
This paper is included in the Proceedings of the
19th USENIX Conference on File and Storage Technologies.

February 23–25, 2021
978-1-939133-20-5

Open access to the Proceedings
of the 19th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX.

REMIX: Efficient Range Query for LSM-trees
Wenshao Zhong, Chen Chen, and Xingbo Wu, University of Illinois at Chicago;

Song Jiang, University of Texas at Arlington
https://www.usenix.org/conference/fast21/presentation/zhong

REMIX: Efficient Range Query for LSM-trees

Wenshao Zhong? Chen Chen? Xingbo Wu? Song Jiang†

?University of Illinois at Chicago †University of Texas at Arlington

Abstract
LSM-tree based key-value (KV) stores organize data in a
multi-level structure for high-speed writes. Range queries on
traditional LSM-trees must seek and sort-merge data from
multiple table files on the fly, which is expensive and often
leads to mediocre read performance. To improve range query
efficiency on LSM-trees, we introduce a space-efficient KV
index data structure, named REMIX, that records a globally
sorted view of KV data spanning multiple table files. A range
query on multiple REMIX-indexed data files can quickly
locate the target key using a binary search, and retrieve
subsequent keys in sorted order without key comparisons. We
build RemixDB, an LSM-tree based KV-store that adopts a
write-efficient compaction strategy and employs REMIXes for
fast point and range queries. Experimental results show that
REMIXes can substantially improve range query performance
in a write-optimized LSM-tree based KV-store.

1 Introduction

Key-value stores (KV-stores) are the backbone of many
cloud and datacenter services, including social media [1,
2, 8], real-time analytics [7, 10, 25], e-commerce [18], and
cryptocurrency [41]. The log-structured merge-tree (LSM-
tree) [38] is the core data structure of many KV-stores [9, 18,
20, 26, 34, 42]. In contrast to traditional storage structures
(e.g., B+-tree) that require in-place updates on disk, LSM-
trees follow an out-of-place update scheme which enables
high-speed sequential write I/O. They buffer updates in
memory and periodically flush them to persistent storage
to generate immutable table files. However, this comes with
penalties on search efficiency as keys in a range may reside in
different tables, potentially slowing down queries because of
high computation and I/O costs. The LSM-tree based designs
represent a trade-off between update cost and search cost [17],
maintaining a lower update cost but a much higher search cost
compared with a B+-tree.

Much effort has been made to improve query performance.
To speed up point queries, every table is usually associated
with memory-resident Bloom filters [4] so that a query can
skip the tables that do not contain the target key. However,

Bloom filters cannot handle range queries. Range filters such
as SuRF [49] and Rosetta [37] were proposed to accelerate
range queries by filtering out tables not containing any keys in
the requested range. However, when the keys in the requested
range reside in most of the candidate tables, the filtering
approach can hardly improve query performance, especially
for large range queries. Furthermore, the computation cost
of accessing filters can lead to mediocre performance when
queries can be answered by cache, which is often the case in
real-world workloads [2, 8, 13].

To bound the number of tables that a search request
has to access, LSM-trees keep a background compaction
thread to constantly sort-merge tables. The table selection is
determined by a compaction strategy. The leveled compaction
strategy has been adopted by a number of KV-stores, including
LevelDB [26] and RocksDB [20]. Leveled compaction sort-
merges smaller sorted runs into larger ones to keep the number
of overlapping tables under a threshold. In practice, leveled
compaction provides the best read efficiency but has a high
write amplification (WA) due to its aggressive sort-merging
policy. Alternatively, the tiered compaction strategy waits
for multiple sorted runs of a similar size and merges them
into a larger run. Tiered compaction provides lower WA and
higher update throughput. It has been adopted by many KV-
stores, such as Cassandra [34] and ScyllaDB [42]. Since tiered
compaction cannot effectively limit the number of overlapping
tables, it leads to much higher search cost compared with
leveled compaction. Other compaction strategies can better
balance the read and write efficiency [16, 17], but none of
them can achieve the best read and write efficiency at the
same time.

The problem lies in the fact that, to limit the number of
sorted runs, a store has to sort-merge and rewrite existing data.
Today’s storage technologies have shown much improved
random access efficiency. For example, random reads on
commodity Flash SSDs can exceed 50% of sequential read
throughput. New technologies such as 3D-XPoint (e.g., Intel’s
Optane SSD) offer near-equal performance for random and
sequential I/O [45]. As a result, KV-pairs do not have to be
physically sorted for fast access. Instead, a KV-store could
keep its data logically sorted for efficient point and range
queries while avoiding excessive rewrites.

USENIX Association 19th USENIX Conference on File and Storage Technologies 51

To this end, we design REMIX, short for Range-query-
Efficient Multi-table IndeX. Unlike existing solutions to
improve range queries that struggle between physically
rewriting data and performing expensive sort-merging on
the fly, a REMIX employs a space-efficient data structure to
record a globally sorted view of KV data spanning multiple
table files. With REMIXes, an LSM-tree based KV-store
can take advantage of a write-efficient compaction strategy
without sacrificing search performance.

We build RemixDB, a REMIX-indexed LSM-tree based
KV-store. Integrated with the write-efficient tiered com-
paction strategy and a partitioned LSM-tree layout, RemixDB
achieves low WA and fast searches at the same time.
Experimental results show that REMIXes can effectively
improve range query performance when searching on multiple
overlapping tables. Performance evaluation demonstrates that
RemixDB outperforms the state-of-the-art LSM-tree based
KV-stores on both read and write operations simultaneously.

2 Background

The LSM-tree is designed for high write efficiency on
persistent storage devices. It achieves high-speed writes by
buffering all updates in an in-memory structure, called a
MemTable. When the MemTable fills up, the buffered keys
will be sorted and flushed to persistent storage as a sorted
run by a process called minor compaction. Minor compaction
is write-efficient because updates are written sequentially in
batches without merging with existing data in the store. Since
the sorted runs may have overlapping key ranges, a point
query has to check all the possible runs, leading to a high
search cost. To limit the number of overlapping runs, an LSM-
tree uses a major compaction process to sort-merge several
overlapping runs into fewer ones.

A compaction strategy determines how tables are selected
for major compaction. The two most commonly used strate-
gies are leveled compaction and tiered compaction. A store
using leveled compaction has a multi-level structure where
each level maintains a sorted run consisting of one or more
tables. The capacity of a level (Ln) is a multiple (usually
10 [20]) of the previous one (Ln−1), which allows a huge
KV-store to be organized within a few levels (usually 5 to 7).
Leveled compaction makes reads relatively efficient, but it
leads to inferior write efficiency. Leveled compaction selects
overlapping tables from adjacent levels (Ln and Ln+1) for sort-
merging and generates new tables in the larger level (Ln+1).
Because of the exponentially increasing capacity, a table’s
key range often overlaps several tables in the next level. As a
result, the majority of the writes are for rewriting existing data
in Ln+1, leading to high WA ratios1 of up to 40 in practice [40].
Figure 1 shows an example of leveled compaction where

1WA ratio refers to write amplification ratio, or ratio of the amount of
actual data written on the disk to the amount of user-requested data written.

7 86 90L0

4 21 38 66 89 L1

6 26 31 40 46 76 88 9755 67L2

Seek 67:

67 76 88
89

86

Figure 1: An LSM-tree using leveled compaction

4 91
2 79 93

64 95

11 22 26 60 61 67 71 81 92

L0

L1

L2

56 94

37 43

3 38 45

57 68

7 24

6 16 23 79 88 98

Seek 67: 9179 94 956867

Figure 2: An LSM-tree using tiered compaction

each table contains two or three keys. If the first table in L1
(containing keys (4, 21, 38)) is selected for sort-merging
with the first two tables in L2 ((6,26) and (31,40,46)), five
keys in L2 will be rewritten.

With tiered compaction, multiple overlapping sorted runs
can be buffered in a level, as shown in Figure 2. The number of
runs in a level is bounded by a threshold denoted by T , where
T > 1. When the number of sorted runs in a level (Ln) reaches
the threshold, all sorted runs in Ln will be sort-merged into
a new sorted run in the next level (Ln+1), without rewriting
any existing data in Ln+1. Accordingly, an LSM-tree’s WA
ratio is O(L) using tiered compaction [15], where L is the
number of levels. With a relatively large T , tiered compaction
provides much lower WA than leveled compaction does with
a similar L. However, since there can be multiple overlapping
sorted runs in each level, a point query will need to check up
to T ×L tables, leading to a much slower search.

Range query in LevelDB/RocksDB is realized by using an
iterator structure to navigate across multiple tables as if all
the keys are in one sorted run. A range query first initializes
an iterator using a seek operation with a seek key, the lower
boundary of the target key range. The seek operation positions
the iterator so that it points to the smallest key in the store that
is equal to or greater than the seek key (in lexical order for
string keys), which is denoted as the target key of the range
query. The next operation advances the iterator such that it
points to the next key in the sorted order. A sequence of next
operations can be used to retrieve the subsequent keys in the
target range until a certain condition is met (e.g., number of
keys or end of a range). Since the sorted runs are generated
chronologically, a target key can reside in any of the runs.
Accordingly, an iterator must keep track of all the sorted runs.

Figure 1 shows an example of seek on an LSM-tree using
leveled compaction. To seek key 67, a binary search is used
on each run to identify the smallest key satisfying key ≥
seek_key. Each identified key is marked by a cursor. Then
these keys are sort-merged using a min-heap structure [23],
and thus the key 67 in L2 is selected. Subsequently, each next

52 19th USENIX Conference on File and Storage Technologies USENIX Association

operation will compare the keys under the cursors, return
the smallest one, and advance the corresponding cursor. This
process presents a globally sorted view of the keys, as shown
in the upper right corner of Figure 1. In this example, all
three levels must be accessed for the sort-merging. Figure 2
shows a similar example with tiered compaction. Having six
overlapping sorted runs, a seek operation is more expensive
than the previous example. In practice, the threshold T in
tiered compaction is often set to a small value, such as T = 4 in
ScyllaDB [42], to avoid having too many overlapping sorted
runs in a store.

3 REMIX

A range query operation on multiple sorted runs constructs
a sorted view of the underlying tables on the fly so that
the keys can be retrieved in sorted order. In fact, a sorted
view inherits the immutability of the table files and remains
valid until any of the tables are deleted or replaced. However,
existing LSM-tree based KV-stores have not been able to take
advantage of this inherited immutability. Instead, sorted views
are repeatedly reconstructed at search time and immediately
discarded afterward, which leads to poor search performance
due to excessive computation and I/O. The motivation of
REMIX is to exploit the immutability of table files by
retaining the sorted view of the underlying tables and reusing
them for future searches.

For I/O efficiency, the LSM-tree based KV-stores employ
memory-efficient metadata formats, including sparse indexes
and Bloom filters [4]. If we record every key and its location
to retain the sorted views in a store, the store’s metadata could
be significantly inflated, leading to compromised performance
for both reads and writes. To avoid this issue, the REMIX data
structure must be space-efficient.

3.1 The REMIX Data Structure

The top of Figure 3 shows an example of a sorted view
containing three sorted runs, R0, R1, and R2. The sorted
view of the three runs is illustrated by the arrows, forming a
sequence of 15 keys. To construct a REMIX, we first divide
the keys of a sorted view into segments, each containing
a fixed number of keys. Each segment is attached with an
anchor key, a set of cursor offsets, and a set of run selectors.
An anchor key represents the smallest key in the segment. All
the anchor keys collectively form a sparse index on the sorted
view. Each cursor offset corresponds to a run and records the
position of the smallest key in the run that is equal to or greater
than the segment’s anchor key. Each key in a segment has a
corresponding run selector, which indicates the run where the
key resides. The run selectors encode the sequential access
path of the keys on the sorted view, starting from the anchor
key of the segment.

6 7 17 29 73

4 31 43 52 67

2 11 23 71 91R0

R2

R1

2 (4 6 7)

R0: 0
R1: 0
R2: 0

11(17 23 29)

R0: 1
R1: 2
R2: 1

31(43 52 67)

R0: 3
R1: 4
R2: 1

71(73 91)

R0: 3
R1: 4
R2: 5

Anchor keys:

Cursor
offsets:

0, 2, 1, 1,Run Selectors: 0, 1, 0, 1, 2, 2, 2, 2, 0, 1, 0
Figure 3: A sorted view of three sorted runs with REMIX

An iterator for a REMIX does not use a min-heap. Instead,
an iterator contains a set of cursors and a current pointer. Each
cursor corresponds to a run and points to the location of a
key in the run. The current pointer points to a run selector,
which selects a run, and the cursor of the run determines the
key currently being reached.

It takes three steps to seek a key using an iterator on a
REMIX. First, a binary search is performed on the anchor
keys to find the target segment whose range covers the seek
key, satisfying anchor_key≤ seek_key. Second, the iterator is
initialized to point to the anchor key. Specifically, the cursors
are positioned using the cursor offsets of the segment, and
the current pointer is set to point to the first run selector of
the segment. Finally, the target key can be found by scanning
linearly on the sorted view. To advance the iterator, the cursor
of the current key is advanced to skip the key. Meanwhile,
the current pointer is also advanced to point to the next run
selector. After a seek operation, the subsequent keys on the
sorted view (within and beyond the target segment) can be
retrieved by advancing the iterator in the same manner.

Here is an example of a seek operation. As shown in
Figure 3, the four boxes on the bottom represent the REMIX
metadata that encodes the sorted view. Note that the keys
in parentheses are not part of the metadata. To seek key 17,
the second segment, which covers keys (11,17,23,29), is
selected with a binary search. Then the cursors are placed on
keys 11, 17, and 31 in R0, R1, and R2, respectively, according
to the segment’s cursor offsets ((1,2,1)). Meanwhile, the
current pointer is set to point to the first run selector of the
segment (0, the fifth selector in the figure), indicating that
the current key (11) is under the cursor of R0. Since 11 < 17,
the iterator needs to be advanced to find the smallest key k
satisfying k ≥ 17. To advance the iterator, the cursor on R0
is first advanced so that it skips key 11 and is now on key
23. The cursor offsets of the iterator now become 2, 2, and
1. Then, the current pointer is advanced to the second run
selector of the segment (1, the sixth selector in the figure).
The advanced iterator selects R1, and the current key 17 under
the cursor of R1 is the target key. This concludes the seek
operation. The subsequent keys (23, 29, 31, . . .) on the sorted
view can be retrieved by repeatedly advancing the iterator.

USENIX Association 19th USENIX Conference on File and Storage Technologies 53

3.2 Efficient Search in a Segment

A seek operation initializes the iterator with a binary search on
the anchor keys to find the target segment and scans forward
on the sorted view to look for the target key. Increasing
the segment size can reduce the number of anchor keys and
speed up the binary search. However, it can slow down seek
operations because scanning in a large target segment needs
to access more keys on average. To address the potential
performance issue, we also use binary search within a target
segment to minimize the search cost.

Binary Search To perform binary search in a segment, we
must be able to randomly access every key in the segment.
A key in a segment belongs to a run, as indicated by the
corresponding run selector. To access a key, we need to place
the cursor of the run in the correct position. This can be
done by counting the number of occurrences of the same
run selector in the segment prior to the key and advancing
the corresponding cursor the same number of times. The
number of occurrences can be quickly calculated on the fly
using SIMD instructions on modern CPUs. The search range
can be quickly reduced with a few random accesses in the
segment until the target key is identified. To conclude the seek
operation, we initialize all the cursors using the occurrences
of each run selector prior to the target key.

Figure 4 shows an example of a segment having 16
run selectors. The number shown below each run selector
represents the number of occurrences of the same run selector
prior to its position. For example, 41 is the third key in R3
in this segment, so the corresponding number of occurrences
is 2 (under the third “3”). To access key 41, we initialize the
cursor of R3 and advance it twice to skip 5 and 23.

To seek key 41 in the segment in Figure 4, keys 43, 17, 31,
and 41 will be accessed successively during the binary search,
as shown by the arrows and the circled numbers. Key 43 is
the eighth key in the segment and the fourth key of R3 in the
segment. To access key 43, we initialize the cursor of R3 and
advance it three times to skip keys 5, 23, and 41. Then, key 17
can be accessed by reading the first key on R2 in this segment.
Similarly, 31 and 41 are the second and third keys on R1 and
R3, respectively. In the end, all the cursors of the iterator are
initialized to point to the correct keys. In this example, the
cursors will finally be at keys 61, 53, 89, and 41, where 41 is
the current key.

①②

3 0 1 2 3 1 3 3 1 0 0 1 0 3 2 3
0 0 0 0 1 1 2 3 2 1 2 3 3 4 1 5

Run Selectors:
Occurrences:

R0:
R1:
R2:
R3:

7 6171 79
13 31 53 73

17 89
5 23 4143 83 97

③④Access order:

Figure 4: An example of binary search in a segment. The
circled numbers indicate the access order of the keys.

I/O Optimization Performing binary search in a segment
can minimize the number of key comparisons. However, the
keys on the search path may reside in different runs and must
be retrieved with separate I/O requests if the respective data
blocks are not cached. For example, the search in Figure 4
only needs four key comparisons but has to access three runs.
In fact, it is likely that keys 41, 43, and a few other keys of
R3 belong to the same data block. Accordingly, after a key
comparison, the search can leverage the remaining keys in
the same data block to further reduce the search range before
it has to access a different run. In this way, each of the six
keys in R3 can be found without accessing any other runs.
When searching for key 79, for example, accessing R3 can
narrow down the search to the range between key 43 and key
83, where key 79 can be found in R0 after a key comparison
with key 71.

3.3 Search Efficiency

REMIXes improve range queries in three aspects.

REMIXes find the target key using one binary search.
A REMIX provides a sorted view of multiple sorted runs.
Only one binary search on a REMIX is required to position
the cursors on the target keys in multiple runs. Whereas
in a traditional LSM-tree based KV-store, a seek operation
requires a number of binary searches on each individual
run. For example, suppose a store with four equally-sized
runs has N keys in each run. A seek operation without a
REMIX requires 4× log2 N key comparisons, while it only
takes log2 4N, or 2+ log2 N key comparisons with a REMIX.

REMIXes move the iterator without key comparisons.
An iterator on a REMIX directly switches to the next (or
the previous) KV-pair by using the prerecorded run selectors
to update the cursors and the current pointer. This process
does not require any key comparisons. Reading a KV-pair can
also be avoided if the iterator skips the key. In contrast, an
iterator in a traditional LSM-tree based KV-store maintains a
min-heap to sort-merge the keys from multiple overlapping
sorted runs. In this scenario, a next operation requires reading
keys from multiple runs for comparisons.

REMIXes skip runs that are not on the search path. A
seek operation with a REMIX requires a binary search in the
target segment. Only those sorted runs containing the keys
on the search path will be accessed at search time. In the best
scenario, if a range of target keys reside in one run, such as
the segment (31,43,52,67) in Figure 3, only one run (R2 in
the example) will be accessed. However, a merging iterator
must access every run in a seek operation.

Furthermore, the substantially reduced seek cost allows
for efficient point queries (e.g., GET) on multiple sorted
runs indexed by a REMIX without using Bloom filters. We
extensively evaluate the point query efficiency in §5.1.

54 19th USENIX Conference on File and Storage Technologies USENIX Association

3.4 REMIX Storage Cost

REMIX metadata consists of three components: anchor keys,
cursor offsets, and run selectors. We define D to be the
maximum number of keys in a segment. A REMIX stores one
anchor key for every D keys, requiring 1/D of the total key
size in a level on average. Assuming the size of a cursor offset
is S bytes, a REMIX requires S×H bytes to store the cursor
offsets for every D keys, where H denotes the number of runs
indexed by a REMIX. A run selector requires dlog2(H)e bits.
Adding all the three parts together, a REMIX is expected to
store ((L̄+SH)/D+ dlog2(H)e/8) bytes/key, where L̄ is the
average anchor key size.

We estimate the storage cost of a REMIX using the average
KV sizes publicly reported in Facebook’s production KV
workloads [2, 8]. In practice, S is implementation-defined,
and H depends on the number of tables being indexed. In the
estimation, we use cursor offsets of 4 bytes (S = 4) so that
a cursor offset can address 4 GB space for each sorted run.
We set the number of sorted runs to 8 (H = 8). With these
practical configurations, a REMIX stores ((L̄+32)/D+3/8)
bytes/key.

Table 1 shows the REMIX storage costs for each workload
with different D (D =16, 32, and 64). For comparison, it also
shows the storage cost of the block index (BI) and Bloom filter
(BF) of the SSTable format in LevelDB and RocksDB. Note
that table files indexed by REMIXes do not use block indexes
or Bloom filters. An SSTable stores a key and a block handle
for each 4 KB data block. The block index storage cost is
estimated by dividing the sum of the average KV size and an
approximate block handle size (4 B) by the estimated number
of KV-pairs in a 4 KB block. Bloom filters are estimated as
10 bits/key. The REMIX storage costs vary from 1.0 to 5.4
bytes/key for different D and L̄ values. For every key size,
increasing D can substantially reduce the REMIX storage cost.
The last column

(REMIX
data

)
shows the size ratio of a REMIX to

its indexed KV data. In the worst case (the USR store), the
REMIX’s size is still less than 10% of the KV data’s size.

Table 1: REMIX storage cost with real-world KV sizes. BI
stands for Block Index. BF stands for Bloom Filter. The last
column shows the size ratio of REMIX to the KV data.

Work-
load
[2, 8]

Avg.
Key
Size

Avg.
Value
Size

Bytes/Key REMIX
dataSSTable REMIX (H=8)

BI BI+BF D=16 32 64 (D=32)
UDB 27.1 126.7 1.2 2.4 4.1 2.2 1.3 1.44%
Zippy 47.9 42.9 1.2 2.4 5.4 2.9 1.6 3.16%
UP2X 10.45 46.8 0.2 1.5 3.0 1.7 1.0 2.97%
USR 19 2 0.1 1.4 3.6 2.0 1.2 9.38%
APP 38 245 2.9 4.2 4.8 2.6 1.5 0.91%
ETC 41 358 4.4 5.6 4.9 2.7 1.5 0.67%
VAR 35 115 1.4 2.7 4.6 2.5 1.4 1.65%
SYS 28 396 3.3 4.6 4.1 2.3 1.3 0.53%

4 RemixDB

To evaluate the REMIX performance, we implement an LSM-
tree based KV-store named RemixDB. RemixDB employs
the tiered compaction strategy to achieve the best write
efficiency [16]. Real-world workloads often exhibit high
spatial locality [2, 8, 47]. Recent studies have shown that a
partitioned store layout can effectively reduce the compaction
cost under real-world workloads [24, 31]. RemixDB adopts
this approach by dividing the key space into partitions of non-
overlapping key ranges. The table files in each partition are
indexed by a REMIX, providing a sorted view of the partition.
In this way, RemixDB is essentially a single-level LSM-tree
using tiered compaction. RemixDB not only inherits the write
efficiency of tiered compaction but also achieves efficient
reads with the help of REMIXes. The point query operation
(GET) of RemixDB performs a seek operation and returns the
key under the iterator if it matches the target key. RemixDB
does not use Bloom filters.

Figure 5 shows the system components of RemixDB. Sim-
ilarly to LevelDB and RocksDB, RemixDB buffers updates
in a MemTable. Meanwhile, the updates are also appended
to a write-ahead log (WAL) for persistence. When the size
of the buffered updates reaches a threshold, the MemTable is
converted into an immutable MemTable for compaction, and a
new MemTable is created to receive updates. A compaction in
a partition creates a new version of the partition that includes
a mix of new and old table files and a new REMIX file. The
old version is garbage-collected after the compaction.

In a multi-level LSM-tree design, the size of a MemTable
is often only tens of MBs, close to the default SSTable size. In
a partitioned store layout, larger MemTables can accumulate
more updates before triggering a compaction [3, 24], which
helps to reduce WA. The MemTables and WAL have near-
constant space cost, which is modest given the large memory
and storage capacity in today’s datacenters. In RemixDB, the
maximum MemTable size is set to 4 GB. In the following, we
introduce the file structures (§4.1), the compaction process
(§4.2), and the cost and trade-offs of using REMIXes (§4.3).

REMIX

Table file
Table file
Table file
Table file

REMIX

Table file
Table file

REMIX

Table file
Table file
Table file

Write-ahead Log
MemTable

Immutable
MemTable

Compaction

Figure 5: Overview of RemixDB

USENIX Association 19th USENIX Conference on File and Storage Technologies 55

4.1 The Structures of RemixDB Files
Table Files Figure 6 shows the table file format in
RemixDB. A data block is 4 KB by default. A large KV-pair
that does not fit in a 4 KB block exclusively occupies a jumbo
block that is a multiple of 4 KB. Each data block contains a
small array of its KV-pairs’ block offsets at the beginning of
the block for randomly accessing individual KV-pairs.

The metadata block is an array of 8-bit values, each
recording the number of keys in a 4 KB block. Accordingly, a
block can contain up to 255 KV-pairs. In a jumbo block,
except for the first 4 KB, the remaining ones have their
corresponding numbers set to 0 so that a non-zero number
always corresponds to a block’s head. With the offset arrays
and the metadata block, a search can quickly reach any
adjacent block and skip an arbitrary number of keys without
accessing the data blocks. Since the KV-pairs are indexed by
a REMIX, table files do not contain indexes or filters.

Table file

#keys #keys

block metadatablock block

#keys #keys
4 82 KV KV

Figure 6: Structure of a table file in RemixDB

REMIX Files Figure 7 shows the REMIX file format
in RemixDB. The anchor keys in a REMIX are orga-
nized in an immutable B+-tree-like index (similar to Lev-
elDB/RocksDB’s block index) that facilitates binary searches
on the anchor keys. Each anchor key is associated with a
segment ID that identifies the cursor offsets and run selectors
of a segment. A cursor offset consists of a 16-bit block index
and an 8-bit key index, shown as blk-id and key-id in
Figure 7. The block index can address up to 65,536 4-KB
blocks (256 MB). Each block can contain up to 256 KV-pairs
with the 8-bit key index.

Multiple versions of a key could exist in different table
files of a partition. A range query operation must skip the old
versions and return the newest version of each key. To this
end, in a REMIX, multiple versions of a key are ordered from
the newest to the oldest on the sorted view, and the highest
bit of each run selector is reserved to distinguish between
old and new versions. A forward scan operation will always
encounter the newest version of a key first, and then the old
versions can be skipped by checking the reserved bit of each
run selector without comparing any keys.

REMIX file

Cursor Offsets:

Run Selectors:

Sparse Index: (Anchor keys to Segment IDs)

0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1

blk-id key-id blk-id key-id blk-id key-id blk-id key-id

(Segment 1) (Segment 2)

(Segment 3)In this example: H=2, D=8

Figure 7: Structure of a REMIX file in RemixDB

If a key has multiple versions, these versions can span two
segments. A search may have to check both the segments to
retrieve the newest version of the key. To simplify searches
in this scenario, we move all the versions of the key forward
to the second segment by inserting special run selectors as
placeholders in the first segment when constructing a REMIX.
We also make sure that the maximum number of keys in a
segment is equal to or greater than the number of runs indexed
by a REMIX (D≥ H) so that every segment is large enough
to hold all the versions of a key.

To accommodate the special values mentioned above, each
run selector in RemixDB occupies a byte. The eighth and
seventh bits (0x80 and 0x40) of a run selector indicate an
old version and a deleted key (a tombstone), respectively. A
special value 63 (0x3f) represents a placeholder. In this way,
RemixDB can manage up to 63 sorted runs (0 to 62) in each
partition, which is sufficient in practice.

4.2 Compaction

In each partition, the compaction process estimates the
compaction cost based on the size of new data entering
the partition and the layout of existing tables. Based on the
estimation, one of the following procedures is executed:

• Abort: cancel the partition’s compaction and keep the new
data in the MemTables and the WAL.

• Minor Compaction: write the new data to one or multiple
new tables without rewriting existing tables.

• Major Compaction: merge the new data with some or all
of the existing tables.

• Split Compaction: merge the new data with all the existing
data and split the partition into a few new partitions.

Abort After a compaction, a partition that sees any new
table file will have its REMIX rebuilt. When a small table file
is created in a partition after a minor compaction, rebuilding
the REMIX can lead to high I/O cost. For example, the USR
workload in Table 1 has the highest size ratio of REMIX to
KV data (9.38%). Writing 100 MB of new data to a partition
with 1 GB of old table files will create a REMIX that is about
100 MB. To minimize the I/O cost, RemixDB can abort a
partition’s compaction if the estimated I/O cost is above a
threshold. In this scenario, the new KV data should stay in
the MemTables and the WAL until the next compaction.

However, in an extreme case, such as having a workload
with a uniform access pattern, the compaction process cannot
effectively move data into the partitions when most of the
partitions have their compactions aborted. To avoid this
problem, we further limit the size of new data that can stay
in the MemTables and WAL to be no more than 15% of the
maximum MemTable size. The compaction process can abort
the compactions that have the highest I/O cost until the size
limit has been reached.

56 19th USENIX Conference on File and Storage Technologies USENIX Association

New Data

New Table
Old Table
Old Table

Old Table
Old Table

REMIX

Minor
Compaction

Figure 8: Minor compaction

Major
Compaction

New Table

New Data

Old Table
Old Table

Old Table
Old Table

O. T.
O. T.
O. T.

Figure 9: Major compaction

Split
Compaction

New partitions

New TableNew Table
New Table New Table

New Data

Old Table
Old Table
Old Table
Old Table
Old Table

Figure 10: Split compaction

Minor Compaction A minor compaction writes new KV
data from the immutable MemTable into a partition without
rewriting existing table files and rebuilds the REMIX of
the partition. Depending on the new data’s size, a minor
compaction creates one or a few new table files. Minor
compaction is used when the expected number of table files
after the compaction (number of existing table files plus the
estimated number of new table files) is below a threshold T ,
which is 10 in our implementation. Figure 8 shows a minor
compaction example that creates one new table file.
Major Compaction A major (or split) compaction is
required when the expected number of table files in a partition
exceeds the threshold T . A major compaction sort-merges
existing table files into fewer ones. With a reduced number
of table files, minor compactions can be performed in the
future. The efficiency of a major compaction can be estimated
by the ratio of the number of input table files to the number
of output table files. Figure 9 shows a major compaction
example. In this example, the new data is merged with three
small table files, and only one new table file is created after the
compaction (ratio=3/1). If the entire partition is sort-merged,
the compaction needs to rewrite more data but still produces
three tables (ratio=5/3) because of the table file’s size limit.
Accordingly, major compaction chooses the number of input
files that can produce the highest ratio.
Split Compaction Major compaction may not effectively
reduce the number of tables in a partition filled with large
tables, which can be predicted by a low estimated input/output
ratio, such as 10/9. In this case, the partition should be
split into multiple partitions so that the number of tables in
each partition can be substantially reduced. Split compaction
sort-merges new data with all the existing table files in the
partition and produces new table files to form several new
partitions. Figure 10 shows a split compaction example. To

avoid creating many small partitions in a split compaction,
the compaction process creates M (M = 2 by default) new
table files in a partition before switching to the next partition.
In this way, a split compaction creates dE/Me new partitions,
where E is the number of new table files.

4.3 Rebuilding REMIXes

A partitioned store layout can effectively minimize the
compaction cost under real-world workloads with high spatial
locality [24, 31]. Specifically, RemixDB can absorb most of
the updates in a few partitions, and the compactions in the
partitions that receive fewer updates can be avoided (See §4.2).
However, if the workload lacks spatial locality, it is inevitable
that many partitions have to perform compactions with small
amounts of updates. Tiered compaction can minimize writes
in these partitions, but rebuilding the REMIX in a partition
still needs to read the existing tables. In our implementation,
RemixDB leverages the existing REMIX in the partition and
employs an efficient merging algorithm to minimize the I/O
cost of the rebuilding process.

When rebuilding the REMIX in a partition, the existing
tables are already indexed by the REMIX, and those tables
can be viewed as one sorted run. Accordingly, the rebuilding
process is equivalent to sort-merging two sorted runs, one
from the existing data and the other from the new data. When
the existing sorted run is significantly larger than the new
one, the generalized binary merging algorithm proposed by
Hwang et al. [30, 33] requires much fewer key comparisons
than sort-merging with a min-heap. The algorithm estimates
the location of each next merge point based on the size ratio
between the two sorted runs and search in the neighboring
range. In RemixDB, we approximate the algorithm by using
the anchor keys to locate the target segment containing the
merge point and finally applying a binary search in the
segment. In this process, accessing anchor keys does not
incur any I/O since they are stored in the REMIX. A binary
search in the target segment reads at most log2 D keys to find
the merge point. All the run selectors and cursor offsets for
the existing tables can be derived from the existing REMIX
without any I/O. To create anchor keys for the new segments,
we need to access at most one key per segment on the new
sorted view.

The read I/O of rebuilding a REMIX is bounded by
the size of all the tables in a partition. The rebuilding
process incurs read I/O to the existing tables in exchange
for minimized WA and improved future read performance.
Whether rebuilding a REMIX is cost effective depends on
how much write I/O one wants to save and how much future
read performance one wants to improve. In practice, writes in
SSDs are usually slower than reads and can cause permanent
damage to the devices [5, 27, 28, 45]. As a result, reads
are more economical than writes, especially for systems
having spare I/O bandwidth. In systems that expect intensive

USENIX Association 19th USENIX Conference on File and Storage Technologies 57

writes with weak spatial locality, adopting a multi-level tiered
compaction strategy [40, 46] or delaying rebuilding REMIXes
in individual partitions can reduce the rebuilding cost at the
expense of having more levels of sorted views. Adapting
REMIXes with different store layouts is beyond the scope
of this paper. We empirically evaluate the rebuilding cost in
RemixDB under different workloads in §5.2.

5 Evaluation

In this section, we first evaluate the REMIX performance
characteristics (§5.1), and then benchmark RemixDB with a
set of micro-benchmarks and Yahoo’s YCSB benchmark tool
that emulates real-world workloads [13] (§5.2).

The evaluation system runs 64-bit Linux (v5.8.7) on two
Intel Xeon Silver 4210 CPUs and 64 GB of DRAM. The
experiments run on an Ext4 file system on a 960 GB Intel
905P Optane PCIe SSD.

5.1 Performance of REMIX-indexed Tables
We first evaluate the REMIX performance. We implement a
micro-benchmark framework that compares the performance
of REMIX-indexed tables with SSTables. The SSTables use
Bloom filters to accelerate point queries and employ merging
iterators to perform range queries.

Experimental Setup In each experiment, we first create a
set of H table files (1≤H ≤ 16), which resemble a partition in
a RemixDB or a level in an LSM-tree using tiered compaction.
Each table file contains 64 MB of KV-pairs, where the key
and value sizes are 16 B and 100 B, respectively. When H ≥ 2,
the KV-pairs can be assigned to the tables using two different
patterns:

• Weak locality: each key is assigned to a randomly
selected table, which provides weak access locality since
logically consecutive keys often reside in different tables.

• Strong locality: every 64 logically consecutive keys are
assigned to a randomly selected table, which provides
strong access locality since a range query can retrieve a
number of consecutive keys from few tables.

Each SSTable contains Bloom filters of 10 bits/key. A 64 MB
user-space block cache2 is used for accessing the files.

We measure the single-threaded throughput of three range
and point query operations, namely Seek, Seek+Next50, and
Get, using different sets of tables created with the above
configurations. A Seek+Next50 operation performs a seek and
retrieves the next 50 KV-pairs. In these experiments, the seek
keys are randomly selected following a uniform distribution.
For REMIX, we set the segment size to 32 (D = 32), and
measure the throughput with its in-segment binary search
turned on and off, denoted by full and partial binary search,

2LevelDB’s LRUCache implementation in util/cache.cc.

respectively (see §3.2). For point queries (Get), we measure
the throughput of SSTables with Bloom filters turned on and
off. We run each experiment until the throughput reading is
stable. Figures 11 and 12 show the throughput results for
tables with weak and strong access locality, respectively.
Seek on Tables of Weak Locality Figure 11a shows the
throughput of seek operations using a REMIX and a merging
iterator. We observe that the throughput with the merging
iterator is roughly 20% higher than that of a REMIX with
full binary search when there is only one table file. In this
scenario, both the mechanisms perform the same number of
key comparisons during the binary search. However, when
searching in a segment, the REMIX needs to count the number
of occurrences on the fly and move the iterator from the
beginning of the segment to reach a key for comparison, which
is more expensive than a regular iterator.

The throughput of a merging iterator quickly drops as the
number of table files increases. Specifically, the throughput
of two tables is 50% lower than that of one table; a seek
on eight tables is more than 11× slower than a seek on one
table. The seek time of a merging iterator is approximately
proportional to the number of table files. This is because
the merging iterator requires a full binary search on every
table file. The REMIX’s throughput also decreases with more
tables files. The slowdown is mainly due to the growing
dataset that requires more key comparisons and memory
accesses during a search. However, the REMIX with full
binary search achieves increasingly high speedups compared
with the merging iterator. Specifically, The speedups are 5.1×
and 9.3× with 8 and 16 table files, respectively.

The REMIX throughput decreases by 20% to 33% when
the in-segment binary search is turned off (with partial binary
search). In this scenario, a seek has to linearly scan the target
segment to find the target key. With D = 32, the average
number of key comparisons in a target segment is 5 (log2 D)
with full binary search and 16 (D/2) with partial binary search.
However, the search cost is still substantially lower than that
of a merging iterator. The REMIX with partial binary search
outperforms the merging iterator by 3.5× and 6.1×, with 8
and 16 table files, respectively.
Seek+Next50 Figure 11b shows the throughput of range
queries that seek and copy 50 KV-pairs to a user-provided
buffer. The overall throughput results are much lower than that
in the Seek experiments because the data copying is expensive.
However, the REMIX still outperforms the merging iterator
when there are two or more tables. The speedup is 1.4×,
2.3×, and 3.1× with 2, 8, and 16 table files, respectively. The
suboptimal scan performance of the merging iterator is due
to the expensive next operation that requires multiple key
comparisons to find the next key on the sorted view. For
each KV-pair copied to the buffer, multiple KV-pairs must be
read and compared to find the global minimum. In contrast,
a REMIX does not require any key comparisons in a next
operation.

58 19th USENIX Conference on File and Storage Technologies USENIX Association

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Th
ro

ug
hp

ut
 (M

OP
S) REMIX w/ Full B. Search

REMIX w/ Partial B. Search
Merging Iterator

(a) Seek

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 (M

OP
S) REMIX w/ Full B. Search

REMIX w/ Partial B. Search
Merging Iterator

(b) Seek+Next50

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Th
ro

ug
hp

ut
 (M

OP
S) SSTables w/ Bloom Filters

REMIX w/ Full B.Search
SSTables w/o Bloom Filters

(c) Get

Figure 11: Point and range query performance on tables where keys are randomly assigned (weak locality)

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Th
ro

ug
hp

ut
 (M

OP
S) REMIX w/ Full B. Search

REMIX w/ Partial B. Search
Merging Iterator

(a) Seek

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 (M

OP
S) REMIX w/ Full B. Search

REMIX w/ Partial B. Search
Merging Iterator

(b) Seek+Next50

1 2 3 4 5 6 7 8 9 10111213141516
Number of Table Files

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Th
ro

ug
hp

ut
 (M

OP
S) SSTables w/ Bloom Filters

REMIX w/ Full B.Search
SSTables w/o Bloom Filters

(c) Get

Figure 12: Point and range query performance on tables where every 64 keys are assigned to a table (strong locality)

In contrast to the substantial performance gap between
the two REMIX curves in Figure 11a, the two curves in
Figure 11b are very close to each other. This phenomenon is
the result of two effects: (1) the next operations dominate the
execution time and (2) the linear scanning of a seek operation
in a segment warms up the block cache, which makes the
future next operations faster.

Point Query Figure 11c shows the results of the point
query experiments. The REMIX’s curve is slightly lower than
its counterpart in Figure 11a because a get operation needs to
copy the KV-pair after a seek using the REMIX. Searching
on SSTables with Bloom filters outperforms searching on
REMIX-indexed table files when there are fewer than 14
tables. The reasons for the differences are two-fold. First, a
search can be effectively narrowed down to one table file at a
small cost of checking the Bloom filters. Second, searching in
an SSTable is faster than on a REMIX managing many more
keys. In the worst case, the REMIX’s throughput is 20% lower
than that of Bloom filters (with 3 tables). Unsurprisingly,
the searches with more than two SSTables are much slower
without Bloom filters.

Performance with Tables of Strong Locality Figure 12
shows the range and point query performance on tables with
strong access locality. The results in Figures 12a and 12b
follow a similar trend of their counterparts in Figure 11. In
general, the improved locality allows for faster binary searches
since in this scenario the last few key comparisons can often
use keys in the same data block. However, the throughput of
the merging iterator remains low because of the intensive key
comparisons that dominate the search time. The REMIX with
partial binary search improves more than that with full binary
search. This is because improved locality reduces the penalty

on the scanning in a target segment, where fewer cache misses
are incurred in each seek operation.

The REMIX point query performance also improves due
to the strong locality that speeds up the underlying seek
operations, as shown in Figure 12c. Meanwhile, the results
of Bloom filters stay unchanged because the search cost is
mainly determined by the false-positive rate and the search
cost on individual tables. As a result, REMIXes are able to
outperform Bloom filters when there are more than 9 tables.

Segment Size (D) We further evaluate REMIX range query
performance using different segment sizes (D ∈ {16,32,64})
on eight table files. The other configuration parameters are
the same as in the previous experiments. Figure 13 shows the
performance results. The throughput of seek-only operations
exhibits the largest variations with different Ds when the in-
segment binary search is turned off. This is because the linear
scanning in a segment adds a significant cost with a large D.
On the other hand, the differences become much smaller with
full binary search. In the meantime, a larger segment size still
leads to higher overhead because of the slower random access
speed within a segment. In the Seek+Next50 experiments, the
data copying dominates the execution time and there are no
significant differences when using different Ds.

Partial Full
0.00

0.25

0.50

0.75

Th
ro

ug
hp

ut
 (M

OP
S) Seek

Partial Full

Seek+Next50
D=16
D=32
D=64

(a) Tables of weak locality
Partial Full

0.00

0.25

0.50

0.75

Th
ro

ug
hp

ut
 (M

OP
S) Seek

Partial Full

Seek+Next50
D=16
D=32
D=64

(b) Tables of strong locality

Figure 13: REMIX range query performance with 8 runs

USENIX Association 19th USENIX Conference on File and Storage Technologies 59

40 120 400
Value Size

0
1
2
3
4
5

Th
ro

ug
hp

ut
 (M

OP
S) Sequential

40 120 400
Value Size

Zipfian

40 120 400
Value Size

Uniform
RemixDB
LevelDB
RocksDB
PebblesDB

Figure 14: Range query with different value sizes

5.2 Performance of RemixDB

The following evaluates the performance of RemixDB, a
REMIX-indexed KV-store based on an LSM-tree.

Experimental Setup We compare RemixDB with state-of-
the-art LSM-tree based KV-stores, including Google’s Lev-
elDB [26], Facebook’s RocksDB [20], and PebblesDB [40].
LevelDB and RocksDB adopt the leveled compaction strategy
for balanced read and write efficiency. PebblesDB adopts the
tiered compaction strategy with multiple levels for improved
write efficiency at the cost of having more overlapping runs.

LevelDB (v1.22) supports only one compaction thread.
For RocksDB (v6.10.2), we use the configurations suggested
in its official Tuning Guide3 [21]. Specifically, RocksDB
can have at most three MemTables (one more immutable
MemTable than LevelDB). Both RocksDB and RemixDB
are configured with four compaction threads. RemixDB,
LevelDB, and RocksDB are all configured to use 64 MB table
files. For PebblesDB (#703bd01 [43]), we use the default
configurations in its db_bench benchmark program. For fair
comparisons, we disable compression and use a 4 GB block
cache in every KV-store. All the KV-stores are built with
optimizations turned on (release build).

In our experiments, we choose three value sizes—40, 120,
and 400 bytes. They roughly match the small (ZippyDB,
UP2X, USR), medium (UDB, VAR), and large (APP, ETC,
SYS) KV sizes in Facebook’s production systems [2, 8]. We
use 16-byte fixed-length keys, each containing a 64-bit integer
using hexadecimal encoding.

Range Query The first set of experiments focuses on
how different KV sizes and access patterns affect the search
efficiency of the KV-stores. In each experiment, we first
sequentially load 100 million KV-pairs into a store using
one of the three value sizes. After loading, we measure the
throughput of seek operations using four threads with three
access patterns, namely sequential, Zipfian (α = 0.99), and
uniform.

As shown in Figure 14, each set of results shows a similar
trend. While RemixDB exhibits the highest throughput, Lev-
elDB is also at least 2× faster than RocksDB and PebblesDB.
The sequential loading produces non-overlapping table files
in every store, which suggests that a seek operation needs to
access only one table file. However, a merging iterator must

3The configuration for Total ordered database, flash storage.

4 16 64 256
Store Size (GB)

0.0
0.5
1.0
1.5
2.0

Th
ro

ug
hp

ut
 (M

OP
S) Seek

4 16 64 256
Store Size (GB)

Seek+Next10

4 16 64 256
Store Size (GB)

Seek+Next50
RemixDB
LevelDB
RocksDB
PebblesDB

Figure 15: Range query with different store sizes

check every sorted run in the store even though they are non-
overlapping, which dominates the execution time of a seek
operation if the store has multiple sorted runs. Specifically,
each L0 table in LevelDB and RocksDB is an individual
sorted run, but each Li (i > 0) contains only one sorted run;
PebblesDB allows multiple sorted runs in every level. That
being said, LevelDB outperforms RocksDB by at least 2×
even though they both use leveled compaction. We observe
that RocksDB keeps several tables (eight in total) at L0
without moving them into a deeper level during the sequential
loading. In contrast, LevelDB directly pushes a table to a
deep level (L2 or L3) if it does not overlap with other tables,
which leaves LevelDB’s L0 always empty. Consequently, a
seek operation in RocksDB needs to sort-merge at least 12
sorted runs on the fly, while that number is only 3 or 4 in
LevelDB.

The seek performance is sensitive to access locality. A
weaker access locality leads to increased CPU and I/O cost
on the search path. In each experiment of a particular value
size, the throughput with a uniform access pattern is about
50% lower than that of sequential access. Meanwhile, the
performance with sequential access is less sensitive to value
size because the memory copying cost is insignificant.

The second set of experiments evaluates the range-scan
performance with different store sizes and query lengths. Each
experiment loads a fixed-size KV dataset with 120 B value
size into a store in a random order, then performs range-scans
with four threads using the Zipfian access pattern. As shown
in Figure 15, RemixDB outperforms the other stores in every
experiment. However, the performance differences among the
stores become smaller with longer scans. The reason is that
a long range-scan exhibits sequential access pattern on each
sorted run, where more data have been prefetched during the
scan. In the meantime, the memory-copying adds a constant
overhead to every store.

As the store size increases to 256 GB, the throughput of
LevelDB quickly drops to the same level as RocksDB. Since
the stores in the experiments are configured with a 4 GB block
cache, the cache misses lead to intensive I/Os that dominate
the query time. While RocksDB exhibits high computation
cost for having too many L0 tables with a small store size, the
cost is overshadowed by the excessive I/Os in large stores.
Meanwhile, RemixDB maintains the best access locality
because it incurs a minimal amount of random accesses and
cache misses by searching on a REMIX-indexed sorted run.

60 19th USENIX Conference on File and Storage Technologies USENIX Association

Write Read
0
1
2
3
4
5
6

To
ta

l I
/O

 (T
B)

0.0

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut
 (M

OP
S)

User write
RemixDB
LevelDB
RocksDB
PebblesDB

Figure 16: Loading a 256 GB dataset in random order

Write We first evaluate the write performance of each
store by inserting a 256 GB KV dataset to an empty store in
a random order using one thread. The dataset has 2 billion
KV-pairs, and the value size is 120 B. The workload has a
uniform access pattern, representing the worst-case scenario
of the stores. We measure the throughput and the total I/O on
the SSD.

As shown in Figure 16, Both RemixDB and PebblesDB
show relatively high throughput because they employ the
write-efficient tiered compaction strategy. Their total write
I/O on the SSD are 1.25 TB and 2.37 TB, corresponding
to WA ratios of 4.88 and 9.26, respectively. LevelDB and
RocksDB adopt the leveled compaction strategy, which leads
to high WA ratios of 16.1 and 25.6, respectively. RocksDB
and RemixDB have much more read I/O than LevelDB and
PebblesDB. RocksDB employs four compaction threads to
exploit the SSD’s I/O bandwidth, resulting in more read I/O
than LevelDB due to less efficient block and page cache usage.
LevelDB only supports one compaction thread, and it shows
a much lower throughput than RocksDB. Although RemixDB
has more read I/O than RocksDB, the total I/O of RemixDB
is less than that of RocksDB. All told, RemixDB achieves low
WA and high write throughput at the cost of increased read
I/O.

We further evaluate the write performance of RemixDB
under workloads with varying spatial locality. We use three
access patterns, namely sequential, Zipfian (α = 0.99), and
Zipfian-Composite [24]. The Zipfian-Composite distribution
represents an agglomerate of attributes in real-world stores [1,
6, 8]. With Zipfian-Composite, the prefix of a key (the first
12 bytes) is drawn from the Zipfian distribution, and the
remainder of the key is drawn uniformly at random. For
each access pattern, the experiment starts with a 256 GB store
constructed as in the random write experiment then performs
2 billion updates (with 128 B values) to the store using the
respective access pattern. We measure the throughput and the
total I/O during the update phase.

As Figure 17 shows, the sequential workload exhibits the
highest throughput because each round of the compaction
only affects a few consecutive partitions in the store. The
write I/O mainly includes logging and creating new table
files, which is about 2× of the user writes. The read I/O for
rebuilding REMIXes is about the same as the existing data
(256 GB). Comparatively, with the two skewed workloads,
the repeated overwrites in the MemTable lead to substantially

Write Read
0.0

0.1

0.2

0.3

0.4

0.5

To
ta

l I
/O

 (T
B)

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (M

OP
S)

User write
Sequential
Zipfian
Zipfian-Composite

Figure 17: Sequential and skewed write with RemixDB

A B C D E F
0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut

(n
or

m
al

ize
d)

0.
66

4
(M

OP
S)

1.
15

1

0.
76

4

2.
19

6

0.
18

6

0.
92

5

RemixDB
LevelDB
RocksDB
PebblesDB

Figure 18: YCSB benchmark results

reduced write I/O. However, the skewed workloads create
scattered updates in the key space. This causes slower updates
in the MemTable and more partitions being compacted. The
Zipfian-Composite workload has weaker spatial locality than
Zipfian, resulting in higher compaction I/O cost.

The YCSB Benchmark The Yahoo Cloud Serving
Benchmark (YCSB) [13] is commonly used for evaluating
KV-store performance under realistic workloads. We use the
256 GB stores constructed in the random-write experiments
and run the YCSB workloads from A to F with four threads.
The details of the workloads are described in Table 2. In
workload E, a Scan operation performs a seek and retrieves
the next 50 KV-pairs. As shown in Figure 18, RemixDB
outperforms the other stores except in workload D, where the
read requests (95%) query the most recent updates produced
by the insertions (5%). This access pattern exhibits strong
locality, and most of the requests are directly served from
the MemTable(s) in every store. Meanwhile, LevelDB’s
performance (1.1 MOPS) is hindered by slow insertions
caused by the single-threaded compaction.

Even though REMIXes do not show an advantage over
Bloom filters in the micro-benchmarks (see Figure 11c),
RemixDB outperforms the other stores in workloads B and C,
where point query is the dominant operation. The reason is
that a point query in the multi-level LSM-tree has a high cost
selecting candidate tables on the search path. Specifically,
for each L0 table, about two key comparisons are used to
check if the seek key is covered by the table. If the key is not
found at L0, a binary search is used to select a table at each
deeper level Li (i≥ 1) until the key is found. Furthermore, a
Bloom filter’s size is about 600 KB for a 64 MB table in this
setup. Accessing a Bloom filter performs up to seven random
memory accesses, which leads to excessive cache misses in a
large store [22]. The REMIX-indexed partitions in RemixDB
form a globally sorted view, on which a point query can be
quickly answered with a binary search.

USENIX Association 19th USENIX Conference on File and Storage Technologies 61

Table 2: YCSB Workloads

Workload A B C D E F

Operations
R: 50%
U: 50%

R: 95%
U: 5%

R: 100%
R: 95%
I: 5%

S: 95%
I: 5%

R: 50%
M: 50%

Req. Dist. Zipfian Latest Zipfian
R: Read, U: Update, I: Insert, S:Scan, M: Read-Modify-Write.

6 Related Work

Improving Search with Filters Bloom filters [4] have
been indispensable for LSM-tree based KV-stores in reducing
the computation and I/O costs of point queries on a multi-
leveled store layout [15]. However, range queries cannot
be handled by Bloom filters because the search targets
are implicitly specified by range boundaries. Prefix Bloom
filters [19] can accelerate range queries [20, 26], but they
can only handle closed-range queries on common-prefix keys
(with an upper bound). Succinct Range Filter (SuRF) [49]
supports both open-range and closed-range queries. The
effectiveness of using SuRFs is highly dependent on the
distribution of keys and query patterns. Rosetta [37] uses
multiple layers of Bloom filters to achieve lower false positive
rates than SuRFs. However, it does not support open-range
queries and has prohibitively high CPU and memory costs
with large range queries. A fundamental limitation of the
filtering approach is that it cannot reduce search cost on tables
whose filters produce positive results. When the keys in the
target range are in most of the overlapping tables, range filters
do not speed up queries but cost more CPU cycles in the
search path. In contrast, REMIXes directly attack the problem
of having excessive table accesses and key comparisons
when using merging iterators in range queries. By searching
on a globally sorted view, REMIXes improve range query
performance with low computation and I/O cost.

Improving Search with Efficient Indexing KV-stores
based on B-trees or B+-trees [11, 39] achieve optimal search
efficiency by maintaining a globally sorted view of all the
KV data. These systems require in-place updates on the disk,
which lead to high WA and low write throughput. KVell [35]
achieves very fast reads and writes by employing a volatile
full index to manage unordered KV data on the disk. However,
the performance benefits come at a cost, including high
memory demand and slow recovery. Similarly, SLM-DB [31]
stores a B+-tree [29] in non-volatile memory (NVM) to
index KV data on the disk. This approach does not have
the above limitations, but it requires special hardware support
and increased software complexity. These limitations are also
found in NVM-enabled LSM-trees [32, 48]. Wisckey [36]
stores long values in a separate log to reduce index size
for search efficiency. However, the approach requires an
extra layer of indirection and does not improve performance
with small KV-pairs that are commonly seen in real-world
workloads [8, 47]. Bourbon [14] trains learned models to
accelerate searches on SSTables but does not support string

keys. REMIXes are not subject to these limitations. They
accelerate range queries in write-optimized LSM-tree based
KV stores by creating a space-efficient persistent sorted view
of the KV data.
Read and Write Trade-offs Dostoevsky and Wacky [16,
17] navigate LSM-tree based KV-store designs with different
merging policies to achieve the optimal trade-off between
reads and writes. Tiered compaction has been widely adopted
for minimizing WA in LSM-tree based KV-stores [34, 40,
42]. Other write-optimized indexes, such as Fractal trees and
Bε-trees, are also employed in KV-store designs [12, 44].
The improvements on write performance often come with
mediocre read performance in practice, especially for range
queries [24]. REMIXes address the issue of slow reads in
tiered compaction. They achieve fast range query and low
WA simultaneously.

7 Conclusion

We introduce the REMIX, a compact multi-table index data
structure for fast range queries in LSM-trees. The core idea
is to record a globally sorted view of multiple table files for
efficient search and scan. Based on REMIXes, RemixDB ef-
fectively improves range query performance while preserving
low write amplification using tiered compaction.

Acknowledgements

We are grateful to our shepherd William Jannen, the anony-
mous reviewers, Xingsheng Zhao, and Chun Zhao, for their
valuable feedback. This work was supported in part by the
UIC startup funding and US National Science Foundation
under Grant CCF-1815303.

References

[1] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba
Borthakur, and Mark Callaghan. “LinkBench: a
database benchmark based on the Facebook social
graph”. In: Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (SIG-
MOD’13). 2013, pp. 1185–1196.

[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. “Workload analysis of
a large-scale key-value store”. In: ACM SIGMET-
RICS/PERFORMANCE Joint International Confer-
ence on Measurement and Modeling of Computer
Systems (SIGMATRICS’12). 2012, pp. 53–64.

62 19th USENIX Conference on File and Storage Technologies USENIX Association

[3] Oana Balmau, Rachid Guerraoui, Vasileios Trigonakis,
and Igor Zablotchi. “FloDB: Unlocking Memory in
Persistent Key-Value Stores”. In: Proceedings of the
Twelfth European Conference on Computer Systems
(EuroSys’17). 2017, pp. 80–94.

[4] Burton H. Bloom. “Space/Time Trade-offs in Hash
Coding with Allowable Errors”. In: Commun. ACM
13.7 (1970), pp. 422–426.

[5] Simona Boboila and Peter Desnoyers. “Write En-
durance in Flash Drives: Measurements and Analysis”.
In: 8th USENIX Conference on File and Storage
Technologies (FAST’10). 2010, pp. 115–128.

[6] Dhruba Borthakur et al. “Apache hadoop goes realtime
at Facebook”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data
(SIGMOD’11). 2011, pp. 1071–1080.

[7] Lucas Braun et al. “Analytics in Motion: High Perfor-
mance Event-Processing AND Real-Time Analytics in
the Same Database”. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data (SIGMOD’15). 2015, pp. 251–264.

[8] Zhichao Cao, Siying Dong, Sagar Vemuri, and David
H. C. Du. “Characterizing, Modeling, and Benchmark-
ing RocksDB Key-Value Workloads at Facebook”.
In: 18th USENIX Conference on File and Storage
Technologies, (FAST’20). 2020, pp. 209–223.

[9] Fay Chang et al. “Bigtable: A distributed storage
system for structured data”. In: ACM Transactions on
Computer Systems (TOCS) 26.2 (2008), pp. 1–26.

[10] Guoqiang Jerry Chen et al. “Realtime Data Pro-
cessing at Facebook”. In: Proceedings of the 2016
International Conference on Management of Data,
(SIGMOD’16). 2016, pp. 1087–1098.

[11] Howard Chu. LMDB: Lightning Memory-Mapped
Database Manager. URL: http://www.lmdb.tech/
doc/ (visited on 09/01/2020).

[12] Alexander Conway et al. “SplinterDB: Closing the
Bandwidth Gap for NVMe Key-Value Stores”. In:
2020 USENIX Annual Technical Conference (USENIX
ATC 2020). 2020, pp. 49–63.

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. “Benchmarking
Cloud Serving Systems with YCSB”. In: Proceedings
of the 1st ACM Symposium on Cloud Computing
(SoCC’10). 2010, pp. 143–154.

[14] Yifan Dai et al. “From WiscKey to Bourbon: A
Learned Index for Log-Structured Merge Trees”. In:
14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI’20). 2020, pp. 155–
171.

[15] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
“Monkey: Optimal Navigable Key-Value Store”. In:
Proceedings of the 2017 ACM International Confer-
ence on Management of Data (SIGMOD’17). 2017,
pp. 79–94.

[16] Niv Dayan and Stratos Idreos. “Dostoevsky: Better
Space-Time Trade-Offs for LSM-Tree Based Key-
Value Stores via Adaptive Removal of Superfluous
Merging”. In: Proceedings of the 2018 International
Conference on Management of Data (SIGMOD’18).
2018, pp. 505–520.

[17] Niv Dayan and Stratos Idreos. “The Log-Structured
Merge-Bush & the Wacky Continuum”. In: Proceed-
ings of the 2019 International Conference on Manage-
ment of Data (SIGMOD’19). 2019, pp. 449–466.

[18] Giuseppe DeCandia et al. “Dynamo: amazon’s highly
available key-value store”. In: Proceedings of the 21st
ACM Symposium on Operating Systems Principles
(SOSP’07). 2007, pp. 205–220.

[19] Sarang Dharmapurikar, Praveen Krishnamurthy, and
David E. Taylor. “Longest prefix matching using bloom
filters”. In: Proceedings of the ACM SIGCOMM 2003
Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication
(SIGCOMM’03). 2003, pp. 201–212.

[20] Facebook. RocksDB. URL: https://github.com/
facebook/rocksdb (visited on 06/11/2020).

[21] Facebook. RocksDB Tuning Guide. URL: https://
github.com/facebook/rocksdb/wiki/RocksDB-
Tuning-Guide (visited on 07/12/2020).

[22] Bin Fan, Dave G. Andersen, Michael Kaminsky, and
Michael D. Mitzenmacher. “Cuckoo Filter: Practically
Better Than Bloom”. In: Proceedings of the 10th ACM
International on Conference on Emerging Networking
Experiments and Technologies (CoNEXT’14). 2014,
pp. 75–88.

[23] G. E. Forsythe. “Algorithms”. In: Commun. ACM 7.6
(1964), pp. 347–349.

[24] Eran Gilad et al. “EvenDB: optimizing key-value
storage for spatial locality”. In: Proceedings of the Fif-
teenth EuroSys Conference 2020 (EuroSys’20). 2020,
27:1–27:16.

[25] Anil K. Goel et al. “Towards Scalable Real-Time
Analytics: An Architecture for Scale-out of OLxP
Workloads”. In: Proc. VLDB Endow. 8.12 (2015),
pp. 1716–1727.

[26] Google. LevelDB. URL: https : / / github . com /
google/leveldb (visited on 05/03/2019).

USENIX Association 19th USENIX Conference on File and Storage Technologies 63

http://www.lmdb.tech/doc/
http://www.lmdb.tech/doc/
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/google/leveldb
https://github.com/google/leveldb

[27] Laura M. Grupp et al. “Characterizing flash memory:
anomalies, observations, and applications”. In: 42st
Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO 42). 2009, pp. 24–33.

[28] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. “The Unwritten Con-
tract of Solid State Drives”. In: Proceedings of the
Twelfth European Conference on Computer Systems
(EuroSys’17). 2017, pp. 127–144.

[29] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. “Endurable Transient Inconsistency
in Byte-Addressable Persistent B+-Tree”. In: Proceed-
ings of the 16th USENIX Conference on File and
Storage Technologies (FAST’18). 2018, pp. 187–200.

[30] Frank K. Hwang and Shen Lin. “A simple algorithm
for merging two disjoint linearly ordered sets”. In:
SIAM Journal on Computing 1.1 (1972), pp. 31–39.

[31] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H. Noh, and Young-ri Choi. “SLM-DB: Single-
Level Key-Value Store with Persistent Memory”. In:
17th USENIX Conference on File and Storage Tech-
nologies (FAST’19). 2019, pp. 191–205.

[32] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. “Redesigning LSMs for Nonvolatile Memory
with NoveLSM”. In: 2018 USENIX Annual Technical
Conference (USENIX ATC 2018). 2018, pp. 993–1005.

[33] Donald Ervin Knuth. The Art of Computer Program-
ming, Volume 3: (2nd Ed.) Sorting and Searching.
Addison-Wesley, 1998.

[34] Avinash Lakshman and Prashant Malik. “Cassandra: a
decentralized structured storage system”. In: Operating
Systems Review 44.2 (2010), pp. 35–40.

[35] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. “KVell: the design and implementation
of a fast persistent key-value store”. In: Proceedings
of the 27th ACM Symposium on Operating Systems
Principles (SOSP’19). 2019, pp. 447–461.

[36] Lanyue Lu, Thanumalayan Sankaranarayana Pillai,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. “WiscKey: Separating Keys from Values in
SSD-conscious Storage”. In: 14th USENIX Conference
on File and Storage Technologies (FAST’16). 2016,
pp. 133–148.

[37] Siqiang Luo et al. “Rosetta: A Robust Space-Time
Optimized Range Filter for Key-Value Stores”. In:
Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD’20).
2020, pp. 2071–2086.

[38] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick,
and Elizabeth J. O’Neil. “The Log-Structured Merge-
Tree (LSM-Tree)”. In: Acta Informatica 33.4 (1996),
pp. 351–385.

[39] Michael A. Olson, Keith Bostic, and Margo I. Seltzer.
“Berkeley DB”. In: Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference. 1999,
pp. 183–191.

[40] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. “PebblesDB: Building Key-Value
Stores using Fragmented Log-Structured Merge Trees”.
In: Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP’17). 2017, pp. 497–514.

[41] Pandian Raju et al. “mLSM: Making Authenticated
Storage Faster in Ethereum”. In: 10th USENIX Work-
shop on Hot Topics in Storage and File Systems
(HotStorage’18). 2018.

[42] ScyllaDB. ScyllaDB. URL: https://github.com/
scylladb/scylla (visited on 09/01/2020).

[43] UT Systems and Storage Lab. PebblesDB. URL: https:
//github.com/utsaslab/pebblesdb (visited on
08/03/2019).

[44] Tokutec Inc. TokuDB. URL: http://www.tokutek.
com (visited on 09/01/2020).

[45] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-
Dusseau. “Towards an Unwritten Contract of Intel
Optane SSD”. In: 11th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage’19).
2019.

[46] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang.
“LSM-trie: An LSM-tree-based Ultra-Large Key-Value
Store for Small Data”. In: 2015 USENIX Annual
Technical Conference (USENIX ATC 2015). 2015,
pp. 71–82.

[47] Juncheng Yang, Yao Yue, and K. V. Rashmi. “A large
scale analysis of hundreds of in-memory cache clusters
at Twitter”. In: 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’20). 2020,
pp. 191–208.

[48] Ting Yao et al. “MatrixKV: Reducing Write Stalls and
Write Amplification in LSM-tree Based KV Stores
with Matrix Container in NVM”. In: 2020 USENIX
Annual Technical Conference (USENIX ATC 2020).
2020, pp. 17–31.

[49] Huanchen Zhang et al. “SuRF: Practical Range Query
Filtering with Fast Succinct Tries”. In: Proceedings of
the 2018 International Conference on Management of
Data, (SIGMOD’18). 2018, pp. 323–336.

64 19th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/scylladb/scylla
https://github.com/scylladb/scylla
https://github.com/utsaslab/pebblesdb
https://github.com/utsaslab/pebblesdb
http://www.tokutek.com
http://www.tokutek.com

	Introduction
	Background
	REMIX
	The REMIX Data Structure
	Efficient Search in a Segment
	Search Efficiency
	REMIX Storage Cost

	RemixDB
	The Structures of RemixDB Files
	Compaction
	Rebuilding REMIXes

	Evaluation
	Performance of REMIX-indexed Tables
	Performance of RemixDB

	Related Work
	Conclusion

