
This paper is included in the Proceedings of the
19th USENIX Conference on File and Storage Technologies.

February 23–25, 2021
978-1-939133-20-5

Open access to the Proceedings
of the 19th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX.

On the Feasibility of Parser-based Log Compression
in Large-Scale Cloud Systems

Junyu Wei and Guangyan Zhang, Tsinghua University; Yang Wang,
The Ohio State University; Zhiwei Liu, China University of Geosciences;
Zhanyang Zhu and Junchao Chen, Tsinghua University; Tingtao Sun

and Qi Zhou, Alibaba Cloud
https://www.usenix.org/conference/fast21/presentation/wei

On the Feasibility of Parser-based Log Compression in Large-Scale Cloud Systems

Junyu Wei†, Guangyan Zhang†∗, Yang Wang‡, Zhiwei Liu¶, Zhanyang Zhu†,
Junchao Chen†, Tingtao Sun§, Qi Zhou§

†Tsinghua University, ‡The Ohio State University, ¶China University of Geosciences, §Alibaba Cloud

Abstract
Given the tremendous scale of today’s system logs, compres-
sion is widely used to save space. While parser-based log
compressor reported promising results, we observe less in-
triguing performance when applying it to our production logs.

Our detailed analysis shows that, first, some problems are
caused by a combination of sub-optimal implementation and
assumptions that do not hold on our large-scale logs. We
address these issues with a more efficient implementation.
Furthermore, our analysis reveals new opportunities for fur-
ther improvement. In particular, numerical values account
for a significant percentage of space and classic compres-
sion algorithms, which try to identify duplicate bytes, do not
work well on numerical values. We propose three techniques,
namely delta timestamps, correlation identification, and elas-
tic encoding, to further compress numerical values.

Based on these techniques, we have built LogReducer. Our
evaluation on 18 types of production logs and 16 types of
public logs shows that LogReducer achieves the highest com-
pression ratio in almost all cases and on large logs, its speed
is comparable to the general-purpose compression algorithm
that targets a high compression ratio.

1 Introduction

Most systems log internal events for various reasons, such
as diagnosing system errors [9, 36, 48], profiling user behav-
iors [10, 11, 28], modeling system performance [2, 15], and
detecting potential security problems [12, 37].

In today’s datacenters, the size of such logs can grow large.
In 2016, Feng. et al reported their system can generate 100GB
of logs per day [13], and in 2019, this number increased to
2TB per day [30]. AliCloud, a major cloud provider and our
collaborator, can generate several PBs of logs per day.

These logs usually need to be stored for a long time for
multiple reasons: sometimes an anomaly is detected much
later than it was logged, so the developer needs to analyze the

∗Corresponding author: gyzh@tsinghua.edu.cn

past logs [1, 9, 21, 24]; certain analysis may require statistics
over a long period of time to generate a conclusion [10,14,45];
for the purpose of the audition, local laws require a cloud
provider to store these logs for a certain amount of time. As
a result, AliCloud has decided to store its logs for 180 days.
Considering it’s generating several PBs of logs per day, storing
these logs is a considerable overhead even for a big company.

To reduce log size, a classic solution is to compress these
logs. General-purpose lossless compression methods, such as
LZMA [40], gzip [6], PPMd [4], and bzip [41], can compress a
file by identifying and replacing duplicate bytes. A number of
recent works observe that most system logs are generated by
adding variables to a string template (e.g. printf("value=%d",
v)), and thus by separating them, they only need to store the
variables [23, 30, 31, 33, 46]. We call these approaches parser-
based log compression in this paper.

While these works report promising results, we observe
less intriguing performance when applying this method to
production logs from AliCloud: when applying Logzip [30],
the latest one in this line of work, to our logs, we find it’s
seven times slower than LZMA, a general-purpose compres-
sion method targeting a high compression ratio, and Logzip’s
compression ratio is worse than LZMA on 13 out of the 18
types of the logs.

To understand whether such problems are fundamental or
due to engineering issues, we perform a detailed analysis of
Logzip. Our analysis shows that, first, some problems are in-
deed caused by a combination of sub-optimal implementation
and undesirable limits: Logzip is implemented in Python and
uses several notoriously slow libraries and data structures like
Pandas DataFrame [5]; Logzip limits a log entry to have no
more than 5 variables, which is too small for our logs; increas-
ing the limit will further slow down Logzip, which is already
seven times slower than LZMA. We address these issues by
re-implementing the whole algorithm in C/C++, which signif-
icantly improves the compression speed. It further allows us
to remove the limit on the number of variables to improve the
compression ratio as well.

Second, our analysis reveals new opportunities for further

USENIX Association 19th USENIX Conference on File and Storage Technologies 249

improvement. At a high level, Logzip uses general-purpose
compression methods to further compress variables: while
this works well for string variables, it does not work well
for numerical variables, since general-purpose compression
methods target finding duplicate bytes, and there are not much
duplication in numerical data in our experiments. We incor-
porate three techniques to further compress numerical data:

• We observe timestamps account for over 20% of the space
in 8 out of 18 types (even 70% in one type) in the com-
pressed files, mainly because AliCloud needs micro-second
level timing information to accurately identify the order of
events, for the purposes like performance debugging and
resolving conflicts. To compress timestamps, we use the
classic differential method to compute and store the delta
value of two consecutive timestamps.

• We observe that numerical data are often correlated. A
typical example is in an I/O log: when the user performs
sequential I/Os, the offset of the next I/O is equal to the
sum of the offset and length of the previous I/O. Such corre-
lation provides an obvious opportunity to further compress
numerical data. Following this idea, we have developed a
novel algorithm to identify simple numerical correlation in
log samples and apply the found rules during compression.

• We observe most numerical values are small and using
fixed-length coding (e.g. 32 bits for an integer) will gener-
ate many 0 bits at the beginning. We propose elastic cod-
ing, which represents a number with an elastic number of
bytes, to trim leading zeroes. Compared to general-purpose
compression algorithms, elastic coding is more efficient at
trimming leading zeroes; compared to fixed-length coding,
elastic coding can reduce the length when the value is small
but may increase the length when the value is large, which
is a beneficial trade-off given our observation.

By combining all the efforts mentioned above, we have
built LogReducer. We have applied LogReducer to 18 types
of AliCloud logs (1.76TB in total) and 16 types of public logs
(77GB in total). Compared with LZMA, LogReducer can
achieve 1.19× to 5.30× compression ratio on all cases and
0.56× to 3.16× compression speed on logs over 100MB (Lo-
gReducer is comparably slower on smaller logs because of its
initialization overhead). Compared with Logzip, LogReducer
can achieve 1.03× to 4.01× compression ratio and 2.05×
to 182.31× compression speed. Such results have confirmed
that, with proper implementation and optimization, parser-
based log compression is promising to compress large-scale
production logs.

The contribution of this paper is three-fold. First, we study
why state-of-the-art parser-based compression methods do
not perform well on our production logs. Second, based on
the study, we build LogReducer by improving the implemen-
tation of existing methods, applying proper techniques based

on the characteristics of the logs, and introducing new tech-
niques. Finally, we demonstrate the efficacy of LogReducer
on a variety of logs. LogReducer is open source [39].

2 Background

2.1 Structure of Cloud Logs
We collect a large set of logs generated in AliCloud. They
are from different applications developed by different teams,
which serve for various purposes, e.g., warning and error re-
porting, infrastructure monitoring, user behavior tracing, and
periodical summary. Table 1 shows examples of three types
of logs. Samples of all 18 types can be found in [38].

The basic structure of these logs contains three parts:
header, template and variable. A header includes the times-
tamp and the corresponding log level. The header is added
by AliCloud’s logging system automatically and its format is
relatively static, which allows us to use a regular expression
to separate the header from the remaining part. The rest of
this section mainly discusses how to parse the remaining part
into templates and variables.

Templates are the formalized output statements of logs. In
Log F, “Write chunk %s Offset %d Length %d” and “Read
chunk %s Offset %d” are two templates. Variables refer to
the part which varies in each instance of the same template.
In Log F, they include “3242513_B”, “339911”, “11” ,etc.

User behavior tracing (Log F)
[2019-08-27 15:21:24.456234] [INFO] Write chunk: 3242513_B
Offset: 339911 Length: 11
[2019-08-27 15:21:24.463321] [INFO] Read chunk: 3242514_C
Offset: 272633
[2019-08-27 15:21:24.464322] [INFO] Write chunk: 3242512_F
Offset: 318374 Length: 7
[2019-08-27 15:21:24.474433] [INFO] Write chunk: 3242513_B
Offset: 339922 Length: 55

Infrastructure monitoring (Log D)
[2018-01-12 08:53:12.188370] [10593] project:393 logstore:
XDoFiqnlmZd shard:78 inflow:3376 dataInflow:18869
[2018-01-12 08:53:12.188390] [10593] project:656 logstore:
lOdMafL31Pg shard:37 inflow:7506 dataInflow:42712

Warning and error reporting (Log Q)
Aug 28 03:09:02 h10c10322.et15 su[57118]: (to nobody) root on
none
Aug 28 03:09:02 h10c10322.et15 su[57118]: session opened for
user nobody by (uid=0)

Table 1: Examples of logs in AliCloud.

2.2 Parser-based Log Compressor
Parser-based log compression first uses a log parser to iden-
tify the template of each log entry and extract the correspond-
ing variables; it then replaces the template string with a tem-
plate ID to save space; it finally applies general-purpose com-
pression methods to variables to further reduce space.

250 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 1: Parser tree architecture.

Log parser can be implemented using longest common
string [8], clustering [35], and parser tree [23], among them
parser tree shows better effectiveness [49]. Here we first
present the concept of parser tree and then show how to build
the parser tree and use it to separate templates and variables.

Parser tree. Given a list of templates and log entries, a
naive approach to match the entry to a template is to compare
the entry to each template and find the template which is most
similar to the entry. However, when there are many templates,
such one-by-one comparison is inefficient.

To improve the efficiency of template matching, several
works [23, 30] use a parser tree to facilitate the matching: as
shown in Figure 1, each leaf of the parser tree is a group of
templates sharing the same length (i.e., the number of tokens
in a log message); the first layer of internal nodes use the
length of the log entry to categorize the entry; the following
layers of internal nodes form multiple paths, each of them
leads to a leaf node in the parser tree. Both the internal node
and the template use “<*>” to represent a variable.

Assuming we have built a parser tree as shown in Figure 1,
and we have a log entry “Read chunk 3242514_C Offset
272633”: since its length is 5, we will first go to the internal
node “Length=5”; since its first token is “Read”, we will then
go to the internal node “Read”; and then “chunk”; finally
we will compare the log entry with each template in the leaf
node and find “Read chunk <*> Offset <*>” is closest to
the log entry, so we will choose this template and identify
“3242514_C” and “272633” as variables.

Building the parser tree. Parser-based log compressor first
builds the parser tree by parsing a sample of the log entries.
For each log entry, the log parser performs four steps, and we
use log entry “Read chunk 3242514_C Offset 272633” as an
example to explain these steps. In the beginning, the parser
tree just has one root node.

In the first step, the log parser uses predefined split charac-
ters, such as empty space or comma, to split a log entry into
a list of strings called tokens. In our example, the raw log

message will be divided into “Read”, “chunk”, “3242514_C”,
“Offset”, “272633” accordingly.

In the second step, the log parser will check whether the
internal node of the length exists (Length=5 in our case). If
not, the log parser will create a new internal node. Finally, it
moves to the corresponding internal node.

In the third step, the log parser traverses the tree according
to the tokens in the log entry and moves to corresponding
internal nodes (“Read” and “chunk” in our example). After
reaching the limitation of tree depth, it reaches a leaf node,
which contains a group of templates. If the corresponding
internal node does not exist, the log parser will build the
internal node and add the node to the prefix tree.

Definition 1. Similarity between log L and template T (li is
the ith token in L; ti is the ith token in T; φ(a,b) = 1 if a = b,
otherwise φ(a,b) = 0, | · | is the number of tokens in a log)

Similarity(L,T) =
∑φ(li, ti)
|L|

(1)

In the fourth step, the log parser searches for the most
similar template in this template group using a similarity
function defined in equation 1. If the largest similarity is
smaller than a threshold ε, the log parser will create a new
template, which is the same as the log entry. Note that at this
moment the log parser cannot tell which tokens of the log
entry are variables. If the largest similarity is larger than ε,
the log parser will regard this log entry as an instance of the
matching template and update the template accordingly to
mark different parts as variables.

For example, suppose the log parser first parses “Read
chunk 3242514_C Offset 272633”: since there is no template
yet, the log parser will create a new template “Read chunk
3242514_C Offset 272633”. Then suppose the log parser
processes “Read chunk 3242514_B Offset 268832”: its simi-
larity to “Read chunk 3242514_C Offset 272633” is 0.6, so
if ε is smaller than 0.6, the log parser will consider “Read
chunk 3242514_B Offset 268832” as an instance of “Read
chunk 3242514_C Offset 272633” and update the template
into “Read chunk <*> Offset <*>”; if ε is larger than 0.6, the
log parser will treat “Read chunk 3242514_B Offset 268832”
as a new template.

Compressing logs. Then the compressor uses the parser
tree to compress logs [30]. The procedure is similar to build-
ing a parser tree, except that in this phase, the compressor
will not update the parser tree. It will first utilize the parser
tree to try to match each log entry to a template. If a match is
found, the log entry will be converted to the template ID and
the variables; if no template is matched, the log entry will be
regarded as a mismatch and will not be converted.

Afterward the compressor will group log entries according
to their template IDs and store their variables in a column
manner, i.e., it first stores the first variable of each log entry

USENIX Association 19th USENIX Conference on File and Storage Technologies 251

in the group, then stores the second variable, and so on. The
column-based storage is based on the observation that vari-
ables at the same position of the same template are prone
to have more redundancy, so that sliding window based al-
gorithms such as LZ77 [40] will have more chances to trim
redundancy. Finally the compressor concatenates everything
and compresses it with a general-purpose compressor.

3 Restore the Promise of Parser-based Log
Compression

We tested Logzip, the most recent parser-based log compres-
sion implementation, on 18 types of AliCloud’s production
logs. First, we find the value of the similarity threshold ε has
a critical impact on the performance of Logzip. When using
Logzip’s default value 0.5, we find Logzip takes nearly 20
days to build the parser tree and can generate tens of thou-
sands of templates, which impairs both the speed and the
compression ratio. We tuned this value on our logs and found
a value of 0.1 works well for almost all of our logs. This is
due to the following reason: Logzip was mainly tested on PC
logs, which usually are short and only contain a small number
of variables; AliCloud’s logs usually have more variables (see
Table 2), and thus logs within the same templates are quite
different from each other, i.e., they share only a small number
of common tokens. Therefore, to extract the correct templates,
we need a smaller ε. Manual tuning is always undesirable in
a production environment: while we find the value 0.1 works
well, for environments with more versatile logs, an automatic
tuning procedure might be beneficial.

We continued testing Logzip with ε = 0.1 and found the
result is still not ideal in terms of both compression ratio
and compression speed: compared with LZMA, the general-
purpose compression algorithm that can achieve the highest
compression ratio on our logs, Logzip is seven times slower,
and on 13 out of the 18 types of logs, Logzip’s compression ra-
tio is lower (§6.1). Our detailed analysis revealed a correlated
problem between compression ratio and speed:

Logzip implementation assumes that a log entry usually has
no more than five variables: for log entries with more than five
variables, Logzip will regard content after the first variable as
a large variable, and feed it to the general-purpose compressor.
However, as shown in Table 2, this assumption does not hold
on most of our logs (many have over 10 variables and one has
176 variables). As a result, Logzip loses its effectiveness on
our logs, which can explain its poor compression ratio.

We tried to increase this limit and found it further exacer-
bates the speed problem of Logzip: while Logzip is already
seven times slower than LZMA with the limit of five variables,
increasing the limit to 256 will make Logzip unbearably slow,
which might be the reason Logzip sets a small limit. We pro-
filed Logzip to understand its bottleneck and found it has used
several notoriously slow libraries or data structures including

Pandas DataFrame, Python array append, etc. To address this
problem, we re-implement the whole algorithm in C/C++ and
dramatically improve the speed. The increased speed allows
us to remove the limit of five variables as well. We further
improve the speed with the following techniques:

Cutting the Parser Tree. We have observed that the total
number of templates in our production logs is usually small: as
shown in Table 2, 15 types of logs have less than 50 templates.
If we group them based on length, the number of templates in
one group is even smaller.

The reason behind this observation is that these cloud logs
are generated by developers in the operation engineering
group of AliCloud, and thus their patterns are relatively static
compared to logs generated by cloud users.

Based on this observation, we cut the parser tree into only
one layer in the compression phase: we only take length into
consideration and we store templates with the same length
together and search them one by one. This optimization has
improved compression speed and avoided the tuning of the
depth of the parser tree.

Batch processing. If we need to compress a large number
of small log files, and we start one compressor process to
compress each log, we observe the overhead to start and stop
processes could slow down the whole compression signifi-
cantly. Therefore, we allow our compressor to take a batch of
log files as inputs and compress them together.

With all the efforts mentioned above, we have restored
the promise of parser-based compression: as shown in §6.2,
compared with LZMA, our implementation (i.e., LogReducer-
B) can achieve 1.16× - 3.73× compression ratio and 0.51× -
2.01× compression speed.

4 Further Compressing Numerical Variables

We have done a detailed analysis on the compressed files gen-
erated by the previous step and found that in 10 of the 18 types
of logs, numerical variables account for over 50% space after
compression; for other types of logs the rate is at least 20%;
in three cases, the rate is over 80% (Table 3). This is because
1) our logs have a large number of numerical variables and 2)
general-purpose compression methods, which try to identify
redundant bytes, do not work well with numerical variables.

4.1 Compressing Timestamps
Our analysis shows that timestamps are the first dominant
numerical data in our logs. As shown in Table 3, in eight types
of logs, timestamps account for more than 20% of space. In
one case, this rate can reach close to 70%.

This is because AliCloud needs precise timing information
to order events, for purposes like debugging and auditing.
In its environment, system logs can be generated at a high

252 19th USENIX Conference on File and Storage Technologies USENIX Association

Log type Log A Log B Log C Log D Log E Log F Log G Log H Log I
of templates 42 29 3 6 74 7 202 39 48

Avg. # of variables 14 5 10 13 22 12 7 57 176
Log type Log J Log K Log L Log M Log N Log O Log P Log Q Log R

of templates 29 10 4 16 49 1 20 43 130
Avg. # of variables 3 46 7 9 4 13 22 2 5

Table 2: Template information on 18 types of logs in AliCloud.

Log type Log A Log B Log C Log D Log E Log F Log G Log H Log I
Number Rate(%) 46.63 68.51 52.19 82.86 51.69 88.42 33.92 45.51 31.65

Time Rate(%) 36.75 38.97 15.28 15.49 10.42 10.07 22.88 31.23 4.22
Log type Log J Log K Log L Log M Log N Log O Log P Log Q Log R

Number Rate(%) 39.27 69.85 24.89 53.54 53.40 78.47 27.30 29.36 84.96
Time Rate(%) 26.96 7.18 9.32 21.53 25.63 14.79 15.77 14.90 68.27

Table 3: Space consumption of numerical variables and timestamps in compressed file.

speed, up to one million entries per second, which motivates
AliCloud to record timestamps at micro-second level. As a
result, first, it takes more bits to store the microsecond level
timestamps than millisecond or second level timestamps, and
second, there is not much redundancy in the timestamps.

To compress timestamps, we use the classical differential
method, which records the delta value between two consec-
utive timestamps. This method can significantly reduce the
size of timestamps when the target system generates logs fre-
quently, namely the delta value will be small. By using this
method, we can reduce the space overhead and pass a much
smaller number to the general-purpose compressor, which can
improve both compression ratio and compression speed.

4.2 Correlation Identification and Utilization
We observe numerical variables sometimes are correlated. For
example, in an I/O trace, if the user performs sequential I/Os,
the offset of the next I/O will be equal to the sum of the offset
and length of the previous I/O.

Such correlation provides an obvious opportunity to com-
press numerical data. If most values of certain variables follow
certain kind of correlation, we only need to store how values
deviate from the correlation in a residue vector; since most
values of the residue vector will be zeroes, they will be effec-
tively compressed by a general-purpose compressor.

For example, for logs of type Log F with templates “Write
Chunk <*> Length <*> Offset <*> Version <*>”, we can
extract four variables from the template and three of them
are numerical variables, namely ~L (Length), ~O (Offset), ~V
(Version). In our logs, we find three types of correlations in
these variables. Note that the values of each variable form a
vector since there are multiple log entries.

• Inter-variable correlation: Version is often equal to the sum
of Offset and Length, namely ~V =~L+ ~O, and its residue
vector is ~V −~L− ~O.

Figure 2: Numerical correlations observed on Log F.

• Intra-variable correlation: Lengths of the same Chunk ID
are often close. We can compute its residue vector as~L[i]−
~L[i−1] = ~∆L.

• Mixed correlation: if the user is performing sequential I/Os
to a chunk, then its lengths and offsets have the following
correlation: ~O[i] = ~O[i−1]+~L[i−1]. Its residue vector is
~O[i]− ~O[i−1]−~L[i−1] = ~∆O−~L.

Correlation identification. We propose a novel method to
identify such correlation. The goal of correlation identifica-
tion process is to find the relationship across and within dif-
ferent variables so that we can represent some variables with
residue vectors, which can be compressed more effectively. To
achieve this goal, we first enumerate different combinations
of variables, the IDs to group different entries (e.g. ChunkID
in Figure 2), and the aforementioned correlation rules, and
compute the corresponding residue vectors. Then we select
vectors from the original vectors and the residue vectors with
the goals of 1) maximizing compression ratio and 2) being
able to recover all original vectors.

The whole identification process is illustrated in algorithm
1, which maintains three sets: the target set ψ; the recover

USENIX Association 19th USENIX Conference on File and Storage Technologies 253

set R including all original vectors that can be recovered
from the current ψ; the total candidate set T including all
candidate vectors. One of its key data structure is a map from
the candidate vectors to original vectors: map(~C) will return
all original vectors that ~C is built from (e.g., map(~A−~B) = ~A
and ~B).

Algorithm 1 Correlation identification algorithm
1: Recoverable set R= /0

2: Final vector set Ψ = /0

3: Initialize candidate set T
4: repeat
5: C = {~C ∈ T : |map(~C)−R|= 1}
6: ~Cmin = vector with the smallest entropy in C.
7: Ψ←Ψ∪~Cmin
8: R← R∪map(~Cmin)
9: until R contains all original vectors

10: Output Ψ

The algorithm works in iterations: in each iteration, it first
tries to find all candidate vectors ~C that can recover one more
variable compared to the current recoverable set R (line 5);
then among them, it chooses the one with the highest com-
pression ratio (line 6). Here we predict the compression ratio
of a candidate using its Shannon Entropy [26], defined in
Definition 2; finally it updates Ψ and R accordingly (lines 7
and 8); it repeats this until Ψ can recover all original vectors
(line 9). The cost of enumeration is acceptable, since it is
performed on samples of logs.

Definition 2. Entropy for a variable vector. SA denotes the
set of all values appearing in ~A and #(s) denotes the number
of times the value s appears in ~A.

E(~A) =− ∑
s∈SA

#(s)
|A|

log
#(s)
|A|

(2)

In Figure 2, Ψ will finally contain three residue vectors,
namely:{ ~∆L, ~∆O−~L,~V −~L− ~O}. These three residue vectors
are enough to recover all original variable vectors~L, ~O,~V , and
will have a higher compression ratio than the original variable
vectors.

Correlation utilization. The output of the training phase
for numerical correlations is the target vector set Ψ. In the
compression phase, we calculate each residue vector in set
Ψ and discard original vectors that do not appear in Ψ. If we
apply three correlations in Ψ to our example in Figure 2, the
result is shown in Figure 3. As one can see, for variables that
perfectly match certain rules, their residue vectors contain
many zeroes; even for those that do not perfectly match the
rules, their values are smaller, which facilitates the elastic
encoder discussed in the following section.

Figure 3: Processing result of logs in Figure 2.

4.3 Elastic Encoder
The simplest way to represent numerical variables is to use
fixed number of bytes (e.g. 4 bytes to represent an integer,
8 bytes to represent a long value, etc). However, if most
numbers are small, these bytes will contain many leading
zeroes (for positive numbers) or ones (for negative numbers).
General-purpose compression may be able to find such con-
secutive zeroes or ones, but since it needs to search for such
zeroes/ones and store additional metadata to record the length
of zeroes/ones, we design a dedicated encoding algorithm to
trim leading zeroes.

To efficiently exploit such opportunity, we apply an elastic
encoding method to store numbers according to their size.
We cut the 32-bit integer into 7-bit segments and add one bit
to each segment, indicating whether the segment is the last
segment (1 means it is the last). Then we discard the prefix of
segments containing only zeroes. Here we choose the number
7 because, after adding one bit, each segment takes a byte,
which is easy to handle.

For a negative number represented by two-complement
encoding, it is not trivial to just change all ones to zeroes,
since the leading ones include the first bit which indicates this
number is a negative number. To overcome this problem, we
adopt a shifting operator [43] to move the first bit to the last
position and reverse all other bits if the original number is
negative. By adopting this method, we will process negative
numbers in the same way as processing positive ones.

By using elastic encoding, we will trim the leading ze-
ros/ones at the cost of adding one-bit metadata for every re-
maining 7 bits. Therefore, the smaller the number is, the more
redundancy we can trim. More precisely, for an integer be-
tween [−27n,−27(n−1))∪ (27(n−1)− 1,27n− 1](0 < n < 6),
elastic encoding can save (32−8n) bits compared with using
fixed 32 bits. In our logs, we find this method can save 24 bits
(i.e., n = 1) for more than 60% of the numbers.

Note that both delta timestamps and applying correlation
contribute to the effectiveness of elastic encoding since these
techniques tend to make numbers smaller.

5 Architecture and Implementation

Based on the observations and ideas mentioned previously,
we have built LogReducer, a parser-based log compressor,

254 19th USENIX Conference on File and Storage Technologies USENIX Association

Figure 4: LogReducer architecture.

with about 3,000 lines of C/C++ code. Figure 4 shows its
architecture. LogReducer contains two phases, training phase
and compression phase.

Training. Training phase is done over sampled data. It uses
a parser to extract templates (§2) and a correlation miner to
find possible correlations (§4.2). At the end of this phase,
LogReducer may find a list of templates and correlation rules.

Just like any other methods relying on sampling, we expect
such samples to capture the properties of real logs as much
as possible. Traditional parser-based compression methods
like Logzip only need to extract templates during the training
phase, and since the template of a log entry only depends
on the entry itself, these methods can use random sampling.
LogReducer, however, tries to identify data correlation across
adjacent log entries, and random sampling will lose such
relationship. To address this challenge, we first randomly pick
several starting points and then choose a contiguous sequence
of logs from each starting point. This method shows good
performance on both extracting templates and identifying
correlations across adjacent log entries.

Compression. In the compression phase, for each log en-
try, LogReducer will first extract its header. LogReducer will
further extract the timestamps from the headers and compute
the delta values of consecutive timestamps (§4.1). Then Lo-
gReducer will try to match the log entry to templates using
the parser (§3) and apply founded correlations to numerical
variables (§4.2). Then LogReducer will encode all numerical
data, including timestamps, numerical variables, and template
IDs, using elastic encoder (§4.3). Finally, LogReducer will
pack all data using LZMA since we find it can almost always
achieve the highest compression ratio on our logs.

In order to illustrate the whole process of compression,
we exhibit a complete compression case. Suppose we have
four input log entries of Log F shown in Table 1 (§2) and the
templates and correlations founded in the training phase.

LogReducer first extracts their headers and matches their
bodies to templates. The results are shown in Table 4, in which

each log entry is divided into three parts, namely log header,
template ID, and corresponding variables. Here the second
log entry belongs to template:"Read chunk <*> Offset:<*>",
whose template ID is 2 and the other three log entries be-
long to template: "Write chunk <*> Offset:<*> Length:<*>",
whose template ID is 1. As a result, template 2 has two vari-
ables and template 1 has three variables.

Headers Template ID V1 V2 V3
[2019-08-27 15:21:24.456234]
[INFO] 1 3242513_B 339911 11

[2019-08-27 15:21:24.463321]
[INFO] 2 3242514_C 272633 -

[2019-08-27 15:21:24.464322]
[INFO] 1 3242512_F 318374 7

[2019-08-27 15:21:24.474433]
[INFO] 1 3242513_B 339922 55

Table 4: Extracting headers and matching templates.

Then LogReducer will compute the difference of adjacent
timestamps and utilize correlations over numerical variables.
Table 5 shows the result of these steps: all timestamps become
much smaller except the first one; since LogReducer identifies
the sequential access pattern for 3242513_B, it does not need
to store the offset of the second access and we calculate the
delta result for write length of the same chunk (i.e., log entry
4). Finally LogReducer encodes all numerical results using
elastic encoder, organizes all variables in a column manner,
and packs them with LZMA.

Time Other Header Template ID V1 V2 V3
2019 08 27 15 21 24
456234 [INFO] 1 3242513_B 339911 11

0 0 0 0 0 0
7087 [INFO] 2 3242514_C 272633 -

0 0 0 0 0 0
1001 [INFO] 1 3242512_F 318374 7

0 0 0 0 0 0
10111 [INFO] 1 3242513_B 0 44

Table 5: Computing the delta values of timestamps and apply-
ing correlation.

Others. In cloud environments, logs usually contain a large
amount of information. To make such information easy to be
understood by humans, logs often need to be truncated into
several lines. Such multi-line log entries do not exist in the PC
logs where Logzip was tested upon. Logzip simply treats them
as a mismatch, which obviously reduces its effectiveness.

We calculate the rate of multi-line logs in our production
logs and find in Log H and Log R, the rate of multi-line
logs have reached up to 5% of the whole size. To support
multi-line log entries, we do not split log entries based on a
new line symbol; instead, we split log entries based on log
headers, as we discussed in §2.1. Doing so achieves both
higher compression ratio and higher compression speed.

Besides, to improve the generality of LogReducer beyond
AliCloud logs, we implement a head-format adaptor: based on
the assumption that the number of tokens in the head is static

USENIX Association 19th USENIX Conference on File and Storage Technologies 255

for the same type of logs, this adaptor tries to treat the first n
tokens as the head (it tries n = 1 to 10 in our experiments) to
see which n value can achieve the best compression ratio.

6 Evaluation

Our evaluation tries to answer three questions:

• What is the overall performance of LogReducer in terms
of compression ratio and compression speed on AliCloud
logs? (§6.1)

• What is the effect of each individual technique of LogRe-
ducer? (§6.2)

• How does LogReducer perform on logs beyond AliCloud
logs? (§6.3)

To answer these questions, we measure the performance of
LogReducer on 18 types of production logs from AliCloud
with a total size of about 1.76TB (Table 6). We measure both
the compression ratio (i.e., Original size

Compressed size) and the compres-
sion speed (MB/s).

For comparison, we also measure the performance of two
general-purpose compression algorithms (gzip and LZMA)
and two log-specific compression algorithms (LogArchive [3]
and Logzip [30]). gzip is a classical compression tool. It tar-
gets high compression speed instead of a high compression
ratio. We use "tar" [7] command to compress log dataset with
gzip. LZMA is a well-studied general-purpose compression
method based on LZ77 [40] algorithm. It has a high com-
pression ratio but a relatively low compression speed. We use
7z [50] to compress the log data with LZMA. LogArchive
is a bucket-based log compression method. We use its open-
source code to compress our logs data [17]. Logzip is the
latest implementation of parser-based compressor. We use
its open-source code [19]. Note that as discussed in §3, we
change the ε value of Logzip from 0.5 to 0.1.

Testbed. We perform all experiments using 4 Linux servers,
each with 2× Intel Xeon E5-2682 2.50GHz CPUs (with 16
cores), 188GB RAM, and Red Hat 4.8.5 with Linux kernel
3.10.0. For each method, we use 4 threads to compress the
log data in parallel and sum their total time.

6.1 Overall Performance
Compression ratio. As shown in Figure 5(a), LogReducer
has the highest compression ratio on all logs. It can achieve
1.54× to 6.78× compression ratio compared to gzip, 1.19×
to 4.80× compared to LZMA, 1.11× to 3.60× compared to
LogArchive, and 1.45× to 4.01× compared to Logzip.

In our experiments, Logzip failed on Log I; LogArchive
failed on Log I and Log J. Both of these two logs have much
longer log entries than others, which causes buffer overflow
in Logzip and LogArchive. We use LZMA to compress failed
logs, since it is the default setting of Logzip and LogArchive.

LogReducer can compress all 1.76TB log dataset into
34.25GB, which takes only 1.90% space after compression.
gzip, LZMA, LogArchive, and Logzip can compress all
1.76TB into 152.03GB, 107.22GB, 91.54GB, and 89.86GB
respectively. As a result, their space consumption is 4.44×,
3.13×, 2.67× and 2.62× as much as LogReducer respec-
tively.

We further compute the improvement of LogReducer over
the best of the other four algorithms on all 18 logs. LogRe-
ducer has the highest improvement on Log F and lowest im-
provement on Log L due to the following reasons: Log F
has several typical correlations we discussed in §4.2 and Lo-
gReducer can identify them and trim redundancy effectively,
while other works cannot utilize such correlation. Log L has
a low percentage of numerical values (only 24.89%) and
timestamps (only 9.32%), which means the new techniques
introduced by LogReducer are not very effective.

Compression speed. As shown in Figure 5(b), LogReducer
is 4.01×-182.31× as fast as Logzip and 4.49×-11.65× as
fast as LogArchive. LogReducer is comparable to LZMA in
compression speed (0.56×-3.16×): it is slower than LZMA
on 8 out of 18 logs; in some special cases (Log K, Log F, Log
O) LogReducer is 2×-3× as fast as LZMA. LogReducer is
slower than gzip, as gzip is optimized for speed. We do not
show the speed of gzip in Figure 5(b) since its high value will
make other bars hard to distinguish.

To compress all 1.76TB logs, LogReducer takes 58.19
hours; Logzip takes nearly 27 days; LogArchive takes nearly
23 days; LZMA takes 91.54 hours; gzip takes 25.35 hours. In
other words, LogReducer is 11.22×, 9.43×, and 1.57× as fast
as Logzip, LogArchive, and LZMA respectively; it is about
60% slower than gzip.

6.2 Effects of Individual Techniques

This section measures the effects of individual techniques
presented in §3 and §4.

We use an efficient re-implementation of parser-based com-
pressor as our baseline (LogReducer-NB), which includes the
C/C++ implementation, removing the limit on the number
of variables, and cutting the parser tree (§3). We add batch
processing on LogReducer-NB to get LogReducer-B (§3),
add delta timestamps on LogReducer-B to get LogReducer-D
(§4.1), add elastic encoding approach on LogReducer-D to get
LogReducer-ED (§4.3) and finally add numerical correlation
utilization (§4.2) on LogReducer-ED to get the full version
of LogReducer. The result is shown in Table 7.

As one can see, the efficient re-implementation (NB ver-
sion) significantly improves the compression ratio and com-
pression speed over Logzip in almost every type of logs. This
has confirmed one of our key observations: an efficient imple-
mentation is critical to realize the full potential of parser-based
log compression.

256 19th USENIX Conference on File and Storage Technologies USENIX Association

Log type Log A Log B Log C Log D Log E Log F Log G Log H Log I
Total Size(GB) 18.67 16.05 45.82 65.74 34.98 443.30 148.88 0.19 14.20
Total Line(106) 74.74 72.60 231.43 406.98 77.56 1425.37 579.94 1.08 8.65
Time Span(H) 476 75 87 20 6 8 1563 32 8977

Log type Log J Log K Log L Log M Log N Log O Log P Log Q Log R
Total Size(GB) 18.67 16.05 45.82 65.74 34.98 443.30 148.88 0.19 14.20
Total Line(106) 74.74 72.60 231.43 406.98 77.56 1425.37 579.94 1.08 8.65
Time Span(H) 85 3335 238 30 174 1512 62 165 722

Table 6: Log dataset description.

 gzip LZMA LogArchive LogZip LogReducer

Log

(a) Compression ratio

A B C D E F G H I J K L M N O P Q R
0

2

4

6

8

10

Co
m

pr
es

sio
n

Sp
ee

d(
M

B/
s)

Log

(b) Compression speed

Figure 5: Performance on AliCloud logs

The B version (batch processing) is over 1.5× as fast as the
NB version on 10 logs. In particular, it is 1.99× and 1.82×
as fast as the NB version on Log D and Log C. These two
logs have many files and thus LogReducer can save much
time by batch processing. Batch processing has no impact
on compression ratio as it does not change the logic of the
compression algorithm.

The compression ratio of the D version (delta timestamps)
is over 1.1× as high as the B version on 3 logs and over
1.05× as high on 7 logs. In particular, its compression ratio is
1.24× as high as the B version on Log R. Delta timestamps
can bring significant improvement to logs which have a large
percentage of timestamp values: Log R, Log A and Log H
have the highest, third highest and fourth highest timestamp
percentage among all 18 logs (see Table 3) and thus can
benefit from delta timestamps. Log B, which has the second
highest timestamp percentage, is relatively sparser and does
not benefit much from delta timestamps. Delta timestamps
improves compression speed as well by feeding a smaller
intermediate result to the general-purpose compressor: it is

over 1.05× as fast as the B version on 6 logs.
The compression ratio of the ED version (elastic encoding)

is over 1.05× as high as the D version on 12 logs. It mainly
improves compression ratio on logs with a large percentage
of small numbers, such as Log D, Log R, and Log M. The
ED version is over 1.5× as fast as the D version on 5 logs
and 1.2× as fast on 11 logs, since elastic encoding provides a
dedicated and thus more efficient way to trim leading zeroes
or ones compared with general-purpose methods.

The compression ratio of the LR version (correlation iden-
tification and utilization) is over 1.05× as high as the ED
version on 4 logs. In particular, it is 2.07× as high as the ED
version on Log F and 1.13× as high on Log O, because corre-
lations are common in these two logs. It will incur overhead,
its speed is 0.7× to 1.05× compared with ED version.

6.3 Performance on Public Logs
To examine the generality of LogReducer beyond AliCloud
logs, we evaluate LogReducer on 16 types of public logs [18]

USENIX Association 19th USENIX Conference on File and Storage Technologies 257

Compression Ratio Compression Speed (MB/s)
LZMA Logzip B & NB D ED LR LZMA Logzip NB B D ED LR

Log A 19.30 37.34 53.96 61.94 63.79 63.86 7.03 0.22 3.99 6.42 6.31 7.58 7.23
Log B 17.91 17.64 32.66 33.55 35.63 35.67 7.25 0.79 3.80 6.75 7.21 9.52 8.63
Log C 15.48 12.61 30.36 32.30 34.80 35.81 5.06 0.68 3.47 6.31 6.17 9.50 8.22
Log D 12.16 11.57 23.08 24.50 26.56 27.26 4.08 0.66 2.84 5.64 5.29 9.80 7.83
Log E 14.19 7.73 22.99 23.35 24.73 25.22 4.89 0.64 4.33 5.34 5.42 6.93 6.22
Log F 11.58 10.69 16.32 16.47 17.62 36.42 3.60 0.81 3.32 4.33 4.33 8.00 8.44
Log G 16.58 13.42 30.23 31.76 33.00 32.99 7.35 0.34 4.07 5.89 6.52 7.27 7.17
Log H 17.73 27.73 34.85 38.58 40.05 40.08 7.15 0.99 3.71 3.64 3.83 3.96 3.98
Log I 11.95 / 13.88 13.88 14.03 14.26 4.05 / 5.26 3.81 3.57 3.85 3.81
Log J 17.46 9.04 31.16 33.25 34.94 36.22 7.76 0.03 2.72 4.37 4.60 4.82 4.78
Log K 12.14 11.20 23.88 24.51 25.74 26.97 3.39 0.67 4.53 6.82 6.24 10.76 10.72
Log L 12.38 11.62 17.75 17.96 18.43 18.48 6.01 1.17 2.55 4.74 4.80 5.47 4.71
Log M 18.42 14.20 37.56 39.14 43.56 43.99 7.10 0.67 4.90 5.22 6.55 7.21 5.75
Log N 14.11 13.64 22.43 22.63 23.71 25.01 5.28 0.77 3.56 5.68 5.66 7.61 7.38
Log O 8.25 5.23 11.35 11.28 12.05 13.67 2.48 0.64 2.52 3.42 3.44 7.15 5.98
Log P 22.73 10.61 34.90 35.98 36.92 37.58 8.22 0.63 5.75 5.52 7.14 9.32 6.64
Log Q 20.55 31.27 76.72 79.05 83.09 84.25 6.78 0.68 2.41 3.67 3.72 3.76 3.77
Log R 22.82 55.63 80.73 100.44 109.21 109.51 7.67 1.07 4.94 8.23 7.85 10.87 9.95

Table 7: Effects of individual techniques on compression ratio and compression speed. X is short for LogReducer-X (X∈{B, NB,
D, ED}). LR stands for the full version of LogReducer. “/”: Logzip failed on Log I.

from diverse sources [25, 49]. As shown in Figure 6, the com-
pression ratio of LogReducer is 1.03×–3.15× compared with
Logzip, 1.19×–5.14× compared with LogArchive, 1.23×–
5.30× compared with LZMA, and 1.79×–20.27× compared
with gzip. We further investigate the logs on which LogRe-
ducer has less improvement: some of them have too many
templates (e.g. Android, Thunderbird), which causes all parse-
based methods, including LogReducer, to have many mis-
matches; some of them have only a few variables and even
fewer numerical variables (e.g., Thunderbird, Proxifer), which
causes LogReducer’s optimizations to be less effective; in
addition, LogZip has a specific optimization for HDFS log,
which improves the compression ratio of LogZip.

In terms of compression speed, LogReducer is 2.05×–
101.12× as fast as Logzip and 1.79×–9.95× as fast as Log-
Archive. LogReducer is slower than LZMA by up to 5.88×
and than gzip by up to 36.16× due to two reasons. First, since
over half of the logs are smaller than 100MB, the initializa-
tion overhead of LogReducer (e.g. space allocation) becomes
significant, taking over 40% of the time. Second, some cases
have too many templates (e.g. Android, Thunderbird), which
causes a low matching rate and a waste of time.

Such results have confirmed the assumptions of LogRe-
ducer: LogReducer is mainly designed for large-scale logs
with a small number of templates and many variables. When
such assumptions hold, LogReducer can perform significantly
better than existing methods; when such assumptions do not
hold, LogReducer is less effective but can still achieve the
highest compression ratio.

7 Related Work

Log parser. Log parser focuses on the extraction process
of log templates, which can be divided into three types:
cluster-based methods (LKE [14], LogSig [44], SHISO [34],
LenMa [42], LogMine [20]), frequent-pattern-based methods
(SLCT [46], LFA [35]), and heuristic-structure-based methods
(IPLoM [32], AEL [27], Drain [23]).

Cluster-based methods divide the logs into clusters and ex-
tract templates for each cluster. Pattern-based methods try to
extract frequent patterns from log entries and regard them as
constant templates. Heuristic methods will extract log struc-
ture based on observations of log entries. Zhu et al. [49]
compare these methods and find that Drain performs better
than others. As a result, both Logzip and our implementation
are based on Drain.

Number encoding methods. LevelDB [16] has used vari-
ant encoding to represent numbers based on their size.
Thrift [43] has used Zigzag encoding to get more leading
zero to enable efficient data serialization when communicat-
ing between processes. Compared with them, LogReducer
further uses elastic encoding to reduce the space overhead of
storing numerical variables.

General-purpose compression approaches. These meth-
ods can be categorized into three kinds: statistic-based,
predict-based, and dictionary-based. Statistic-based compres-
sion methods (e.g., Huffman coding [40], Arithmetic cod-
ing [47]) first collect statistic information about input logs
and then design variant length coding for each tokens. Predict-

258 19th USENIX Conference on File and Storage Technologies USENIX Association

 gzip LZMA LogArchive LogZip LogReducer

Log

(a) Compression ratio. Numbers above bars denote compression ratios exceeding 70.

Android
Apache Bgl Hadoop Hdfs

Healthapp Hpc Linux MacOpenstack
Proxifier Spark Ssh

Thunderbird
Windows

Zookeeper

0

2

4

6

8

10

Co
m

pr
es

sio
n

Sp
ee

d(
M

B/
s)

Log

(b) Compression speed

Figure 6: Performance on public dataset.

based compression methods (e.g., PPMd [4]) predict the
next token based on current context during reading the input
stream, and assigns a shorter encoding if prediction is suc-
cessful. Dictionary-based compression methods (e.g., LZMA,
gzip) search for similar tokens in a sliding window and store
them in a dictionary when processing the input stream.

Statistic-based methods need to read the input log file twice.
As a result, when the input log file is large, they are not effi-
cient. With prediction-based methods, the appearance of vari-
ables will decrease the prediction accuracy. Dictionary-based
methods may lose the chance to trim redundancy within a long
distance, and do not take the delta of timestamps and correla-
tion of variables into consideration, since they are not related
to redundancy literally. Our methods utilize general-purpose
compression approaches and improve their effectiveness on
log data.

Log-specific compression approaches. These methods
can be divided into two categories: parser-based and non
parser-based. CLC [22], LogArchive [3], Cowic [29] and
MLC [13] process variables and templates together. CLC tries
to find the frequent patterns shown in log files and processes
these patterns directly. LogArchive uses similarity function
and sliding windows to divide log entries into different buck-
ets and compresses buckets together to improve compression
ratio. Cowic does not focus on the compression ratio. Instead,
it tries to decrease the decompression latency by only decom-
pressing needed logs rather than the whole files. MLC uses
block-level duplication methods to find redundancy conceal-
ing between log entries and divide them into groups according
to their similarities and compress them using delta encoding.

Logzip [30] extracts templates and processes templates and
variables separately. It uses a parser to get several templates
on a small sample and extracts all templates in original log
files by iterative matching. Finally, it compresses template IDs
and variables using general-purpose compression methods
separately. However, Logzip does not perform well on our
logs due to sub-optimal implementation.

8 Conclusion

This work examines the latest parser-based log compression
approach on production logs. It observes that, first, an effi-
cient implementation is critical to realize the full potential
of this approach; and second, there are more opportunities to
further compress logs. Based on these ideas, we have built
LogReducer, which shows promising compression ratio and
compression speed.

Acknowledgment

We thank all reviewers for their insightful comments, and
especially our shepherd, Dalit Naor, for her guidance dur-
ing our camera-ready preparation. This work was supported
by the National key R&D Program of China under Grant
2018YFB0203902, and the National Natural Science Founda-
tion of China under Grants 61672315 and 62025203.

USENIX Association 19th USENIX Conference on File and Storage Technologies 259

References

[1] Boyuan Chen and Zhen Ming Jiang. Characterizing and
detecting anti-patterns in the logging code. In Proceed-
ings of the 39th International Conference on Software
Engineering, pages 71–81. IEEE, 2017.

[2] Michael Chow, David Meisner, Jason Flinn, Daniel Peek,
and Thomas F Wenisch. The mystery machine: End-to-
end performance analysis of large-scale Internet ser-
vices. In Proceedings of the 11th USENIX Sympo-
sium on Operating Systems Design and Implementation,
pages 217–231. USENIX Association, 2014.

[3] Robert Christensen and Feifei Li. Adaptive log com-
pression for massive log data. In Proceedings of the
2013 ACM SIGMOD International Conference on Man-
agement of Data, pages 1283–1284. ACM, 2013.

[4] John Cleary and Ian Witten. Data compression using
adaptive coding and partial string matching. IEEE trans-
actions on Communications, 32(4):396–402, 1984.

[5] Python date engineer group. Python data analysis library
Pandas. https://pandas.pydata.org/, 2015.

[6] Peter Deutsch. DEFLATE compressed data format
specification version 1.3. https://tools.ietf.org/
html/rfc1951, 1996.

[7] GNU developer group. Homepage and documenta-
tion of Tar. https://www.gnu.org/software/tar/,
2019.

[8] Min Du and Feifei Li. Spell: Streaming parsing of
system event logs. In Proceedings of the 16th Inter-
national Conference on Data Mining, pages 859–864.
IEEE, 2016.

[9] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.
DeepLog: Anomaly detection and diagnosis from sys-
tem logs through deep learning. In Proceedings of 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1285–1298. ACM, 2017.

[10] Susan Dumais, Robin Jeffries, Daniel M Russell, Diane
Tang, and Jaime Teevan. Understanding user behavior
through log data and analysis. In Ways of Knowing in
HCI, pages 349–372. Springer, 2014.

[11] Yaochung Fan, Yuchi Chen, Kuanchieh Tung, Kuochen
Wu, and Arbee L P Chen. A framework for enabling user
preference profiling through Wi-Fi logs. IEEE Transac-
tions on Knowledge and Data Engineering, 28(3):592–
603, 2016.

[12] Bettina Fazzinga, Sergio Flesca, Filippo Furfaro, and
Luigi Pontieri. Online and offline classification of traces

of event logs on the basis of security risks. Journal of
Intelligent Information Systems, 50(1):195–230, 2018.

[13] Bo Feng, Chentao Wu, and Jie Li. MLC: an effi-
cient multi-level log compression method for cloud
backup systems. In Proceedings of 2016 IEEE Trust-
com/BigDataSE/ISPA, pages 1358–1365. IEEE, 2016.

[14] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Exe-
cution anomaly detection in distributed systems through
unstructured log analysis. In Proceedings of the 9th
IEEE international conference on data mining, pages
149–158. IEEE, 2009.

[15] Mona Ghassemian, Philipp Hofmann, Christian Pre-
hofer, Vasilis Friderikos, and Hamid Aghvami. Per-
formance analysis of Internet gateway discovery proto-
cols in ad hoc networks. In Proceedings of 2004 IEEE
Wireless Communications and Networking Conference,
volume 1, pages 120–125. IEEE, 2004.

[16] Sanjay Ghemawat and Jeff Dean. LevelDB. https:
//github.com/google/leveldb, 2011.

[17] LogArchive group. Open source code of LogA-
rchive. https://github.com/robertchristensen/
log_archive_v0, 2019.

[18] Loghub group. Download link of public log
dataset. https://zenodo.org/record/1596245#
.XMMZ1dv7S-Y, 2019.

[19] Logzip group. Open source code of Logzip. https:
//github.com/logpai/logzip, 2019.

[20] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui
Zhang, Guofei Jiang, and Abdullah Mueen. LogMine:
Fast pattern recognition for log analytics. In Proceed-
ings of the 25th ACM International on Conference on
Information and Knowledge Management, pages 1573–
1582. ACM, 2016.

[21] Mehran Hassani, Weiyi Shang, Emad Shihab, and Niko-
laos Tsantalis. Studying and detecting log-related is-
sues. Empirical Software Engineering, 23(6):3248–
3280, 2018.

[22] Kimmo Hätönen, Jean François Boulicaut, Mika Klemet-
tinen, Markus Miettinen, and Cyrille Masson. Com-
prehensive log compression with frequent patterns. In
Proceedings of 2003 International Conference on Data
Warehousing and Knowledge Discovery, pages 360–370.
Springer, 2003.

[23] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R
Lyu. Drain: An online log parsing approach with fixed
depth tree. In Proceedings of 2017 IEEE International
Conference on Web Services, pages 33–40. IEEE, 2017.

260 19th USENIX Conference on File and Storage Technologies USENIX Association

https://pandas.pydata.org/
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1951
https://www.gnu.org/software/tar/
https://github.com/google/leveldb
https://github.com/google/leveldb
https://github.com/robertchristensen/log_archive_v0
https://github.com/robertchristensen/log_archive_v0
https://zenodo.org/record/1596245#.XMMZ1dv7S-Y
https://zenodo.org/record/1596245#.XMMZ1dv7S-Y
https://github.com/logpai/logzip
https://github.com/logpai/logzip

[24] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu.
Experience report: System log analysis for anomaly
detection. In Proceedings of the 27th International
Symposium on Software Reliability Engineering, pages
207–218. IEEE, 2016.

[25] Shilin He, Jieming Zhu, Pinjia He, and Michael R.
Lyu. Loghub: A large collection of system log
datasets towards automated log analytics. arXiv preprint
arXiv:2008.06448, 2020.

[26] Edwin T Jaynes. Probability theory: The logic of sci-
ence. Cambridge university press, 2003.

[27] Zhen Ming Jiang, Ahmed E Hassan, Parminder Flora,
and Gilbert Hamann. Abstracting execution logs to exe-
cution events for enterprise applications (short paper).
In Proceedings of the 8th International Conference on
Quality Software, pages 181–186. IEEE, 2008.

[28] George Lee, Jimmy Lin, Chuang Liu, Andrew Lorek,
and Dmitriy Ryaboy. The unified logging infrastructure
for data analytics at Twitter. Proceedings of the VLDB
Endowment, 5(12):1771–1780, 2012.

[29] Hao Lin, Jingyu Zhou, Bin Yao, Minyi Guo, and Jie Li.
Cowic: A column-wise independent compression for log
stream analysis. In Proceedings of the 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing, pages 21–30. IEEE, 2015.

[30] Jinyang Liu, Jieming Zhu, Shilin He, Pinjia He, Zibin
Zheng, and Michael R Lyu. Logzip: extracting hidden
structures via iterative clustering for log compression.
In Proceedings of the 34th IEEE/ACM International
Conference on Automated Software Engineering, pages
863–873. IEEE, 2019.

[31] Adetokunbo Makanju, A Nur Zincir-Heywood, and
Evangelos E Milios. A lightweight algorithm for mes-
sage type extraction in system application logs. IEEE
Transactions on Knowledge and Data Engineering,
24(11):1921–1936, 2011.

[32] Adetokunbo AO Makanju, A Nur Zincir-Heywood, and
Evangelos E Milios. Clustering event logs using iterative
partitioning. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 1255–1264, 2009.

[33] Salma Messaoudi, Annibale Panichella, Domenico Bian-
culli, Lionel Briand, and Raimondas Sasnauskas. A
search-based approach for accurate identification of log
message formats. In Proceedings of the 26th Conference
on Program Comprehension, pages 167–177. ACM,
2018.

[34] Masayoshi Mizutani. Incremental mining of system log
format. In Proceedings of 2013 IEEE International Con-
ference on Services Computing, pages 595–602. IEEE,
2013.

[35] Meiyappan Nagappan and Mladen A Vouk. Abstracting
log lines to log event types for mining software system
logs. In Proceedings of the 7th Working Conference on
Mining Software Repositories, pages 114–117. IEEE,
2010.

[36] Karthik Nagaraj, Charles Killian, and Jennifer Neville.
Structured comparative analysis of systems logs to diag-
nose performance problems. In Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, pages 26–26. USENIX Association,
2012.

[37] Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H Chin, and
Sumayah Alrwais. Detection of early-stage enterprise
infection by mining large-scale log data. In Proceedings
of the 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 45–56.
IEEE, 2015.

[38] LogReducer research group. Open sample of large-scale
cloud logs. https://github.com/THUBear-wjy/
openSample, 2020.

[39] LogReducer research group. Open source code of
LogReducer. https://github.com/THUBear-wjy/
LogReducer, 2020.

[40] Khalid Sayood. Introduction to data compression. Mor-
gan Kaufmann, 2017.

[41] Julian Seward. The bzip2 home page. http://www.
bzip.org, 1997.

[42] Keiichi Shima. Length matters: Clustering system
log messages using length of words. arXiv preprint
arXiv:1611.03213, 2016.

[43] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski.
Thrift: Scalable cross-language services implementation.
Facebook White Paper, 5(8), 2007.

[44] Liang Tang, Tao Li, and Chang-Shing Perng. LogSig:
Generating system events from raw textual logs. In
Proceedings of the 20th ACM international conference
on Information and knowledge management, pages 785–
794. ACM, 2011.

[45] Sarah K Tyler and Jaime Teevan. Large scale query
log analysis of re-finding. In Proceedings of the 3rd
ACM international conference on Web search and data
mining, pages 191–200, 2010.

USENIX Association 19th USENIX Conference on File and Storage Technologies 261

https://github.com/THUBear-wjy/openSample
https://github.com/THUBear-wjy/openSample
https://github.com/THUBear-wjy/LogReducer
https://github.com/THUBear-wjy/LogReducer
http://www.bzip.org
http://www.bzip.org

[46] Risto Vaarandi. A data clustering algorithm for mining
patterns from event logs. In Proceedings of the 3rd IEEE
Workshop on IP Operations & Management, pages 119–
126. IEEE, 2003.

[47] Ian H Witten, Radford M Neal, and John G Cleary. Arith-
metic coding for data compression. Communications of
the ACM, 30(6):520–540, 1987.

[48] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan,
Yuanyuan Zhou, and Shankar Pasupathy. SherLog: error
diagnosis by connecting clues from run-time logs. In
Proceedings of the 15th International Conference on
Architectural support for programming languages and
operating systems, pages 143–154. ACM, 2010.

[49] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie,
Zibin Zheng, and Michael R Lyu. Tools and benchmarks
for automated log parsing. In Proceedings of the 41st
International Conference on Software Engineering: Soft-
ware Engineering in Practice, pages 121–130. IEEE,
2019.

[50] 7 zip developer group. 7-zip file achiever home page.
https://www.7-zip.org/, 2019.

262 19th USENIX Conference on File and Storage Technologies USENIX Association

https://www.7-zip.org/

	Introduction
	Background
	Structure of Cloud Logs
	Parser-based Log Compressor

	Restore the Promise of Parser-based Log Compression
	Further Compressing Numerical Variables
	Compressing Timestamps
	Correlation Identification and Utilization
	Elastic Encoder

	Architecture and Implementation
	Evaluation
	Overall Performance
	Effects of Individual Techniques
	Performance on Public Logs

	Related Work
	Conclusion

