depth one and/or two of the file system hierarchy. For
rsync, we specifically found an issue caused by a collision
at depth two, but not at depth one (see §7.2).

5.2 Detecting Collision Effects
The key idea is to record the file system operations sufficiently
to detect that an unsafe name collision has occurred. Since we
design the test cases to create a name collision on a relocation
operation, we want to detect when such an operation is a
successful collision. Then, we need to determine the impact
of the operation to classify the effect according to one of the
ten effect options defined in §6.1.

We monitor file system operations using auditd to detect
successful collisions. An example of a log indicating a colli-
sion is shown in Figure 4. In this example, a create operation
creates a target resource named “root” using openat com-
mand, but a later use operation to the same resource (i.e.,
same device-inode pair, see below) is associated with a name
“ROOT”, which differs from the name used when the resource
was created. Note that although the target resource was cre-
ated on a case-insensitive file system, multiple names may be
used that are resolved to the same name.

We say that a collision is successful when we detect a
use of a target resource with a different name than that used
to create the target resource. To detect such collisions, we
first identify the file system operations that create a target
resource, recording its combination of device3 and inode
identifiers, which form a unique resource identifier and its
pathname. In Figure 4, the name component “root” will be
important to detecting the collision. We then capture all the
file system operations that use the target resource. In Figure 4,
the pathname of the use operation differs between “root” and
“ROOT”, indicating a name collision.

3On Unix-like systems, each device is assigned a major and minor number.
auditd reports these numbers (in hexadecimal) as XX:YY, where XX is the
minor number and YY is the major number. Each file system mount point
can be uniquely identified using these numbers.

We also record a positive when a use operation deletes and
replaces a resource from a prior create operation, as some
collisions may cause the target resource to be deleted and
the source resource to replace it. We validate that there is a
create operation for the colliding destination name to verify
the cause of the deletion is a collision.

To detect the effect of a name collision, we examine the
resulting resource that now maps to the target name. We
compare the source resource and target resource content and
metadata to the resultant resource to determine whose content
and/or metadata (i.e., source, target, or neither) the resource
has. For tests on directories and hardlinks, we examine the
directories and the resultant directory entries.

6 Name Collisions on Linux Copy Utilities
In this section, we examine how common Linux utilities
that applications use to copy files from one part of the file
system to another react when the copy operation causes a
name collision in a case-insensitive directory. We note that
the impact on move operations is similar because in most
cases it simply performs a copy first and then deletes the
source. However, when both the source and target are on
the same file system, the underlying file system may directly
relocate the contents of the source. This can result in unusual
consequences on file systems that support per-directory case-
[in]sensitivity. E.g., on ext4, moving a case-sensitive directory
into a case-insensitive directory will preserve case-sensitive
characteristics of the moved (or source) directory. However,
when copying, the directories are newly created and these
directories inherit the case-[in]sensitive characteristic from
the parent directory. If the copy does not preserve attributes
on directories, then all new directories will be case-insensitive
under this scenario. Even though move works differently in
certain cases, the collisions that may result from move have
the same effect as that of copy. Hence, we only assess Linux
utilities that perform copy operations below.

To quantify the ubiquity of these utilities, we survey their
use by packages on Debian 11.2.0. We retrieve all packages
from the Debian installation DVD and count the number of
times the copy utilities are used inside the packages’ scripts.
The results are summarized in Table 1. Note that the listed
uses of these utilities are lower bounds because we do not
parse executable binaries. Hence, we miss uses where the
utilities are invoked via system calls such as system(...),
execve(...), etc.

USE [msg=10960,‘cp’.openat] 00:39|2389| /mnt/folding/dst/ROOT ←↩
CREATE [msg=10957,‘cp’. openat] 00:39|2389| /mnt/folding/dst/root

device | inodeprogram

accessed pathsyscallauditd id
operation

Figure 4: Example violation reported by name collision testing.

188 21st USENIX Conference on File and Storage Technologies USENIX Association

Table 1: Prevalence of copy utilities

tar zip cp cp* rsync

10 mc
8 perl-modules
7 libkf5libkleo-data
6 pluma
6 mc-data

. . .

107 TOTAL

21 texlive-plain-generic
15 aspell
11 libarchive-zip-perl
7 texlive-latex-recommended
5 texlive-pictures

. . .

69 TOTAL

78 hplip-data
32 dkms
22 libltdl-dev
20 autoconf
18 ucf

. . .

538 TOTAL

12 dkms
2 udev
2 debian-reference-it
2 debian-reference-es
1 zsh-common

. . .

25 TOTAL

28 mariadb-server
5 duplicity
4 texlive-pictures
2 vim-runtime
1 rsync

. . .

42 TOTAL

We calculate the number of times that each command (tar, zip, etc.) is used inside scripts from various packages. We investigate 4752 .deb packages from the
installation disk (DVD #1) of Debian 11.2.0. Only the top-five packages are shown (entries are sorted in descending order for each command).

6.1 Collecting Responses to Name Collisions
The name collision test cases and the responses of copy util-
ities are shown in Table 2a. The ‘Target Type’ column rep-
resents the resource type of the target resource that may be
overwritten. The ‘Source Type’ represents the resource type
of the source that collides with the target. The rest of the
columns represent individual utilities and their responses to
name collisions between a source resource of the source type
and a target resource of the target type.

Below is a comprehensive list of the types of responses ob-
served. Only "Deny" and "Rename" prevent name collisions
from causing unsafe and possibly exploitable behaviors, al-
though both may block legitimate functionality in some cases.
"Ask the User" may result in an unsafe response if the user
allows the target resource to be overwritten. Note that more
than one response is possible for each test case.

Delete & Recreate (×) Delete the target resource and cre-
ate a new resource based on the source resource. The new
resource’s type, as well as its data and metadata, is deter-
mined by the source resource. The target resource is lost
without any notification.

Overwrite (+) Overwrite the data and metadata of the target
resource using the source resource. Unlike Delete & Recre-
ate, the name of the target resource is preserved. If file foo
is being overwritten with file FOO, then the final file will be
named foo but will have the contents and metadata of file
FOO.

Corrupt (C) Contents of a resource that is not involved in
name collision (i.e., not the target resource) is modified.
For a more in-depth discussion, refer to §6.2.5.

Metadata Mismatch (6=) After a successful copy of a given
source resource, some metadata, such as its name, UNIX
permissions, user or group ID, extended attributes, or times-
tamp, remain from the target resource, creating a resource
with a mismatch between the data (from the source) and
the metadata (from the target).

Follow Symlink (T) Follow (or traverse) symbolic links,
even when explicitly directed not to do so.

Rename (R) The source name is renamed automatically to
avoid creating a name collision, such as by appending a
counter, resulting in a copy of the source resource in the

target resource’s directory with a non-colliding name.
Ask the User (A) To resolve a collision, ask the user to

choose from a list of actions, such as to overwrite the target
resource, skip copying the source resource, rename the
target resource, abort, etc.
Note that the user can still choose a response that results
in adverse consequences. For instance, if the user chooses
to overwrite the target, the target’s data and metadata are
modified using the source.

Deny (E) Deny the copy associated with a collision and re-
port an error.

Crashes (∞) Collisions can result in the program hanging
(e.g., going into an infinite loop) or crashing.

Unsupported file type (−) Does not support copying a re-
source if the source resource is of this file type. Note that
if hardlinks are not recognized by a utility, then it simply
creates a fresh copy of the underlying file.
The exact command-line flags used used to generate Ta-

ble 2a are listed in Table 2b. To identify these flags, we
analyzed 4,752 .deb packages on Debian 11.2.0’s installa-
tion DVD. We found that the most commonly used flags
enabled the following functionality.

• Support recursively copying all directories.
• Support copying symbolic-links and hard-links as-is but

do not follow them.
• Preserve metadata such as UNIX permissions, extended

attributes (xattr), timestamps, and owner/group IDs
(uid/gid).

Before examining the responses in Table 2a, we briefly
note some additional context for two of the columns.
cp vs. cp* Both of these represent the same executable
binary. The difference is in the way the command-line argu-
ments are passed to the binary. Specifically, the format of
specifying the source directories is different.

Consider that the source directory (to be copied) is foo.
For cp, we will pass it as foo/ while for cp* we will use
foo. Note the trailing / is missing in the latter case. Just this
difference significantly changes the behavior of cp as noted
in Table 2a.

We use the cp* method of invocation coupled with shell
completion, e.g., ‘cp src/* /target’ where the shell re-

USENIX Association 21st USENIX Conference on File and Storage Technologies 189

Table 2: Name Collision Responses for Popular Linux Utilities

Name Collision between
Target Type Source Type tar zip cp cp* rsync Dropbox

file file × A E +6= +6= R
symlink (to file) file × A E +T +6= R
pipe/device file × − E + + −
hardlink file × − E +6= +6= −
hardlink hardlink C× − E C× C+6= −

directory directory +6= +6= E +6= +6= R
symlink (to directory) directory + ∞ E E +T R

(a) This table shows results of copying files/directories from a case-sensitive to a case-insensitive
file system. cp* refers to cp being used with shell completion. For e.g., ‘cp * /target’ which
copies all items from the current directory to /target directory.

Utility Version Flags

tar 1.30 -cf/-x
zip 3.0 -r -symlinks
cp 8.30 -a
rsync 3.1.3 -aH

(b) This table lists the version of util-
ities and command-line flags used for
the experiments. For tar, -cf was
used to create the archive and -x to
expand the archive.

× Delete existing file and create new file
+ Overwrite existing file. For directories,

merge their contents.
6= Mismatch between content and metadata

A Ask user to resolve the collision
T Follow (or traverse) symlink
C Corrupts non-colliding files
E Deny operation and report error

∞ Program crashes, or hangs
− Ignore unsupported file type (for hardlinks

create regular file instead)
R Rename colliding file/directory

places src/* with each individual entry present inside src
sans the trailing /. When testing the cp method, we change
the command to ‘cp src/ /target’.

Dropbox Strictly speaking, Dropbox [11] is not a copy
utility but a popular file synchronization utility. It is intended
to replicate entire directories across multiple machines and
file systems.

We mention Dropbox to highlight its distinct response to
handling potential name collisions. Even when the underly-
ing file system is case-sensitive, Dropbox treats it as case-
insensitive. It proactively renames the files and directories
to avoid name collisions that could occur if they were trans-
ferred to a case-insensitive file system. Note, however, that
its renaming strategy is not even uniform across platforms:
For example, the Dropbox application appends “(Case Con-
flicts)”, “(Case Conflicts 1)”, etc. to the file/directory names
in case of a potential collision, whereas, when using their
web-based interface, they append “(1)”, “(2)”, etc. instead.

6.2 Unsafe Responses to Name Collisions
Several responses shown in Table 2a demonstrate that utilities
often allow unsafe responses to name collisions. In this sec-
tion, we examine some of the more concerning responses to
show how utilities delegate responsibility for security against
name collisions to the applications that invoke them. For the
examples in upcoming sections, src/ and target/ are on
case-sensitive and case-insensitive file systems respectively.

6.2.1 Silent data loss with tar, cp* & rsync
Name collisions involving files generally result in silent data
loss. From Table 2a, we can see that tar deletes and recreates
(×) files when collisions occur. Hence, when there is a name
collision between foo and FOO, only one of these files will
remain in the target directory. The other file is permanently
lost without any notification.

Similar to tar, cp* and rsync also lose files silently. How-
ever, their behavior of overwriting (+) files results in other
problems that are discussed later in this section.

Unlike tar, zip and cp will ask a user for next steps (A)
or report an error (E) respectively. Hence, they are not prone
to silently losing files.

6.2.2 Merge directories with tar, zip, rsync & cp*
Name collisions involving two directories results in their
contents (files, directories, etc. inside the directory) being
merged. All of tar, zip, rsync, and cp* will silently
merge directory contents without notifying the user. Figure 5
highlights this issue using a directory listing.

src/

dir/

subdir/

file1

file2

DIR/

file2

— copy→ target/

dir/

subdir/

file1

file2

Figure 5: Impact of merging directories

In this example in Figure 5, the data of file file2 is over-
written by the content written last in the copy operation. For
example, if src/DIR’s contents are written last, then its con-
tent for file2 is preserved and src/dir’s is lost.

Furthermore, when the colliding directories have different
UNIX permissions, a collision results in metadata mismatch
(6=). With respect to Table 2a, the UNIX permissions of the
target resource are overwritten with permissions of the source
resource.

In Figure 5, consider src/dir/ with perms=700 and an
adversary who creates src/DIR/ with perms=777. After a
copy (using any of the above utilities), target/dir/ will
have perms=777 effectively giving the adversary permission

190 21st USENIX Conference on File and Storage Technologies USENIX Association

to the contents of the original src/dir/.

6.2.3 Stale names
Whenever utilities resort to overwriting (+), we end up with
stale file/directory names. For example, consider a name col-
lision between a target resource foo (file content: ‘bar’) and a
source resource FOO (file content: ‘BAR’). After copying with
rsync or cp*, we will end up with file foo whose contents
are ‘BAR’.

The problem with such name collisions is that to the end
user (or other programs), it will appear that foo was success-
fully copied while in reality FOO was copied. Just using the
filename is not enough to discern which files were success-
fully copied. This is especially true for case-preserving file
systems where the user has the expectation of the filenames
being preserved. Hence, it is not unreasonable for the user to
expect foo should contain bar.

6.2.4 Symbolic link traversal at target
Name collisions between symlink (to file) and a regular file
results in cp* following the symlink (T) and overwriting (+)
its target’s contents with that of the regular source file. With
regards to Table 2a, if the target resource is a symbolic link
and the source resource is a file, then cp* ends up following
the symlink and writing data to the resource referenced by the
symlink.

src/

dat...(to /foo)
DAT....= pawn

/foo........= bar

— cp*→ target/

dat...(to /foo)
/foo......= pawn

Figure 6: Following symlink

Figure 6 illustrates this case with an example. src/dat is a
symbolic link to /foo and /foo contains ‘bar’. Mallory (our
adversary) does not have write access to /foo but does have
access to src/. She creates src/DAT which contains ‘pawn’.

Then the administrator starts the copy using: cp -a
src/* target/. At this point, cp first creates the symlink
target/dat. Then it overwrites (+) this symlink with the
contents of src/DAT, effectively updating the file /foo. After
the copy has completed, /foo contains ‘pawn’.

cp* has no command-line options to prevent traversal of
symbolic links at the target. Only link traversal at the source
can be turned off via command-line flags.

6.2.5 The case of hardlink – hardlink name collisions
During a copy when hardlinks (whose targets are different)
collide, it can corrupt (C) other non-colliding files and create
spurious hardlinks. Table 2a shows that this behavior is ex-
hibited by tar, cp*, and rsync. An interesting observation
is that, regardless of whether the utility’s behavior is Delete
& Recreate (×) or Overwrite (+), this problem affects both.

To understand this scenario, consider Figure 7 that uses
rsync to perform the copy. The same color coding represents
files that are hard-linked to each other. So src/hfoo and

src/

hfoo....=foo
zzz.....=foo
hbar....=bar
ZZZ =bar

— rsync→ target/

hfoo....=bar
zzz =bar
hbar....=bar

Figure 7: hardlink – hardlink name collision

src/zzz are hard-linked, representing the same file. These
files contain ‘foo’. Similarly, src/hbar and src/ZZZ are
hard-linked and they contain ‘bar’.

After copying using rsync, target/ contains three files
that are all hard-linked to each other. Unlike the src/ di-
rectory, target/hfoo, target/hbar, target/zzz are all
hardlinks of each other and they contain ‘bar’.

Additionally, note that although the name collision hap-
pened between zzz and ZZZ, the contents of hfoo were re-
placed. Even tar, which deletes the old file and recreates it,
exhibits this behavior.

The following order of operations undertaken by rsync
result in this behavior.

1. Copy src/hbar to target/hbar. Now target/hbar
contains ‘bar’.

2. Copy src/zzz to target/zzz. Now target/zzz con-
tains ‘foo’.

3. In target/, hardlink ZZZ to hbar. Due to name colli-
sion, this effectively changes zzz to be hard-linked to
hbar. Now target/zzz contains ‘bar’.

4. In target/, hardlink hfoo to zzz. Now target/foo
contains ‘bar’. Additionally, all three files inside
target/ are hard-linked to each other.

The above copy is semantically different from the src/.
Specifically, name collision results in distinct sets of files
getting hard-linked with each other at the target/.

7 Case Studies
In this section, we examine case studies where name colli-
sions cause unsafe behaviors, some of which are exploitable.

7.1 dpkg Package Manager
dpkg is the package manager on Debian OS and its derivatives
such as Ubuntu. dpkg packages are compressed tarballs with
extension .deb. When dpkg processes a package, it tracks
all files it creates during package installations in a database.
Before installing a new package, dpkg leverages this database
to ensure that any files of previously installed packages will
not by overwritten by this new package thereby preventing
potentially malformed packages from corrupting the system.

On the other hand, we have observed that dpkg will allow
a package installation to replace any file whose name is not in
its database, even privileged user files. Thus, as long as a file
in a package has a filename that does not match the filename
of another package’s file, dpkg will install the file, silently
replacing any existing file.

USENIX Association 21st USENIX Conference on File and Storage Technologies 191

However, regardless of the underlying file system, the
above database is matched in a case-sensitive manner. This
allows new packages to replace files of previously installed
packages via name collisions effectively circumventing the
safeguards in dpkg.

In addition, and perhaps even more seriously, dpkg may
allow an adversary to replace a package’s customized con-
fig file with the default, reverting important changes. deb
packages can mark certain files as configuration (or config)
files. During package upgrades, if dpkg spots modifications
to these config files then it prompts the user to review the
changes.

However, the config files are also matched in a case-
sensitive manner. Under name collisions, dpkg will just re-
place the original package’s config file with the config file
of the new package. For services, such as sshd, httpd, etc.,
config files are critical to their security, so such overwrites
can potentially make the system vulnerable..

Reporting We have reported these issues to the maintainers
of dpkg. The maintainers of dpkg have since updated their
package documentation [10] to warn end user communities
not to use dpkg where targets may be case-insensitive (i.e.
specific directories, or entire file systems).

During our discussions, we analyzed 74,688 packages and
found 12,237 filenames from those packages would collide
if a case-insensitive file system were used, breaking multi-
ple packages that contain these files. The name collision
problem is fundamentally entrenched into the way dpkg is im-
plemented because it reasons about names without involving
the underlying file system(s).

7.2 Rsync
rsync demonstrates vulnerable behavior when processing
name collisions involving directories. During copy, the de-
fault behavior of rsync is to simply recreate the symbolic
links present at source. However, when colliding directo-
ries contain sub-directories and symbolic links with the same
name, the collision causes rsync to suffer from link traver-
sal4.

Consider the source directory listed in Figure 8. Here, the
directories topdir/ and TOPDIR/ only differ in case. So
when copying to a case-insensitive file system, rsync will
encounter a name collision.

src/

topdir/

secret/...........................symlink to /tmp

TOPDIR/

secret/

confidential regular file

Figure 8: Case-sensitive source that rsync is copying

4In this case, the name collision makes the alias exploitable, again com-
bining name confusions.

We use the following command to perform the copy:

rsync -a src/ dst/

where,
-a recursively copy directories, preserve symlinks,

timestamps, and discretionary access control per-
missions

src/ is case-sensitive
dst/ is case-insensitive

After the copy is completed, the newly created files are
shown in Figure 9. Note that the file named confidential
ends up in /tmp.

dst/

TOPDIR/

secret/...........................symlink to /tmp

/tmp/confidential......................... link traversal

Figure 9: After copying to case-insensitive destination

rsync has created the /tmp/confidential file by follow-
ing the symbolic link dst/TOPDIR/secret.

Below, we describe how this situation can be exploited.
Consider an adversary who wants to access a confidential
file in TOPDIR/ to which she lacks any access. However,
she knows that TOPDIR/ is processed by a backup operation
using rsync. If she can create a sibling directory topdir/, to
which she will have read-write access, she can direct rsync
to write the confidential file (inside TOPDIR/) to any directory
of her choosing by creating a symbolic link inside topdir/
to that directory.

Reporting We reported this issue to the rsync maintainers,
and they told us that user’s should not use rsync with non-
case honoring file systems. However, we have concerns about
the user community following such a recommendation in this
case, since rsync is often used by individuals.

In the course of these discussions, we learned the cause
of the incorrect behavior. rsync assumes a one-to-one map-
ping of directories between source and target file systems.
When a name collision results in two source directories be-
ing mapped to a single directory in the target, rsync can be
tricked into incorrectly predicting the target file type. In the
presented scenario, a symbolic link src/topdir/secret (to
a directory) is incorrectly inferred to be a regular directory
src/TOPDIR/secret.
rsync uses the O_NOFOLLOW flag with open() to prevent

link traversal and uses openat()/openat2() to contain link
traversals within a directory hierarchy, but this strategy fails
when the symbolic link is treated as a directory.

7.3 Apache httpd
Security of certain applications relies on the security param-
eters of the underlying file system. One such application is
Apache’s httpd. It allows access to the underlying file sys-
tem via the HTTP protocol, relying on the UNIX Discretionary

192 21st USENIX Conference on File and Storage Technologies USENIX Association

Access Control (DAC) permissions5 to mediate the access.
For example, files are accessible over HTTP only if: (i) its
UNIX group is www-data and has read permission for the
group, or (ii) has world-readable UNIX permissions.

Using utilities for copying directories between systems
can silently alter these DAC permissions in unintended ways,
leading to serious security lapses. We illustrate this scenario
using Apache httpd and migration of its data using tar. To
study the impact of name collisions on the security parameters,
we assume that the migration happens from a case-sensitive to
a case-insensitive file system. The behavior of tar discussed
below draws from the discussion of Table 2a.

To protect sensitive directories, httpd can be configured to
only allow authenticated users to access specific directories.
A commonly used approach is to configure authentication
via the .htaccess file [1] which lists the valid users/groups
allowed to access a specific directory over HTTP. All sub-
directories inside the sensitive directory are also protected.
We show that the use of additional security-oriented files can
be exploited under the presence of name collisions.
Scenario httpd serves the contents of www/ (of Figure 10)
over HTTP. Initially, www/ is stored on a case-senstive file
system. The directory hidden/ is inaccessible over HTTP
since the others permissions are cleared. Next, protected/
is configured to be accessible only to specific users using the
.htaccess file.

www/
hidden/ perm=700

secret.txt
protected/..........group=www-data, perm=750

.htaccess.............(only allow valid users)
user-file1.txt

index.html

Figure 10: www/ on case-sensitive file system

Adversary A UNIX user called Mallory has read-write
access to www/ directory. However, DAC permissions prevent
her from accessing hidden/ directory because its owner is
another user. Additionally, protected is inaccessible since
Mallory does not belong to the group www-data.

She modifies www/ as shown in Figure 11 and adds the
HIDDEN/ and PROTECTED/ directories with the intent of gain-
ing access to hidden/ and protected/ via a name collision.
Vulnerability tar is used to migrate the adversary-modified
www/ directory to another system that uses a case-insensitive
file system. Figure 12 shows the state of the file system once
the tarball (archive format of tar) is extracted.

Now, the previously inaccessible hidden/ directory is now
accessible over HTTP. Additionally, since the .htaccess
file is cleared, unauthenticated users will be allowed to view
protected/ over HTTP.

5If the system supports Mandatory Access Control (MAC), then DAC is
used in conjunction with MAC.

www/

hidden/....................................perm=700
secret.txt

HIDDEN/....................................perm=755
protected/...............group=www-data, perm=750

.htaccess..................(only allow valid users)
user-file1.txt

PROTECTED/................................perm=755
.htaccess.............................(empty file)

index.html

Figure 11: Adversary modified www/ on the case-sensitive file
system

www/

hidden/....................................perm=755
secret.txt

protected/................................perm=755
.htaccess.............................(empty file)
user-file1.txt

index.html

Figure 12: www/ after migrating to case-insensitive file system

Reporting We have reported this scenario to the Apache
maintainers, but have not yet reached a resolution. Using
Table 2a, we can reason about the above problems. Under
a directory – directory collision, tar incorrectly modifies
metadata. This happens for the hidden/ – HIDDEN/ collision.
Here, DAC permissions of the latter are applied to the former
resulting in the leakage of secret files.

For directory – directory collisions, tar will also merge
contents of both directories. For protected/ – PROTECTED/
collision, this merger results in the empty .htaccess file
overwriting the original one that restricts access to authorized
users. The end result is that all users are now allowed access
to the new protected/ directory.

8 Potential Defenses
As discussed in the context of name confusion attacks in
general in §3.3, it can be difficult to produce defenses to
prevent name collisions as well. In this section, we discuss
some options and their limitations.

Name collisions are due to differences in case folding rules
among file systems, e.g., case sensitivity and encodings, so
it is difficult to ensure that name collisions cannot happen.
Suppose a system has only one file system. Even then, an
archive constructed on another file system using conflicting
case folding rules may cause name collisions to occur when
expanding the archive. Since user-space programs cannot
determine the case-folding rules that may be applied to a file,
user-space solutions alone will be unreliable. In addition, they
may be prone to TOCTTOU attacks [3, 4]. Thus, extending
library calls like realpath to detect name collisions will not
sufficiently solve the problem. In addition, system solutions

USENIX Association 21st USENIX Conference on File and Storage Technologies 193

lack knowledge of the programmer intent that caused the col-
lision and hence, a systems-only defense for name confusion
will suffer from false positives [5].

For example, one idea may be to write a wrapper to vet
archives prior to expansion operations (e.g., tar and zip) to
validate that each file in the archive will result in a distinct file
after expansion. One way to do this is to check for name col-
lisions among all the files in the archive. Although the notion
that no two files in an archive should collide seems intuitively
reasonable, there are critical drawbacks to this defense. First,
the target directory may already have files that may result in
collisions, limiting its utility. Second, targets that support per-
directory case-sensitivity can switch between case-sensitive
and case-insensitive lookups when resolving a filepath, lead-
ing to incorrect assumptions about case-sensitivity and being
prone to race conditions. Finally, the case folding rules ap-
plied by such a wrapper are not guaranteed to be the same as
those of the target directory.

As a result, we envision that defenses for name colli-
sions will evolve in a manner similar to defenses for name
confusions that utilize the open commands (i.e., openat
and openat2). Consider that these commands have flags
to check whether a file of a corresponding name exists at
creation time, only opening that file when created anew
(i.e., O_CREAT|O_EXCL). This call prevents a name collision
from overwriting an existing file, but it may be too strong a
defense. Suppose one really wants to overwrite files of the
same name, but prevent name collisions from modifying files
that actually have differing names (i.e., that only match due
to case folding). In this case, a new flag is necessary, such as
O_EXCL_NAME, which prevents opening a file when the names
differ, but not when such names match. Using this flag would
enable the virtual file system to compare names in a case-
insensitive manner (i.e., based on the case folding and nor-
malization for target directory) to detect collisions and com-
pare names in a case-sensitive manner to determine matches.
However, at present, the virtual file system cannot choose
the type of matching (case-sensitive or case-insensitive), nor
can it identify the type of matching done by the underlying
physical file system.

Unfortunately, even with variants of the open command
and other defenses, such as FileProvider classes in Android,
programmers continue to make mistakes that lead to errors
and vulnerabilities. The challenge is for programmers to
determine the intent of their operation, understand the threats
faced in such an operation, and configure these complex, low-
level commands in such a way that they block the threats
while satisfying the intent. Until file system APIs enable this
combination of requirements, errors will remain common.

9 Related Work
Researchers have proposed defenses to thwart name confusion
attacks for alias and squat cases. To the best of our knowledge,
no defenses for name collisions have been proposed.

System Defenses Researchers have long known about name
confusion attacks [3,4] and have proposed a variety of system
defenses [7–9, 30, 40–42, 44, 50–52]. In a system defense,
the operating system aims to enforce an invariant that pre-
vents name confusion attacks from succeeding. However, as
discussed in §8, without programmer intent such defenses
will suffer from false positives [5]. Hybrid defenses have
also been proposed [53, 55] where the operating system intro-
spects into the process to leverage program state along with
file system state in enforcement. Even though false positives
are reduced, these techniques lack explicit programmer intent
to fully eliminate all false positives.
Program Defenses As a result, systems provide APIs for
programmers to decide how to handle name confusion attacks.
Several file system APIs include flags to avoid using symbolic
links entirely (e.g., O_NOFOLLOW flag for the open system
call), but in many cases programmers want to be able to
use symbolic links. Researchers have proposed program-
specific defenses to configure APIs or program frameworks
for preventing name confusion attacks [27, 43, 47, 56]. More
advanced commands for file allow programmers to manage
how files are open, including the impact of symbolic links.
For example, the openat system call enables the user to open
a directory first to validate its legitimacy before opening the
remaining path. openat2 explicitly constrains how name
resolution is performed to reduce the potential for attacks.

10 Conclusion
Interactions among file systems with differing encoding/case-
sensitivity semantics can lead to name collisions when per-
forming maliciously crafted, or even ostensibly benign, copy
operations. We explored the impact that these name colli-
sions can have on file system security. Current operating
systems do not directly prevent name collision-based attacks,
delegating that responsibility to the programmers. In inves-
tigating the utilities used to copy file system resources and
repositories/archives, we demonstrate that they often allow
unsafe name collisions and lack the sort of uniformity in name-
collision handling against which safer use policies could be
easily crafted. Further, we show that many applications rely
on potentially unsafe use of these utilities, opening them-
selves up to exploitable vulnerabilities. We examine three
case studies demonstrating concrete vulnerabilities to name
collisions. Finally, we suggest directions for future research
to systematically defend against name collision attacks.

Artifacts
The artifacts produced during the work can be found at
https://github.com/mitthu/name-confusion. It con-
tains scripts to generate the test cases and run commands
required to create Table 2a. Furthermore, it contains the tool
for analyzing auditd traces and extracting relevant create-use
pairs (see §5.2). Finally, there are proof-of-concept scripts to
reproduce the vulnerabilities in dpkg and rsync.

194 21st USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/mitthu/name-confusion

References
[1] Apache HTTP Server: Authentication and autho-

rization. https://httpd.apache.org/docs/2.4/
howto/auth.html#gettingitworking.

[2] Bazaar’s handling of case insentitive file sys-
tems. http://doc.bazaar.canonical.com/
bzr.1.12/developers/case-insensitive-file-
systems.html.

[3] Richard Bisbey, Gerald Popek, Jim Carlstedt, et al. Pro-
tection errors in operating systems: Inconsistency of a
single data value over time. Technical report, University
Of Southern California Marina Del Rey Information
Sciences, 1975.

[4] Matt Bishop, Michael Dilger, et al. Checking for
race conditions in file accesses. Computing Systems,
2(2):131–152, 1996.

[5] Xiang Cai, Yuwei Gui, and Rob Johnson. Exploiting
UNIX file-system races via algorithmic complexity at-
tacks. In 2009 30th IEEE Symposium on Security and
Privacy, pages 27–41. IEEE, 2009.

[6] Case mapping vs. case folding. https://www.w3.
org/TR/charmod-norm/#definitionCaseFolding.

[7] Suresh Chari, Shai Halevi, and Wietse Z. Venema.
Where do you want to go today? Escalating privileges
by pathname manipulation. In NDSS. Citeseer, 2010.

[8] Crispin Cowan, Steve Beattie, Chris Wright, and Greg
Kroah-Hartman. RaceGuard: Kernel protection from
temporary file race vulnerabilities. In 10th USENIX
Security Symposium (USENIX Security 01), 2001.

[9] Drew Dean and Alan J. Hu. Fixing races for fun
and profit: How to use access (2). In 13th USENIX
Security Symposium (USENIX Security 04), pages 195–
206, 2004.

[10] dpkg FAQ: diff of updated documentation.
https://wiki.debian.org/Teams/Dpkg/FAQ?
action=diff&rev2=78&rev1=77.

[11] Dropbox. https://www.dropbox.com/.

[12] Linux kernel documentation (v5.2): ext4 sup-
port. https://www.kernel.org/doc/html/v5.2/
admin-guide/ext4.html.

[13] Linux kernel documentation: Flash-friendly file system
(F2FS). https://docs.kernel.org/filesystems/
f2fs.html.

[14] F2FS: Support case-insensitive file name lookups
(patch). https://patchwork.kernel.org/
project/linux-fsdevel/patch/20190719000322.
106163-3-drosen@google.com/.

[15] ciopfs: case insensitive on purpose filesystem. https:
//www.brain-dump.org/projects/ciopfs/.

[16] ext3ci – case insensitive ext3 filesystem for Linux 2.6.32.
http://bill.herrin.us/freebies/.

[17] Linux kernel documentation: FUSE. https://
www.kernel.org/doc/html/latest/filesystems/
fuse.html.

[18] IOMap. https://www.mono-project.com/docs/
advanced/iomap/.

[19] JFS filesystem (man page). https://www.unix.com/
man-page/redhat/8/mkfs.jfs/.

[20] Linux kernel documentation: NTFS3. https://docs.
kernel.org/filesystems/ntfs3.html.

[21] NTFS-3G driver. https://github.com/tuxera/
ntfs-3g.

[22] XFS filesystem (man page). https://manpages.
ubuntu.com/manpages/trusty/man8/mkfs.xfs.8.
html.

[23] ZFS on Linux project. https://zfsonlinux.org/.

[24] Git’s patch for CVE-2021-21300.
https://github.com/git/git/commit/
684dd4c2b414bcf648505e74498a608f28de4592.

[25] Norman Hardy. The confused deputy (or why capabili-
ties might have been invented). ACM SIGOPS Operat-
ing Systems Review, 22:36–38, October 1988.

[26] Daniel Kachakil. Multiple vulnerabilities in
Android’s Download Provider (CVE-2018-9468,
CVE-2018-9493, CVE-2018-9546). https:
//ioactive.com/multiple-vulnerabilities-
in-androids-download-provider-cve-2018-
9468-cve-2018-9493-cve-2018-9546/.

[27] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan
Cliffer, M. Frans Kaashoek, Eddie Kohler, and Robert
Morris. Information flow control for standard OS ab-
stractions. ACM SIGOPS Operating Systems Review,
41(6):321–334, 2007.

[28] James A. Kupsch and Barton P. Miller. How to open a
file and not get hacked. In 2008 Third International Con-
ference on Availability, Reliability and Security, pages
1196–1203. IEEE, 2008.

[29] Yu-Tsung Lee, William Enck, Haining Chen,
Hayawardh Vijayakumar, Ninghui Li, Zhiyun Qian,
Daimeng Wang, Giuseppe Petracca, and Trent Jaeger.
PolyScope: Multi-Policy access control analysis
to compute authorized attack operations in android

USENIX Association 21st USENIX Conference on File and Storage Technologies 195

https://httpd.apache.org/docs/2.4/howto/auth.html#gettingitworking
https://httpd.apache.org/docs/2.4/howto/auth.html#gettingitworking
http://doc.bazaar.canonical.com/bzr.1.12/developers/case-insensitive-file-systems.html
http://doc.bazaar.canonical.com/bzr.1.12/developers/case-insensitive-file-systems.html
http://doc.bazaar.canonical.com/bzr.1.12/developers/case-insensitive-file-systems.html
https://www.w3.org/TR/charmod-norm/#definitionCaseFolding
https://www.w3.org/TR/charmod-norm/#definitionCaseFolding
https://wiki.debian.org/Teams/Dpkg/FAQ?action=diff&rev2=78&rev1=77
https://wiki.debian.org/Teams/Dpkg/FAQ?action=diff&rev2=78&rev1=77
https://www.dropbox.com/
https://www.kernel.org/doc/html/v5.2/admin-guide/ext4.html
https://www.kernel.org/doc/html/v5.2/admin-guide/ext4.html
https://docs.kernel.org/filesystems/f2fs.html
https://docs.kernel.org/filesystems/f2fs.html
https://patchwork.kernel.org/project/linux-fsdevel/patch/20190719000322.106163-3-drosen@google.com/
https://patchwork.kernel.org/project/linux-fsdevel/patch/20190719000322.106163-3-drosen@google.com/
https://patchwork.kernel.org/project/linux-fsdevel/patch/20190719000322.106163-3-drosen@google.com/
https://www.brain-dump.org/projects/ciopfs/
https://www.brain-dump.org/projects/ciopfs/
http://bill.herrin.us/freebies/
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.mono-project.com/docs/advanced/iomap/
https://www.mono-project.com/docs/advanced/iomap/
https://www.unix.com/man-page/redhat/8/mkfs.jfs/
https://www.unix.com/man-page/redhat/8/mkfs.jfs/
https://docs.kernel.org/filesystems/ntfs3.html
https://docs.kernel.org/filesystems/ntfs3.html
https://github.com/tuxera/ntfs-3g
https://github.com/tuxera/ntfs-3g
https://manpages.ubuntu.com/manpages/trusty/man8/mkfs.xfs.8.html
https://manpages.ubuntu.com/manpages/trusty/man8/mkfs.xfs.8.html
https://manpages.ubuntu.com/manpages/trusty/man8/mkfs.xfs.8.html
https://zfsonlinux.org/
https://github.com/git/git/commit/684dd4c2b414bcf648505e74498a608f28de4592
https://github.com/git/git/commit/684dd4c2b414bcf648505e74498a608f28de4592
https://ioactive.com/multiple-vulnerabilities-in-androids-download-provider-cve-2018-9468-cve-2018-9493-cve-2018-9546/
https://ioactive.com/multiple-vulnerabilities-in-androids-download-provider-cve-2018-9468-cve-2018-9493-cve-2018-9546/
https://ioactive.com/multiple-vulnerabilities-in-androids-download-provider-cve-2018-9468-cve-2018-9493-cve-2018-9546/
https://ioactive.com/multiple-vulnerabilities-in-androids-download-provider-cve-2018-9468-cve-2018-9493-cve-2018-9546/

systems. In 30th USENIX Security Symposium
(USENIX Security 21), pages 2579–2596, 2021.

[30] Kyung-Suk Lhee and Steve J. Chapin. Detection of
file-based race conditions. International Journal of
Information Security, 4(1):105–119, 2005.

[31] Linus Torvalds’s comments on case-insensitive file sys-
tems. https://patchwork.kernel.org/project/
linux-fsdevel/cover/20181206230903.30011-1-
krisman@collabora.com/#22369005.

[32] Eliminating Android wrapfs “hackery”. https://lwn.
net/Articles/718640/.

[33] mm: shmem: Add case-insensitive support for tmpfs.
https://lwn.net/Articles/850214/.

[34] Case-insensitive ext4. https://lwn.net/Articles/
784041/.

[35] Filesystems and case-insensitivity. https://lwn.net/
Articles/772960/.

[36] Case-insensitive filesystem lookups. https://lwn.
net/Articles/754508/.

[37] Network filesystem topics. https://lwn.net/
Articles/685431/.

[38] Slava Makkaveev. Man-in-the-Disk: Android
apps exposed via external storage. https:
//research.checkpoint.com/2018/androids-
man-in-the-disk/.

[39] William S. McPhee. Operating system integrity in
OS/VS2. IBM Systems Journal, 13(3):230–252, 1974.

[40] OpenWall Project - Information security software for
open environments. http://www.openwall.com/.

[41] Jongwoon Park, Gunhee Lee, Sangha Lee, and Dong-
Kyoo Kim. RPS: An extension of reference monitor
to prevent race-attacks. In Pacific-Rim Conference on
Multimedia, pages 556–563. Springer, 2004.

[42] Mathias Payer and Thomas R. Gross. Protecting appli-
cations against TOCTTOU races by user-space caching
of file metadata. In Proceedings of the 8th ACM SIG-
PLAN/SIGOPS conference on Virtual Execution Envi-
ronments, pages 215–226, 2012.

[43] Donald E. Porter, Owen S. Hofmann, Christopher J.
Rossbach, Alexander Benn, and Emmett Witchel. Oper-
ating system transactions. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems princi-
ples, pages 161–176, 2009.

[44] Calton Pu and Jinpeng Wei. A methodical defense
against TOCTTOU attacks: The EDGI approach. In
Proceedings of the 2006 International Symposium on
Secure Software Engineering, 2006.

[45] Samba: Implementation of SMB/CIFS protocol. https:
//www.samba.org/.

[46] smb.conf.5 (man). https://www.samba.org/samba/
docs/4.15/man-html/smb.conf.5.html.

[47] Jonathan S. Shapiro, Jonathan M. Smith, and David J.
Farber. EROS: a fast capability system. In Proceed-
ings of the seventeenth ACM symposium on Operating
systems principles, pages 170–185, 1999.

[48] Case-sensitive filesystems not supported on Mac.
https://help.steampowered.com/en/faqs/view/
0395-A862-13F3-6E82.

[49] SteamOS. https://store.steampowered.com/
steamos.

[50] Dan Tsafrir, Tomer Hertz, David Wagner, and Dilma
Da Silva. Portably solving file TOCTTOU races with
hardness amplification. In FAST, volume 8, pages 1–18,
2008.

[51] Eugene Tsyrklevich and Bennet Yee. Dynamic detection
and prevention of race conditions in file accesses. In
12th USENIX Security Symposium (USENIX Security
03), 2003.

[52] Prem Uppuluri, Uday Joshi, and Arnab Ray. Preventing
race condition attacks on file-systems. In Proceedings
of the 2005 ACM symposium on Applied computing,
pages 346–353, 2005.

[53] Hayawardh Vijayakumar, Xinyang Ge, Mathias Payer,
and Trent Jaeger. JIGSAW: Protecting resource access
by inferring programmer expectations. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 973–
988, 2014.

[54] Hayawardh Vijayakumar, Joshua Schiffman, and Trent
Jaeger. STING: Finding name resolution vulnerabilities
in programs. In 21st USENIX Security Symposium
(USENIX Security 12), pages 585–599, 2012.

[55] Hayawardh Vijayakumar, Joshua Schiffman, and Trent
Jaeger. Process firewalls: Protecting processes during
resource access. In Proceedings of the 8th ACM Euro-
pean Conference on Computer Systems, pages 57–70,
2013.

[56] Robert N. M. Watson, Jonathan Anderson, Ben Laurie,
and Kris Kennaway. Capsicum: Practical capabili-
ties for UNIX. In 19th USENIX Security Symposium
(USENIX Security 10), 2010.

196 21st USENIX Conference on File and Storage Technologies USENIX Association

https://patchwork.kernel.org/project/linux-fsdevel/cover/20181206230903.30011-1-krisman@collabora.com/#22369005
https://patchwork.kernel.org/project/linux-fsdevel/cover/20181206230903.30011-1-krisman@collabora.com/#22369005
https://patchwork.kernel.org/project/linux-fsdevel/cover/20181206230903.30011-1-krisman@collabora.com/#22369005
https://lwn.net/Articles/718640/
https://lwn.net/Articles/718640/
https://lwn.net/Articles/850214/
https://lwn.net/Articles/784041/
https://lwn.net/Articles/784041/
https://lwn.net/Articles/772960/
https://lwn.net/Articles/772960/
https://lwn.net/Articles/754508/
https://lwn.net/Articles/754508/
https://lwn.net/Articles/685431/
https://lwn.net/Articles/685431/
https://research.checkpoint.com/2018/androids-man-in-the-disk/
https://research.checkpoint.com/2018/androids-man-in-the-disk/
https://research.checkpoint.com/2018/androids-man-in-the-disk/
http://www.openwall.com/
https://www.samba.org/
https://www.samba.org/
https://www.samba.org/samba/docs/4.15/man-html/smb.conf.5.html
https://www.samba.org/samba/docs/4.15/man-html/smb.conf.5.html
https://help.steampowered.com/en/faqs/view/0395-A862-13F3-6E82
https://help.steampowered.com/en/faqs/view/0395-A862-13F3-6E82
https://store.steampowered.com/steamos
https://store.steampowered.com/steamos

[57] Wine: Wine is not an emulator. https://www.winehq.
org/.

[58] What is the Windows subsystem for Linux? https://
docs.microsoft.com/en-us/windows/wsl/about.

[59] Diving into SDCardFS: How Google’s
FUSE replacement will reduce I/O overhead.
https://www.xda-developers.com/diving-into-
sdcardfs-how-googles-fuse-replacement-
will-reduce-io-overhead/.

USENIX Association 21st USENIX Conference on File and Storage Technologies 197

https://www.winehq.org/
https://www.winehq.org/
https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about
 https://www.xda-developers.com/diving-into-sdcardfs-how-googles-fuse-replacement-will-reduce-io-overhead/
 https://www.xda-developers.com/diving-into-sdcardfs-how-googles-fuse-replacement-will-reduce-io-overhead/
 https://www.xda-developers.com/diving-into-sdcardfs-how-googles-fuse-replacement-will-reduce-io-overhead/

	Introduction
	Background: From Cases to Collisions
	Motivations for Increasing Case Diversity
	Name Collisions

	From Collisions to Calamities
	Causes of Name Collisions
	An Example Collision Vulnerability
	The State of Defenses for Name Confusions

	Overview
	Testing for Name Collisions
	Test Case Generation
	Detecting Collision Effects

	Name Collisions on Linux Copy Utilities
	Collecting Responses to Name Collisions
	Unsafe Responses to Name Collisions
	Silent data loss with tar, cp* & rsync
	Merge directories with tar, zip, rsync & cp*
	Stale names
	Symbolic link traversal at target
	The case of hardlink – hardlink name collisions

	Case Studies
	dpkg Package Manager
	Rsync
	Apache httpd

	Potential Defenses
	Related Work
	Conclusion

