
This paper is included in the Proceedings of the
19th USENIX Conference on File and Storage Technologies.

February 23–25, 2021
978-1-939133-20-5

Open access to the Proceedings
of the 19th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX.

FusionRAID: Achieving Consistent Low Latency for
Commodity SSD Arrays

Tianyang Jiang, Guangyan Zhang, and Zican Huang, Tsinghua University;
Xiaosong Ma, Qatar Computing Research Institute, HBKU; Junyu Wei,

Zhiyue Li, and Weimin Zheng, Tsinghua University
https://www.usenix.org/conference/fast21/presentation/jiang

FusionRAID: Achieving Consistent Low Latency for Commodity SSD Arrays

Tianyang Jiang†, Guangyan Zhang†∗, Zican Huang†, Xiaosong Ma‡,
Junyu Wei†, Zhiyue Li†, Weimin Zheng†

†Tsinghua University, ‡Qatar Computing Research Institute, HBKU

Abstract
The use of all-flash arrays has been increasing. Compared

to their hard-disk counterparts, each drive offers higher perfor-
mance but also undergoes more severe periodic performance
degradation (due to internal operations such as garbage collec-
tion). With a detailed study of widely-used applications/traces
and 6 SSD models, we confirm that individual SSD’s per-
formance jitters are further magnified in RAID arrays. Our
results also reveal that with SSD latency low and decreasing,
the software overhead of RAID write creates long, complex
write paths involving more drives, raising both average-case
latency and risk of exposing worst-case performance.

Based on these findings, we propose FusionRAID, a new
RAID architecture that achieves consistent, low latency on
commodity SSD arrays. By spreading requests to all SSDs
in a shared, large storage pool, bursty application workloads
can be served by plenty of “normal-behaving” drives. By per-
forming temporary, replicated writes, it retains RAID fault-
tolerance yet greatly accelerates small, random writes. Blocks
of such transient data replicas are created in stripe-ready loca-
tions based on RAID declustering, enabling effortless conver-
sion to long-term RAID storage. Finally, using lightweight
SSD latency spike detection and request redirection, Fusion-
RAID avoids drives under transient but severe performance
degradation. Our evaluation with traces and applications
shows that FusionRAID brings a 22%–98% reduction in me-
dian latency, and a 2.7×–62× reduction in tail latency, with a
moderate and temporary space overhead.

1 Introduction

The use of all-flash arrays (AFAs) has been increasing and
projected to have a 400% market growth in the next five
years [11]. For example, ANZ bank in Australia recently
adopted an AFA solution with 400TB SSD arrays [31]. AFAs
aggregate the IOPS and bandwidth of individual drives and
compensate for SSDs’ higher rate of uncorrectable errors [53]

∗Corresponding author: gyzh@tsinghua.edu.cn

Median latency (ms) Avg. latency (ms) P99 latency (ms) Variance factor
HDD RAID (clean) 68.67 134.37 835.35 12.16
HDD RAID (aged) 69.18 133.61 826.77 11.95
SSD RAID (clean) 0.275 3.57 25.62 93.16
SSD RAID (aged) 0.307 14.11 221.03 719.96

Table 1: Exchange latency, HDD vs. SSD RAID

using parity-based fault-tolerance. So far, AFAs can support
large numbers of SSDs (up to 5760) behind a single con-
troller [20, 22, 49, 51, 52].

However, SSDs are less array-friendly than hard disks,
which RAID [50] was initially designed for decades ago.
Compared with single-disk accesses, RAID write significantly
amplifies average write latency, thereby also delaying read re-
quests. Also, SSD RAIDs have a much higher tail-to-average
latency ratio than HDD ones [23, 38, 66].

We illustrate this by testing two software RAID5 arrays,
built on Seagate HDDs and Intel commodity consumer SSDs.
Table 1 lists the median, average, and 99 percentile (P99) la-
tencies measured running the write-intensive Exchange trace
from Microsoft Production Server Traces [55]. We also report
the variance factor [68], the ratio of P99 to median latency.
For each RAID, we test its clean and aged states, using the fio
benchmark [4]. Here we adopt an existing aging method [35],
writing the whole disk sequentially and then issuing random
writes with total volume exceeding its capacity, to guarantee
that each random write generates invalid pages.

Our results confirm that, though SSD RAID offers much
smaller median latency (over 225× lower than HDD RAID),
its worst-case performance deviates more from the norm,
with a much higher variance level. The average latency, as
a result, is much more amplified from the median with SSD
than with HDD RAID. Second, the HDD RAID appears
quite resilient to aging, with hardly any visible performance
degradation. The SSD RAID, on the other hand, deterio-
rates significantly when aged, delivering a median latency
of 11.6% higher, and P99 tail 8.6× higher. Such severe per-
formance variability makes it difficult to ensure QoS to cus-
tomers [18, 23, 24, 59, 69], potentially causing significant rev-
enue losses [47]. This problem is not specific to Linux soft-

USENIX Association 19th USENIX Conference on File and Storage Technologies 355

Median latency (ms) Avg. latency (ms) P99 latency (ms) P999 latency (ms)
SSD 0 0.049 0.68 0.42 24.40
SSD 1 0.049 1.26 0.46 702.24
SSD 2 0.050 0.63 0.39 30.16
SSD 3 0.049 1.64 0.53 895.02
SSD 4 0.050 1.71 0.64 827.91

Table 2: Exchange latency, individual aged SSDs within RAID

ware RAID overhead: our measurement also shows a hard-
ware controller (LSI MegaRAID 9260-8i) producing very sim-
ilar average latency (3.4ms) to Linux software RAID (3.6ms)
on the same SSDs.

We further examine the latency distribution of individual
SSD drives within the 4+1 RAID5 array, with results listed
in Table 2 (aged state only). Comparing results from both
tables, one sees that when we group SSDs into RAID, for the
gain in space and bandwidth aggregation, we may be trading
off individual request’s processing speed. Note that with the
Exchange workload (details in Table 4), considering the MD
default 64KB stripe unit size, the majority of requests would
each land on a single drive. However, the added complexity
of parity updates not only generates more work but involves
more drives, rendering a P99 latency nearly 400× higher
on RAID than on individual SSDs for the same workload.
The last column in Table 2 highlights a challenge with SSD
RAIDs: three of the drives appear to experience garbage col-
lection (GC) during our 15-minute trace execution and have a
P999 latency over 23× higher than the other two. With highly
coupled operations across multiple drives, isolated tail latency
from a single drive affects more requests with RAID, making
the entire array more vulnerable to performance anomalies.

In this work, we first conduct a comprehensive study to
investigate the sources of SSD RAID latency. More specifi-
cally, we (1) examine 5 real-application workloads on modern
SSDs, plus 3 workloads from widely used storage trace repos-
itories, and systematically characterize the behavior of their
mixes in fine time granularity, (2) perform a detailed analysis
of the RAID write path and identify the software overhead,
which has a dependency on the I/O performance of member
disks, and becomes a major component in request latency, in
both average and worst-case scenarios, and (3) conduct de-
tailed profiling on 4 consumer- and 2 datacenter-grade SSDs
to characterize the device-side degradation due to flash inter-
nal activities, finding both types plagued by severe latency
spikes with clearly identifiable amplitude and long duration.

We then propose a new RAID architecture, FusionRAID,
designed to simultaneously reduce the average- and worst-
case latencies of SSD RAID, especially for latency-critical
applications. FusionRAID runs on commodity SSD arrays
without requiring any special hardware support or FTL modi-
fication, instead relying on three key techniques:

• flat resource sharing across an SSD pool to utilize available
I/O concurrency in serving bursty application I/Os,

• shortened write operations that use temporary, replicated

2015 2016 2017 2018 2019 2020
0

5

10

535 540s 545s 760p 665p
S3710S3520S4600

S4510

S4610 P5510

C
ap

ac
ity

 (T
B)

Year

 Consumer
 Data center

(a) Capacity

2015 2016 2017 2018 2019 2020
0

30

60

90
535

540s 545s 760p
665pS3710

S3520 S4600 S4510 S4610

P5510

La
te

nc
y

(
s)

Year

 Consumer
 Data center

(b) Latency

Figure 1: Trends in technical specification of Intel SSDs (no
consumer SSDs issued in 2020)

writes as a prelude to long-term RAID storage, yet care-
fully placed “in-stripe” so that one replica can be directly
converted without data migration, and

• a lightweight latency spike detection and request redirection
mechanism that allows requests (both read and write) to
sidestep SSDs under severe performance degradation.

We argue that our solution, which temporarily trades space
for performance, aligns well with current hardware trends.
Figure 1(a) and 1(b) portray changes in capacity and latency,
using historical data we gathered on Intel SSD models [29]. In
the past years, SSDs have become much larger (especially dat-
acenter models) and more affordable, with smaller improve-
ment in latency. FusionRAID uses more space to quickly
absorb small, random writes (with little long-term extra space
overhead). In return, it makes SSD RAIDs several times faster
on average and orders of magnitude faster in tail cases, as
shown in our real-system evaluation. In addition, FusionRAID
proposes a new way to utilize emerging large AFAs (90 SSDs
or more), such as the NetApp AFF [49], EMC VMAX [20],
and Fujitsu ETERNUS [22] series.

Compared with other systems that address FTL-induced
latency during writes, FusionRAID considers SSDs as black
boxes, without assuming SSD internal information/control.
Its novelty lies in several aspects. First, to our knowledge, this
is the first work that applies RAID declustering [3, 25, 46, 71]
to SSD arrays. It leverages Latin-square based deterministic
addressing [71], but with a significant extension to perform ex-
plicit block mapping for its two-phase writes and out-of-place
updates. Second, FusionRAID adopts a new “in-position con-
version” mechanism from its “replicated” to “RAID” area,
removing the extra copying required by existing hybrid sys-
tems [21, 65]. Our intensive analysis reveals that SSD spikes
possess clearly identifiable amplitude and long duration, mak-
ing reactive methods feasible. FusionRAID’s I/O redirection,
based on constant spike-detection, eliminates the need for
periodic probe I/Os, used by previous methods [23, 66, 69].

2 SSD RAID Latency Source Study

2.1 Workload I/O Characteristics
I/O requests from applications are often issued in a bursty
manner, so the instantaneous bandwidth of a single workload

356 19th USENIX Conference on File and Storage Technologies USENIX Association

varies significantly. When multiple workloads co-execute on
a storage system, the instantaneous aggregated bandwidth is
often dominated by a small number of workloads, as they
read/write a large amount of data while others access a little,
in a short period of time.

To assess the load behavior of representative applications,
we collect five block-level traces from multiple popular data-
intensive workloads running individually on SSDs. We also
include three publicly available traces for diversity. The eight
workloads are characterized in Table 4. Then, we examine the
mixes of those eight workloads in fine time granularity.

We capture all five traces from our testbed (more details
in Section 5). Three of them are from running representa-
tive standard YCSB [16] workloads using RocksDB [10], a
popular KV store: YCSB-A, YCSB-B, and YCSB-Load (speci-
fications in Table 5). The RocksDB database size is 40GB,
with 4KB KV pairs. Another latency-sensitive application
trace is collected from the TPC-C benchmark, on a 77GB
MySQL database. In addition, we trace TensorFlow (TF),
which reads training datasets and checkpoints a CNN model
periodically in search of better accuracy. Finally, we include
three traces from the SNIA repository [58]: VirtualDesktop
(VD) [40], the only recent trace from server environments,
plus Exchange and Proxy, the heaviest two among a to-
tal of 49 traces within the Microsoft and SPC trace collec-
tions [30, 55–57].

Next, we carefully examine the microscopic features of
mixed workloads by analysing the instantaneous bandwidth
at millisecond granularity using the aforementioned 8 traces.
In each 1ms timeslot, we partition a workload mix into a giant
and a dwarf set, each containing the same number of work-
loads, with any workload in the former heavier than all in
the latter. We define the ratio between the total instantaneous
bandwidths of the giant set and the entire mix as majority
ratio, Rma j. We claim that a workload mix possesses instanta-
neous complementarity in a timeslot with Rma j > 0.75, where
the dwarf set can lend spare resources to the giant one.

Based on their average throughput, we coarsely divide the
8 traces into two groups, “heavy” and “light”. We inspect all
the three types of 2-workload mixes: light-light, light-heavy,
and heavy-heavy. Figure 2(a) shows the CDF of Rma j across
all timeslots for such mixes. Instantaneous complementar-
ity appears quite frequently in the light-heavy (Exchange
+YCSB-A) and light-light (VD +TF) workload mixes, making
83.6% and 73.9% of all timeslots, respectively. Even with the
heavy-heavy mix (YCSB-Load +TPC-C), 54.1% of timeslots
have instantaneous complementarity.

With the 8 workloads, we enumerate all 2-workload mixes
and find that 25 out of the 28 have instantaneous complemen-
tarity in over half of the timeslots, with an average ratio across
all 28 mixes sitting at 67.8% (Figure 2(b)). Across all 70 4-
workload mixes, this average ratio of timeslots possessing
instantaneous complementarity rises to 91.4%.
Implications Our analysis shows that when workloads run

0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.25

0.50

0.75

1.00

C
D
F

Majority Ratio

 YCSB-Load & TPC-C
 VD & TF
 Exchange & YCSB-A

(a) CDF of Rma j

0 5 10 15 20 25 30
0

50

100

In
st

an
ta

ne
ou

s
C

om
pl

em
en

ta
rit

y
Pr

ob
ab

ilit
ie

s
(%

)

Mixed Workloads

(b) Ratio of timeslots w. instanta-
neous complementarity

Figure 2: 2-workload mix analysis, the left showing 3 selected
mixes, the right all 28 mixes

together, the chances of their instantaneous complementarity
are quite high. This suggests that modern commodity storage
servers, easily managing dozens of devices or more, can serve
concurrent workloads better in an “all-for-all” model, rather
than being held back for the fear of inter-workload perfor-
mance interference. Involving all disks in serving the busier
workloads at the moment alleviates their queue wait time, a
major source of application-induced tail latency.

2.2 Write Overhead in SSD RAID
Parity-based RAID is unfriendly to write-intensive workloads,
especially for those dominated by random small writes. The
inherent read-modify-write logic makes partial-stripe writes
go through a lengthy sequence of ordered operations of reads,
calculation, and writes. Optimizations targeting bandwidth,
such as the mechanism used in the Linux MD software RAID
driver that postpones submission of writes in anticipation
that subsequent requests fall into the same stripe, may hurt
latency-sensitive applications.

Figure 3 illustrates this with a comparison between (4+1)
RAID-5 arrays using three types of devices: Intel 545s SATA
SSDs, Seagate 7200RPM SATA HDDs, and RAM disks. All
are software RAID arrays through MD. We run the Microsoft
Enterprise Exchange workload and show the breakdown of
write latency across operations: read, xor, and write, with
the rest categorized into software overhead. The left plot
describes all requests, while the right one focuses on the 1%
requests with the highest latency. Numbers at the top of the
bars give the average latency values for each group.

HDD SSD RAM
All requests

0.0
0.2
0.4
0.6
0.8
1.0 133.11ms 14.29ms 0.14ms

HDD SSD RAM
Slowest 1% requests

0.0
0.2
0.4
0.6
0.8
1.0 825.87ms 226.06ms 1.69ms

software overhead xor read write

Figure 3: Write latency breakdown

With this consumer-grade SSD, software overhead already
takes over as the major component of write latency, while it

USENIX Association 19th USENIX Conference on File and Storage Technologies 357

Model Capacity
(GB)

Read/Write
latency (µs)

Read/Write
bandwidth (MB/s)

Release
year

Price
($/GB)

A Intel 545s 240 50/60 550/500 2017 0.18
B Intel 535 256 80/80 540/490 2015 0.15
C Toshiba q200 240 73/36∗ 550/510 2017 0.20
D Sandisk plus 240 44/193∗ 530/440 2017 0.17
E Intel D3-S4510 240 36/37 560/280 2018 0.33
F Intel DC S4500 240 36/36 500/190 2017 0.29

Table 3: Evaluated SSDs (all latency vendor specified except those
marked with ∗)

is almost invisible with the HDD. On average, the SSD RAID
tested spends 2.9× time on software overhead than on writing.
This software overhead, however, involves synchronization
interleaving with I/Os and is not independent of the read/write
cost: with read/write cost nearly trimmed, software overhead
dominates the RAM disk RAID latency, but its absolute cost
is nearly two orders of magnitude smaller than on the SSD
RAID. Software overhead also makes the slowest 1% requests
suffer 10× the average latency, due to factors such as thread
context switching and request queuing (at the block layer and
the host-side dispatch queue).

As a side note, though software overhead remains the lead-
ing category, for the slowest 1% requests shown in Figure 3,
SSD writes also contribute significantly to the SSD RAID tail
latency, costing 20.7× the average write overhead. Section 2.3
gives a detailed discussion on this issue.
Implications Unlike an HDD array, an SSD RAID has I/O
latency dominated by software overhead. Unlike a RAM disk
array, it sees such overhead prolonged by actual I/Os and
their coordination across disks. This suggests that a shorter
write path, with fewer dependencies, may greatly reduce SSD
RAID latency, both under average and worst-case scenarios.

2.3 Pathological Latency Spikes of SSDs
SSDs are known to have performance anomaly due to back-
ground I/O activities obscure to users [17, 23]. Major sources
of performance variability include (1) background mainte-
nance activities inside SSDs, in particular, garbage collec-
tion [38, 66, 69], and (2) on-SSD DRAM write buffer flush-
ing [1]. While the existence of performance jitters is well-
known [17, 23], in this paper, we quantify the distribution of
their magnitude as well as duration, on multiple consumer-
and datacenter-grade SSDs.

Table 3 lists basic specifications of the six commercial off-
the-shelf SSDs used in our experiments, the first four being
consumer-grade and the last two datacenters (DC) drives. Due
to space limit, below we summarize our chief findings.
Consumer SSDs First, when running sequential writes on
clean drives, all consumer models tested possess clearly peri-
odic latency spikes with a duration between 3ms and 12ms,
reaching 5-20 times of their average latency. With GC ex-
cluded under this strictly sequential workload, we attribute the
regular latency spikes to on-disk DRAM buffer flushes [12].
We found these flushes block read requests as well.

(a) Clean SSD-A, seq., limited space (b) Aged SSD-E, random

Figure 4: Sample spike behavior in write tests on two SSDs
(write request size at 64KB)

To repeatedly incur GC, we repeat the sequential write test
but write within a 2GB logical space. We find GC produces
spikes both much taller (height around 21×) and long-lasting
(duration around 18×) than those incurred by buffer flushes,
as illustrated in Figure 4(a). Our zoom-in analysis of I/O
behaviour shows that requests are blocked during GC inside
SSDs and completed immediately in a batch once GC is over.
Meanwhile, there are obvious intervals (10× spike duration)
between spikes due to enough spare blocks after a GC. Finally,
aged SSDs see more severe and frequent spikes. The reason
is likely that when the spare blocks inside SSDs run out, GC
incurs more data migration and block erasures [33].
DC SSDs Datacenter SSDs behave differently. First, periodic
latency spikes are not seen under sequential write workloads,
unlike with consumer SSD. This is likely because DC SSDs
usually have multiple cores and an optimized FTL for better
coordination between background and foreground I/Os. Note
such optimization may be achieved at the cost of lowering
write throughput [54]: Table 3 does show the write bandwidth
of the two DC SSDs at around half of that offered by cheaper
consumer models.

Under heavy write workloads, however, DC SSDs cannot
hide the impact of GC. Figure 4(b) shows spikes observed
with random 64KB writes on SSD-E, which incurs GC faster.
Under such a constant write workload, once GC is triggered,
the I/O latency goes far beyond 100ms, incuring performance
degradation lasting around 60s. Furthermore, spikes cannot
be divided strictly, instead a new spike often arrives before
the previous one ends, differing from consumer SSDs.
Implications Our profiling confirms that both consumer and
datacenter SSDs suffer from severe latency spikes. Coupling
such duration with an amplitude that significantly deviates
from the norm, these spikes can and should be detected at
runtime, to redirect incoming requests to other devices in the
SSD pool. Moreover, spikes from consumer and DC SSDs
behave differently, which should be handled carefully.

3 Approach Overview

We propose a new SSD RAID architecture, FusionRAID. It
reduces both average-case and tail latencies, with solutions
targeting the three problems observed in Section 2.
Design Rationale To ease innate request bursts in workloads,

358 19th USENIX Conference on File and Storage Technologies USENIX Association

FusionRAID spreads requests to all disks in a storage pool
(such as a large commodity SSD enclosure) hosting multiple
RAID volumes. Though most of their individual I/O requests
can be answered by a small subset of disks, applications of-
ten have severe load bursts that directly lead to tail latency.
FusionRAID trims such workload-induced tail latency by
smoothing the bursts to all disks in an SSD enclosure using
RAID declustering [3, 25, 46, 71]. In multi-tenant settings,
this automatically lends resource elasticity to individual work-
loads’ varying intensity.

To reduce the software overhead and inter-disk dependence
in RAID writes, FusionRAID employs replicated writes as
a prelude to RAID writes, with data lazily converted later to
the more space-efficient RAID organization for long-term
storage. Before such conversion, block replicas ensure the
same level of fault-tolerance as the specified RAID level. E.g.,
FusionRAID writes two copies of a block for a RAID5 vol-
ume, and three for RAID6. Doing so shortens the critical
path in writes by postponing and in some cases even avoid-
ing the long and interference-prone parity updating process.
Consequently, the simpler, more independent operations of
such replicated writes deliver lower (and far more consistent)
latency. To further reduce the conversion overhead, Fusion-
RAID places replicated blocks in a “stripe-ready” manner, in
positions where sets of blocks already compose stripes (minus
parity data) according to the RAID declustering algorithm
adopted, to minimize data copying.

Finally, to sidestep SSDs undergoing temporary perfor-
mance degradation, FusionRAID constantly watches each
SSD’s performance behavior to detect temporarily unrespon-
sive SSDs. To this end, it uses a lightweight spike detection
mechanism that issues no extra I/Os and requires no SSD
internal knowledge. Uniquely enabled by RAID declustering
on large SSD pools, FusionRAID easily redirects writes to
unaffected drives, which likely remain in the majority at any
given time. For reads, it could also select the less affected
replica, or use existing approaches proposed by systems like
ToleRAID [23] to compute a block hosted by an unresponsive
SSD using parity data.

P

PP

P

SSD0 SSD1 SSD2 SSD3 SSDn-1

RAID area
Replicated area

Conversion

Mapping table

(FBMT)

Large
write

I/O requests

SSD spike

detection

I/O request processing

FusionRAID

SSD

pool

Read

4+1 RAID5 volume 5+2 RAID6 volume

RocksDB TensorFlow

(4.4)
(4.2)

(4.3)

Small
write

Read

Declustering-based stripe allocation

Allocation
request

(4.1)

Figure 5: FusionRAID architecture

FusionRAID architecture Figure 5 illustrates the Fusion-
RAID architecture. Multiple virtual RAID arrays (of different
RAID configurations) share the same underlying pool con-
taining dozens of commodity SSDs or more. The aggregate
logical space of this SSD pool is partitioned into the RAID
and replicated areas, intended for long-term, space-efficient
storage and fast absorption of small, random writes, respec-
tively. Note that there is no physical partitioning between
these two virtual areas: actually, they are intentionally inter-
mixed for fast conversion from the replicated to RAID storage
(detailed discussion in Section 4.2). Note that though our dis-
cussion/evaluation uses RAID5 in this paper, FusionRAID
applies to other RAID organizations, e.g., by increasing the
replication degree in the replicated area to 3 for RAID6.

Internally, FusionRAID employs a mapping table (FBMT
in Figure 5) for each virtual RAID volume, to maintain the
mapping of a per-volume logical block number to a Fusion-
RAID internal logical block number (§4.4). The latter can
subsequently be mapped to a logical block on a certain SSD
using a deterministic RAID declustering strategy based on
MOLS [71] (§4.1). For replicated writes, FusionRAID builds
a list of available block pairs from a pair of stripes, enabling
low-cost replicated-to-RAID conversion (§4.2).

In addition, FusionRAID performs real-time SSD latency
spike detection by monitoring SSD latencies and includes the
results in its decision making. In Figure 5, the last SSD is
marked unresponsive and will be avoided in both reads and
writes whenever possible (§4.3).

4 FusionRAID Design

4.1 Storage Organization
FusionRAID organizes the space across dozens or more SSDs,
to serve bursty I/Os from concurrent workloads and provide
ample alternative choices among drives to avoid using those
under transient performance degradation. It does so by utiliz-
ing RAID declustering [3, 25, 46], distributing RAID stripes
in a balanced way to larger arrays. The novel challenges here,
unaddressed by existing RAID declustering techniques, are to
design efficient and flexible support for partial-stripe writes
to enable fast absorption of small, random writes, as well as
to detour around temporarily slow drives.

To this end, FusionRAID employs a storage organization
with explicit block mapping, seamlessly manages two logi-
cal areas (for replicated and striped writes), and requires low
metadata space overhead. Even the transient block replicas
are stored in a “stripe-aware” manner, ready for the eventual
RAID storage. This way, the two logical areas are fused to-
gether, further facilitating efficient conversion from replicated
to striped storage, as well as request redirection.

FusionRAID introduces Fusion logical address space, an
internal logical block layer between the user-perceived logi-
cal and the SSD logical block address spaces, as illustrated

USENIX Association 19th USENIX Conference on File and Storage Technologies 359

…

User logical address space

New stripe

MOLS

Declustering-based

stripe allocation

User perceived

4+1 RAID5 volume

…

Fusion logical address space

SSD pool

3 1115 1826

Figure 6: FusionRAID stripe allocation

in Figure 6. The mapping from user-perceived to this in-
ternal space is maintained by a block mapping table (to be
detailed in Section 4.4), one per user RAID volume, which
supports dynamic mapping for out-of-place writes. The map-
ping from a Fusion logical block to a logical SSD block is
done by RAID declustering, involving a static mapping func-
tion instead of mapping tables. Here different declustering
strategies/functions could be plugged in, such as RAID50 and
pseudo-random RAID [62].

In our implementation, FusionRAID adopts the determinis-
tic mapping proposed by RAID+ [71]. As shown in Figure 6,
each FusionRAID volume will follow a 3D template based on
Mutually Orthogonal Latin Squares (MOLS), which resem-
bles a large Rubik’s Cube filled with disk IDs. The mapping
function uses simple calculation to map a certain stripe within
a user RAID volume (such as a 4+1 RAID5 configured in
cloud storage, shown in the figure) to a certain subset of disks
in the pool, 〈3,15,26,11,18〉 in this example. The advan-
tage of MOLS-based declustering lies in its deterministic and
guaranteed uniform distribution of each volume’s data to all
n disks within a pool, as well as low metadata overhead.

4.2 Two-phase Write Operations
Now spreading each RAID volume to the entire SSD pool
to better prepare for bursty I/Os, FusionRAID further sim-
plifies the critical path for writes, to deliver lower and more
consistent latency. This is done by its two-phase writes, us-
ing replication as a prelude to RAID storage. While large
writes are directly written in RAID stripes, smaller requests
are directed to the replicated area, where instead of RAID
writes with parity computation and update, we simply write
two copies of data. Doing so avoids the dependency brought
by the read-compute-write process, and involves fewer SSDs
(hence a lower chance of running into a spike). Replicated
data can be converted in the background to the more space-
efficient RAID stripes. This can be carried out lazily, delayed
when space is abundant, when data are hot and updated often,
or when the disk pool is busy handling requests.

Two-phase write itself is not new and has been adopted by
multiple systems, such as AutoRAID [65], DiskReduce [21],
and LDM [67]. FusionRAID differs from them with two key
innovations targeting all-flash environments, to reduce both

write amplification and conversion-induced background I/Os.
First, FusionRAID performs its two-phase writes selec-

tively, saving larger write requests the detour as for them the
benefit does not justify the cost: their relative software over-
head in RAID writes is lower, while the extra write volume
generated by their replication is higher.

For larger requests, FusionRAID includes additional op-
timizations to lower the software overhead in RAID writes.
For partial-stripe writes, it allocates a new stripe and pads the
blocks untouched by the request with zero, which allows it to
write both data and parity (plus appropriate metadata updates)
without performing reads. Hence with requests writing x out
of (n−1) data blocks in a RAID stripe, going with our RAID
writes as described above would require I/O of roughly n
blocks, while replication requires 2x-block writes. Therefore
we set the “break-even point”, b n

2c blocks, as a size threshold
to classify write requests: requests larger than this threshold
do not benefit from replicated writes and would follow the
aforementioned RAID write workflow.

Second, rather than following the common practice of mi-
grating data from the replicated to the RAID area (writing the
full stripe, including both data and parity blocks), we care-
fully create the replicated blocks “in position”, so that they
already form two valid stripes according to FusionRAID’s
MOLS-based template. Parity blocks are also allocated and
reserved in advance, thus upon conversion, one group of the
replicated blocks can be directly recorded as RAID stripe data
blocks after the pre-allocated parity block is properly filled.
The other group can simply be discarded.

As described in Section 4.1, FusionRAID allocates stripes
using RAID declustering for both RAID and replicated writes.
While the former consumes one stripe at a time, the latter
consumes a pair of blocks at a time, from a pair of stripes, to
store two copies of the same block. For fault tolerance, these
two blocks need to sit on two different SSDs.

To this end, FusionRAID performs best-effort pairing
among available stripes, using the power-of-two-choices
scheme [45]. It randomly picks 4 spare stripes, selects a pair
with the fewest common disk IDs, and starts block pairing by
listing common disk IDs (if any) among the two stripes. It then
cycles through the list diagonally, producing non-conflicting
pairs. E.g., if two stripes both involve disks A, B, and C, we
create block pairs on A-B, B-C, and C-A. The rest of the
blocks, on non-overlapping disks, are trivial to pair. This flexi-
ble scheme enables FusionRAID to easily recycle free stripes
reclaimed from replicated-to-RAID conversion.

I 2 17 95 P I 17 2 95 P

ReclaimedConversion

I 2 17 95 P

Figure 7: In-position replicated-to-RAID conversion

Figure 7 illustrates the conversion process, showing two
stripes (whose blocks form 4 pairs, one of which has since
been invalidated by subsequent updates while the rest carry

360 19th USENIX Conference on File and Storage Technologies USENIX Association

the RAID volume logical blocks 2, 17, and 95). Here the left
stripe is converted to RAID storage simply by calculating
and filling the parity block (with the invalid block included),
without data movement. This easily extends to more general
cases: e.g., for RAID-6 we reclaim two out of the three stripes
forming 3-block tuples, with two parity blocks calculated for
the remaining stripe. To control the replicated area’s physical
space consumption, the administrator can easily configure the
overall size of the logical replicated area.

Finally, background conversion from the replicated to
RAID area starts from the least recently accessed stripe pair.
The conversion aggressiveness can be governed by policies set
by user preferences or workload characteristics. Conversion
may be triggered by many different configurable thresholds,
such as the number of spare stripes, the ratio of space con-
sumption between replicated and RAID areas, the current
workload level, etc., and their combinations.

4.3 Spike Detection and Request Redirection

Even with perfectly spread-out request loads and short write
paths, applications suffer sudden surges in request latency
when the underlying SSD devices undergo activities such as
GC. FusionRAID sets its final line of defense against such
adversity by performing constant SSD responsiveness moni-
toring and request diversion when latency spikes are detected.

Sliding window for requests tracking (x=6,y=5)Straggler counter

Timeslot 89, 4 requests arrive, 2 return (from 85, 86)

3 67 3 60

85 86 87 88 89

Timeslot 90, 2 requests arrive

4 68 3 20
85 86 87 88 89

7 36 6 23

86 87 88 89 90

Timeslot 91, 3 requests arrive, 3 return (from 86, 87, straggler)

5 63 2 38
87 88 89 90 91

Figure 8: FusionRAID SSD spike detection. The number
under each yellow box is the timeslot ID and the one within
is the count of in-progress IOs issued in that timeslot.

Motivated by our spike behavior study (Section 2.3), we ar-
gue that without SSD internal information, though the timing
of spikes is hard to predict, their duration and amplitude make
reactive avoidance feasible. FusionRAID tracks the number
of stragglers (with processing time larger than a preset thresh-
old t) among requests issued to each individual SSD, and can
quickly react when a performance anomaly happens.
Light-weight spike detection The challenge, however, lies
in the efficient tracking of all active requests in a large SSD
pool. After all, spikes are more likely to happen under inten-
sive workloads. Space and time overhead of keeping track of
thousands of requests at such peak times is not negligible.

To this end, we propose a lightweight spike detection
scheme that records the request dispatching time in coarse
granularity. It divides the time-line into equal-sized timeslots.

For each SSD in the pool, FusionRAID maintains the number
of pending requests dispatched within the latest y timeslots
(forming a sliding window with a time length of t). A sepa-
rate straggler counter records the number of requests whose
pending time exceeds t. Each request issued increments the
request counter for the current timeslot by 1, with an issuing
timestamp tagged with the request. Similarly, a request’s com-
pletion decrements the request counter of its corresponding
timeslot. Upon the expiration of the current timeslot, the win-
dow slides, and the counter of the oldest timeslot has its value
aggregated to the straggler counter. An SSD is identified as
unresponsive (under spike) if the straggler counter reaches a
preset threshold x̂. For an unresponsive SSD, with new traffic
guided away and spike-causing internal activities receding,
eventually, its straggler counter will fall below x̌, putting it
back to full service. For consumer SSDs, we set x̂ equal to x̌
because requests return in batch once spikes end. However,
spikes on DC SSDs often overlap with the previous ones so
we set a gap between two thresholds, avoiding oscillations.

Figure 8 illustrates this per-SSD spike detection mecha-
nism, with a sliding window sized at 5. At the last step (times-
lot 91), the oldest timeslot (86) has its counter merged with the
previous straggler counter, minus 2 requests returning (from
“straggler” and timeslot 86). The result (3+7−2=8) exceeds
the threshold x = 6, identifying the SSD as unresponsive.
Selective request redirection When an I/O request arrives,
FusionRAID judges whether the target SSD is unresponsive
by reading its straggler count. When a write is directed onto
an unresponsive SSD, FusionRAID searches along the spare
block pair or stripe list till it finds one not involving any
unresponsive SSD, and performs the update there. The search
tends to be short as spikes are relatively rare events. Skipped
block pairs or stripes are added to the list tail.

Such redirection also applies to reads. When data requested
reside in the RAID area, a slow SSD can be skipped over by
data reconstruction from all the remaining blocks in the stripe
as in ToleRAID [23]. In the replicated area (which stores more
active data and tends to attract more reads), FusionRAID reads
from the faster of the blocks (with lower straggler count).

Since our spike detection is reactive, the damage is already
done upon successful detection. It might be helpful to adopt
existing strategies such as “hedged requests” [17], which re-
sends victim requests to other SSDs when outstanding long
enough. In addition, FusionRAID may even proactively trig-
ger GC using the SSD trim mechanism [64] (which informs
the SSD to recycle invalid blocks), when it “guesses” that a
spike is imminent based on historical monitoring data.

4.4 Metadata Management

Now with major FusionRAID operations explained, we come
back to discuss its storage organization, in particular, metadata
maintenance necessary to enable partial stripe updates.
Fusion Block Mapping Table (FBMT) This central map-

USENIX Association 19th USENIX Conference on File and Storage Technologies 361

P P P P

Replicated write

Fusion logical address space

0

0x00

User logical address space Application write request

3 7 10

…

18

…

LBN P W FLBN

0x00 0 - NULL

0x01 0 0 7

0x02 1 -

0x03 0 0 5

……

BMT

[0,15]

0 3

[7,12]

1 11

FBMT

5

FBMT

Blk1 Blk2

10 15

11 17

……

W W

BPT

Figure 9: Block mapping and write handling

ping table in FusionRAID contains two components: a Block
Mapping Table (BMT), a direct address table storing the block
mapping from the user logical block address to the Fusion
block address, and a Block Pairing Table (BPT), a hash table
storing paired blocks used in replicated writes. Figure 9 gives
sample illustrations. To reduce metadata storage, FusionRAID
adopts a relatively large block size (64KB by default), which
is also its RAID stripe unit size.

FusionRAID may write directly to the RAID area or make
replicated writes. This distinction is recorded by the W bit in
the 40-bit BMT entries: 0 for RAID and 1 for replicated. In
the former case, the remaining 38 bits store the Fusion logical
block number (FLBN), supporting a 16PB logical space with
the default 64KB block size (i.e., 4096 4TB-SSDs within one
enclosure). In the latter, the BMT entry instead stores the
smaller block number in a block pair, as a key to the BPT.

Recall the in-position replicated-to-RAID conversion
shown in Figure 7. For the stripe to be kept (the left one), its
three valid blocks will see their BMT entries updated during
the conversion, with the W bit switched to 0 (from “replicated”
to “RAID”), and its FLBN properly recorded. For the one
to be discarded (the right one), the entire stripe is reclaimed
and returned to the spare stripe list. Finally, the four involved
block pairs are removed from the BPT.

Adopting larger blocks reduces metadata storage overhead,
but creates more partial block updates. To avoid read-modify-
write operations, which not only prolong the write process
but incur write amplification, FusionRAID utilizes a patch-
ing method to append partial updates to the BMT entry of
the updated block. The P bit here records the block’s partial
update history: if set to 1, the FLBN field becomes the head
of a linked-list, whose nodes each contains an updated page
range, along with the FLBN storing these updates (at their
corresponding pages). Again, each element carries a W bit to
tell whether the corresponding user logical block is in the
replicated area.

Figure 9 demonstrates the handling of a write on user log-
ical block address 0x02, which before the write was in the
RAID area. This small write updates pages 7-12 of the block
and incurs out-of-place updates via replicated writes. As de-
scribed in Section 4.2, a pair of blocks (11 and 17, as indicated
by the red and blue arrows) are allocated, with these pages

written to the corresponding locations within these two blocks,
without reading the unchanged data. Now, block 0x02 has
its valid data distributed in three Fusion logical blocks: the
previous location at block 3, plus the block pair 11 and 17.
Thus its BMT entry carries a linked-list, with a node for page
range 7-12 linking to the ordered block pair (11,17) in the
BPT. Such a linked-list can be periodically compacted so that
its length does not exceed the number of pages in a block.
Space overhead Out-of-place updates produce holes (invalid
blocks). Holes in stripes cannot be reused directly since the
invalid data segment is still involved in parity computation.
Again the problem can be solved with periodic compaction
similar to SSD GC mechanisms [34, 69], performed during
our replicated-to-RAID conversion. In our experiments, we
found such small partial rewrites quite infrequent across our
evaluated traces (only 1.3%) leading to a small portion of
BMT entries having such linked-lists.

FusionRAID maintains FBMT in battery-backed DRAM,
for both performance and durability. FusionRAID’s overall
metadata storage overhead is quite modest. Each BMT entry
is 5-bytes long, and our optimized BPT entry only takes 6
bytes (exploiting the proximity of logical addresses for paired
blocks). Given the ratio of linked-list entries (each 10-bytes
long) and a 10% space limit to the replicated area, these data
structures altogether take 0.0084% of storage capacity. This
means to manage a fully allocated 60TB SSD pool, only
5.2GB battery-backed memory is needed for FusionRAID to
store its mapping data structures. In addition, FusionRAID
needs to log updates in battery-backed memory, to ensure
consistency of in-progress operations.

5 Performance Evaluation

5.1 Experiment Setup
Testbed We use a SuperMicro 4U storage server, with two 12-
core Intel XEON E5-2650 V4 processors and 128GB DDR4
memory, running Ubuntu 16.04 with Linux kernel v4.15.0.
It has two AOC-S3008L-L8I SAS JBOD adapters, each con-
nected to a 30-bay SAS3 expander backplane via 2 channels.

For RAID evaluation, we select datacenter devices tested
in our SSD performance study (§2): SSD E (Intel D3-S4510).
We have 15 drives sitting on one backplane, with each test
using one 30-drive SSD pool. The I/O channels provide a
combined I/O bandwidth of 24GB/s, exceeding the aggregate
sequential bandwidth from the 30 SSDs (195MB/s per SSD
we measured, 5.71GB/s in total).
Workloads We use both trace-driven and real application
tests. For the former, we implemented a trace player in C us-
ing libaio [7] that issues direct block I/O requests according
to given timestamps. We use eight traces mentioned in Sec-
tion 2.1 with major attributes in Table 4. For the latter, we eval-
uate FusionRAID with the popular RocksDB KV store [10]
running YCSB workloads [16].

362 19th USENIX Conference on File and Storage Technologies USENIX Association

Trace IOPS Write ratio Avg. write size
YCSB-Load 409 99% 507.0KB
YCSB-A 1353 64% 500.4KB
YCSB-B 1218 62% 500.2KB
TPC-C 5764 75% 29.6KB
TensorFlow 65 69% 80.1KB
VirtualDesktop 811 42% 23.8KB
Exchange 846 70% 13.1KB
Proxy 307 32% 13.8KB

Table 4: Characteristics of experimented I/O traces

RAID systems setup We implement FusionRAID as a Linux
kernel module in v4.15.0 with about 5,400 LoC and evalu-
ate it using 29-SSD pools,1 with the stripe width of 7 (6+1
RAID-5). We compare with LogRAID [37], a log-structured
RAID-50 that appends all updates. We used our own imple-
mentation2 based on existing literature [13, 37], In addition,
we implement ToleRAID [23], designed for cutting read tail
latency, following its authors’ guidance. We also evaluate two
common organizations utilizing disk pools: 4 independent
(6+1)-disk RAID-5 arrays (4-RAID5) and a RAID-50 system
that stripes across them (RAID50). Finally, we implement
another alternative design that adds an NVRAM write buffer
above RAID50, which we label NV-RAID. All the above five
systems use 28 SSDs in 4 RAID groups and 1 as a hot spare.

Unless otherwise noted, we test with SSDs consistently
aged: first cleaned with the Linux hdparm SECURE_ERASE
command, followed by a full-device sequential write, and fi-
nally, 6 hours random 16KB writes using fio [4], to guarantee
each write generates invalid page(s).

5.2 Overall Performance
Trace-driven, concurrent workloads Considering the com-
mon usage of our testbed SSD pool size, we measure overall
performance by co-running multiple workloads. More specifi-
cally, we select 20 4-workload mixes randomly from the afore-
mentioned 8 traces, testing 4-RAID5, RAID50, LogRAID,
ToleRAID, and FusionRAID on DC SSDs.

Figure 10 gives the median and tail latencies of 8 test work-
loads. The bars show the average value among all their execu-
tions in the 20 mixes (number of executions ranges between
9 and 13), and error bars mark the min/max values. Note that
the y axis in the tail latency chart uses a log scale.

4-RAID5 shows comparatively consistent performance un-
der light workloads (TF and Proxy) due to hardware isolation.
However, the median and tail latencies on 4-RAID5 increase
obviously under workloads with larger average write size,
higher bandwidth or I/O bursts due to limited resources in one
RAID-5. Despite spreading work to all 28 SSDs, RAID50
does not reduce median latency and often worsens tail la-
tency. Light workloads show significant performance degra-
dation on RAID50 when they share resources with heavy

1MOLS requires pool size to be a power of a prime number.
2Due to time/resource limit this system is implemented in user space,

disabling it from supporting a file system and running applications.

ones. RAID50’s two-level striping adds further complexity
and inter-SSD dependency into the I/O path, making average
cases more costly. The worst cases, meanwhile, are slowed
down by one or two unresponsive SSDs.

LogRAID does not appear to help: by consolidating all
writes to the pool into a single log stream, it reduces con-
currency and can utilize 1-2 7-SSD arrays at a time (while
RAID50 and FusionRAID simultaneously use more disks).
Moreover, data writes still experience the underlying RAID
write path, thereby enduring higher latency. Compared with
4-RAID5, ToleRAID brings almost identical median latency
under all the 8 workloads, and obviously reduces tail latency
under four workloads (i.e. YCSB-A, YCSB-B, VD, Proxy). How-
ever, ToleRAID does not reduce tail latency under the other
4 workloads with higher write ratios, as write I/Os cannot
benefit from ToleRAID’s request redirection.

FusionRAID, on the other hand, significantly reduces both
median and tail latencies. Compared with 4-RAID5, Fusion-
RAID shows an average reduction of 49% in median latency
across the 8 traces and a maximum of 87%. Compared with
RAID50, LogRAID and ToleRAID, the average/maximum re-
ductions are 81%/97%, 76%/98% and 45%/85%, respectively.
FusionRAID’s P99 improvement (Figure 10(b)) is even more
impressive, averaging a 15× reduction (up to 32×) from 4-
RAID5, 35× (up to 62×) from RAID50, 34× (up to 61×)
from LogRAID, and 8.3× (up to 14×) from ToleRAID. Later
we give an in-depth breakdown of sources contributing to
such dramatic cut in tail latency.

In addition, for both median and tail, FusionRAID achieves
shorter error bars than RAID50, LogRAID, and even 4-
RAID5 (which offers hardware isolation, with a dedicated
RAID-5 array for each workload). This demonstrates that
spreading bursts, simplifying writes, and avoiding spikes
bring more reliable performance than simply trying to protect
workloads from each other. Finally, all tested RAID systems
show the same throughput since trace-driven workloads issue
I/O requests according to timestamps. This also allows us to
observe the median and tail latency of FusionRAID and other
systems under the same load intensity, for fair comparison.

Systems Workloads Update Read avg. latency (ms) Update avg. latency (ms)
ratio Slowest 10% Slowest 1% Slowest 10% Slowest 1%

RAID50
YCSB-Load 100% 32.55 232.17

FusionRAID 4.22 29.25
RAID50

YCSB-A 50% 0.92 2.4 9.2 63.13
FusionRAID 0.753 1.924 2.35 11.80

RAID50
YCSB-B 5% 0.66 1.81 5.17 34.34

FusionRAID 0.47 1.55 1.27 5.86

Table 5: RocksDB average and tail latency in running YCSB

Real-application workloads Next, we evaluate with repre-
sentative YCSB workloads, of varied write intensity levels,
running RocksDB on top of ext4 above FusionRAID and
RAID50. Table 5 lists workload information and results.

For each workload, Table 5 lists the average latency of
the slowest 10% and the slowest 1% of operations, for reads

USENIX Association 19th USENIX Conference on File and Storage Technologies 363

Load YCSB-A YCSB-B TPC-C TF VD Exch Prxy
0
1
2
3
4 13

La
te

nc
y

(m
s) 10 11 13 10 12

4-RAID5 RAID-50 LogRAID ToleRAID FusionRAID

(a) Median latency. Bold numbers above bars denote average median
latencies exceeding 4ms.

Load YCSB-A YCSB-B TPC-C TF VD Exch Prxy
0.25

2
16

128

La
te

nc
y

(m
s)

4-RAID5 RAID-50 LogRAID ToleRAID FusionRAID

(b) P99 tail latency, log scale.

Figure 10: Overall performance comparison, from 20 randomly selected 4-workload mixes. Error bars show ranges of measured
latency from all executions of each workload.

and writes separately. For the least write-intensive work-
load (YCSB-B), most reads are served from the RocksDB
memtable, closing the performance gap between FusionRAID
and RAID50. Still, across all three workloads, read tail latency
consistently benefits from FusionRAID, due to its more effi-
cient digestion of request bursts. For writes, even at an update
rate as low as 5%, FusionRAID reduces the average latencies
of the slowest 10% and 1% by 4.1× and 5.9×, respectively.
As expected, its margin of improvement grows with write
intensity, reaching 7.9× for YCSB-Load’s slowest 1%.

As for writes, Figure 11(a) plots RocksDB update latency
CDFs under the two write-intensive YCSB workloads. Fusion-
RAID reduces the write tail latency significantly, especially
with YCSB-Load. A major source of the long tail latency for
update operations in RocksDB is the contention between fore-
ground memtable flushing and background compaction [6].
FusionRAID benefits from its higher and more consistent
bandwidth, reducing the probability of contention.

0 25 50
Latency (ms)

0.9

1.0

CD
F YCSB-A, Fusion

YCSB-Load, Fusion
YCSB-A, RAID50
YCSB-Load, RAID50

(a) RocksDB latency CDF

2 4 8 16 32 64 128 256
1

8

64

La
te

nc
y

(m
s)

NVRAM size (GB)

 YCSB-A, Fusion YCSB-A, NV-RAID
 TPCC, Fusion TPCC, NV-RAID

(b) P99 latency

Figure 11: Detailed latency comparison: (a) FusionRAID vs.
RAID50 with YCSB-Load and YCSB-A, and (b) FusionRAID
vs. NV-RAID with varying NVRAM size, log scale

Comparison with NV-RAID Intuitively, one can tame the
tail latency of SSD arrays easily with an NVRAM buffer.
To address this concern, we compare FusionRAID with NV-
RAID. Since we cannot use the Intel Optane NVDIMM with-
out a processor upgrade, we emulate an NVRAM buffer using
DRAM and set a 100ns delay for each cacheline flush opera-
tion [32, 43]. To focus on the effect of such a buffer, we only
add delays for data operations and not metadata ones.

Figure 11(b) illustrates the P99 latency of NV-RAID with
different NVRAM sizes under YCSB-A and TPC-C, and that of
FusionRAID (two straight lines) for reference. For YCSB-A,
the P99 latency remains over 40ms, 30× higher than the Fu-

sionRAID result, with an NVRAM buffer size under 8GB.
Here such small buffers do not sufficiently ease write pressure,
incurring SSD GC activities that reduce effective SSD array
bandwidth and delaying buffer flushes, which in turn results
in further NVRAM buffer space shortage. As the buffer size
increases, NV-RAID’s tail latency improves, nearly catching
up with FusionRAID at 64GB and leveling off over 128GB.

For TPC-C, as the NVRAM buffer grows, the P99 latency
of NV-RAID decreases more quickly. The inter-workload
difference here is due to TPC-C’s smaller requests and higher
issuing rates, while YCSB-A contains larger (512KB) I/Os.
Therefore NV-RAID’s tail latency gets fairly close to Fusion-
RAID’s, with an 8GB write buffer. This also leads to better
median latency of NV-RAID than FusionRAID with TPC-C
(28µs vs. 96µs) with the former using a 256GB buffer. With
YCSB-A, on the other hand, even at this full NVRAM buffer
capacity NV-RAID delivers a median latency of 391µs (vs.
FusionRAID’s 320µs).

One sees that FusionRAID delivers similar or better tail
latency performance as adopting an NVRAM buffer, while
the median performance is more workload-dependent. Mean-
while, FusionRAID is designed to support multiple work-
loads simultaneously. Under such scenarios, concurrent ap-
plications need to share the precious NVRAM space, and
may suffer write bandwidth scalability problems when more
concurrent threads access the NVRAM, as found by a recent
study [70]. Finally, NVRAM is far more expensive than SSDs:
one 256GB NVDIMM costs $2,595 [2], equal to the price of
our 30-SSD pool, even without considering the cost of the
required server upgrade. Also, in the case of the Intel Optane
NVDIMM, unlike most storage devices, a larger NVRAM
device (256GB vs. 128GB) actually costs more per GB.

5.3 Impact of Individual Techniques

For the rest of the section, due to space limit, we focus on
the mix including four different types of workloads (TPC-C,
YCSB-A, TF and VD). Here, to isolate the improvement brought
by key FusionRAID techniques, we evaluate its two interme-
diate versions: 4-RAIDM, with 4 independent 7-disk volumes
like 4-RAID5 but with all write requests conducted by per-
forming mirrored log-structure writes in a round-robin way,

364 19th USENIX Conference on File and Storage Technologies USENIX Association

and Fusion-ND, same as FusionRAID but with SSD spike
detection and request redirection removed.

Figure 12 shows the median and P99 latencies of different
systems. From 4-RAID5 to RAID50, as explained earlier,
building a single, shared volume on the entire SSD pool does
not necessarily help. Replacing the costly RAID write with
replicated write (4-RAIDM), in contrast, brings about the
most significant improvement. Compared with 4-RAID5, 4-
RAIDM reduces median latency by 2.1%-89% and shrinks
P99 by 5.9-12×. However, the P99 latency of 4-RAIDM
under TPC-C reaches 202ms, caused by the limited number
of SSDs to serve intensive writes.

TPCC YCSB-A TF VD
0

1

2 4.42.49.3 4-RAID5
 RAID-50
 4-RAIDM
 Fusion-ND
 Fusion

La
te

nc
y

(m
s)

3.9

(a) Median latency (bold numbers
giving values over 2)

TPCC YCSB-A TF VD

0.5
2
8

32
128

 4-RAID5
 RAID-50
 4-RAIDM
 Fusion-ND
 Fusion

La
te

nc
y

(m
s)

(b) P99 latency, log scale

Figure 12: Incremental impact of proposed techniques

Fusion-ND enjoys the same benefits of simplified writes
but spreading work to the entire pool rather than having 4
physically isolated arrays. Now with a shorter and decoupled
write path, involving more disks improves processing power
without propagating spikes. This produces a significant reduc-
tion from the most write-intensive workload (TPC-C) in tail
latency (again plotted in log scale).

Slowest 1% avg. latency (ms) Slowest 0.1% avg. latency (ms)
Fusion-ND Fusion Fusion-ND Fusion

TPC-C 1.90 1.47 6.34 2.79
YCSB-A 3.04 2.41 15.37 9.71
TF 2.31 2.20 52.16 49.83
VD 6.96 2.97 45.49 11.50

Table 6: Average latency at tails: Fusion-ND vs. Fusion

Finally, from Fusion-ND to FusionRAID, we add SSD
spike detection and request redirection. Their difference may
not seem significant from Figure 12, as it only comes into
play when requests run into device-side spikes. As shown
in Table 6, FusionRAID reduces the average latency of the
slowest 1% requests by 1.1-2.3×, redirecting 0.73% of write
requests from the Fusion-ND baseline. We also measure the
frequency and duration of spikes on Fusion-ND with spike
detection on and request redirection off. On average one SSD
experiences 4.85 spikes/minute, each lasting for 3.79ms. Al-
though these spikes appear quite short, bursty requests suffer
performance degradation in batch once encountering them.

5.4 FusionRAID Overhead and Sensitivity

FusionRAID’s major internal I/O activity is its replicated-to-
RAID data conversion. Our tests presented earlier all have

TPC-C YCSB-A TF VD
0

1

R
at
io

 P99 Median

(a) Latency of Fusion (w/o conv.)
normalized to Fusion (w/ conv.)

TPC-C YCSB-A TF VD
0

1

2

R
at
io

 4-RAID5 Fusion (w/o conv.)
 4-RAIDM Fusion (w/ conv.)

(b) Write amplification

TPC-C YCSB-A TF VD
0

1

2

R
at
io

 4-RAID5 Fusion (w/o conv.)
 4-RAIDM Fusion (w/ conv.)

(c) Space overhead

0 10Latency (ms)0.8

1.0

CD
F ̂x=̂ t=100μs

̂x=̂ t=1ms
̂x=̂ t=μms
̂x=̂0 t=1ms

(d) Latency CDF of Fusion with
varying thresholds in spike detection

Figure 13: FusionRAID overhead and sensitivity

conversion turned on (only temporarily suspended when fore-
ground throughput on a disk exceeds 40MB/s, our observed
per-drive average). To examine its performance impact, Fig-
ure 13(a) shows performance with and without such back-
ground conversion. One sees that even with our current brute-
force conversion policy (with no foreground-aware optimiza-
tion such as avoiding application busy bursts), its performance
overhead is quite small, thanks to our in-position stripe allo-
cation during replicated writes.

Next, Figure 13(b) reports the ratio of write amplification
across all systems. Compared with 4-RAIDM, FusionRAID
reduces the ratio across most of the workloads since it per-
forms RAID writes directly for large requests. An exception
is that FusionRAID brings a higher ratio under VD. This is
because numerous replicated writes generated by dominant
small writes in VD (see Table 4), plus parity updates in conver-
sion, increase write amplification more than mirroring does.
On average, its in-position conversion only brings around a
5.6% increase in write amplification.

Space consumption, meanwhile, depends on the aggres-
siveness of the background conversion policy adopted. Fig-
ure 13(c) gives the overall space consumption (vs. user data
size), for all data written during the trace run. As expected,
4-RAID5’s extra space overhead comes from the single parity
block in its 6+1 stripe. 4-RAIDM has a constant space ratio
of 2 as it performs simple mirroring. FusionRAID, with con-
version turned off, has a slightly varying space ratio across
workloads, due to their different write patterns. With conver-
sion fully performed, one of the replicas is recycled (the other
reclaimed) and multiple writes are compacted, returning the
space consumption to the same as the 4-RAID5 level.

In addition, we examine the sensitivity of parameters in
spike detection (§4.3). We first set y (determining the count-
ing precision) at 10 and x̌ (used to speculate the end of latency
spikes) at 0 empirically. Figure 13(d) shows latency CDFs un-
der Exchange with different values of x̂ and t. Smaller x̂ and t
help FusionRAID to detect spikes and react earlier while more

USENIX Association 19th USENIX Conference on File and Storage Technologies 365

SSDs are identified as unresponsive, leaving fewer choices
for incoming I/Os. Fortunately, FusionRAID performs well
with smaller thresholds, thanks to the large 30-SSD pool.

Finally, we discuss how SSD aging affects the systems’ per-
formance. Figure 14 compares the performance of RAID50,
LogRAID, and FusionRAID on clean and aged SSDs under
the same workload combination as in §5.3, showing median
and P99 latency on average. Aside from its capability to sig-
nificantly reduce the median/tail latency in all cases, Fusion-
RAID shows different behavior across clean and aged SSDs
than the baseline systems. While RAID50 and LogRAID have
higher median latency on aged SSDs due to increased GC
activities, FusionRAID works as well there due to its spike
aversion. For tail latency, however, FusionRAID does per-
form better on clean SSDs, where it has more alternatives
to redirect requests. RAID50 and LogRAID, without such a
mechanism, show no differences across aged and clean SSDs.

RAID50 LogRAID Fusion
0

2

4
 Clean
 Aged

La
te

nc
y

(m
s)

(a) Median latency

RAID50 LogRAID Fusion
0.5

8

128 Clean
 Aged

La
te

nc
y

(m
s)

(b) P99 latency, log scale

Figure 14: Performance on clean vs. aged SSDs

6 Related Work

SSD RAID designs SSD RAID systems have been exten-
sively studied, with approaches roughly in three groups: 1) im-
proving reliability by distributing parity unevenly across the
array [5] or through wear leveling across member SSDs [61],
2) enhancing average-case performance and/or reliability by
mitigating the parity update problem [14,15,28,36,42], and 3)
taming tail-latency by alleviating GC impact [23,37,38,66,69].
Approaches in the first two groups do not address tail la-
tency, and most in the third group [38, 66, 69] rely on host-
managed/open-channel SSDs. One exception, ToleRAID [23],
focuses on cutting read tails under a full-stripe read workload.
In contrast, FusionRAID works on off-the-shelf SSDs and
aims to reduce both average-case and tail latencies, while
maintaining the same fault tolerance level.

A highly related system is SWAN [37], which eliminates
GC impact on commodity SSD arrays (Rails [54] is similar
but focuses on read protection from GC). It partitions drives
into groups, which rotate in handling foreground and inter-
nal writes, shielding user writes from GC traffic. It targets
settings where SSD RAIDs are built for capacity, but with
aggregate bandwidth bound by network, while FusionRAID
targets shared storage serving latency-critical applications.
Compared with SWAN, FusionRAID is reactive rather than
proactive, but protects and redirects both reads and writes.
RAID data layout optimization Parity declustering [46] uti-
lizes as many disks as possible to serve application requests

in data reconstruction. It has been extended and optimized
by many [3, 25, 26, 48, 63]. It is also widely adopted in indus-
try, by products such as PanFS [63], the IBM GPFS Native
RAID [19] and Spectrum Scale RAID [27], HPE 3PAR [60],
and Huawei’s RAID2.0+ [44]. FusionRAID’s design lever-
ages existing Latin-square based deterministic addressing of
RAID+ [71] but augments it with explicit block mapping to
enable two-phase writes and out-of-place updates.
RAID write optimization Purity [15], Flash-Aware
RAID [28], and PPC [14] use NVRAM to buffer the incoming
data and/or parity information and delay parity updates, so as
to conduct full-stripe writes and reduce the reads involved in
parity updates [15], or to reduce the number of parity com-
mits to SSDs [14, 28]. However, they require large amounts
of NVRAM for storing data and/or parity information. ESAP-
RAID [36] and RAID-Z [9] organize the incoming data in
elastic-width stripes to reduce parity-induced read overhead,
at the cost of increased stripe management complexity.

Two-phase writing was used by existing systems: Au-
toRAID [65], DiskReduce [21], and Log Disk Mirroring
(LDM) [67] all write data to a replicated zone, with future
background conversion to the RAID zone. However, Fusion-
RAID is unique in its in-place conversion by replicating in
a stripe-ready manner. Note that it specifically targets SSD
RAIDs, where massive data migration may cause frequent
GC and consume more SSD write cycles.
Alleviating GC Interference Harmonia [39] and Global
Garbage Collection (GGC) [38] synchronize GC across a set
of SSDs, thereby reducing overall performance variability.
Application-managed Flash [41] and LightNVM [8] elimi-
nate GC overhead by letting the host software manage the
exposed flash channels. Several other systems cut read tail
latency by issuing an extra read to parity block and rebuild
the “late” data [23, 66, 69], and write one by enforcing at
most one active GC in every RAID group and writing data
to a no-GC member [66, 69]. Unlike the above, FusionRAID
works without assuming SSD internal information/control, by
observing SSDs’ performance behavior to detect the onset of
degradation and steer away if possible.

7 Conclusion

With FusionRAID, we argue that SSD RAID systems can
be much faster and more consistent, by eagerly spreading
application load, lazily performing parity writes (instead trad-
ing space temporarily for simple replicated writes), and care-
fully watching individual SSD’s performance and waiting out
their transient latency spikes. Large SSD enclosures, once
not constrained with the rigid routines of traditional RAID
arrays, simultaneously provide high concurrency to serve co-
executing applications’ bursty I/Os, and high flexibility in
avoiding drives under transient performance degradation.

366 19th USENIX Conference on File and Storage Technologies USENIX Association

Acknowledgment
We thank all reviewers for their insightful comments and help-
ful suggestions. We are especially grateful to our shepherd,
Keith Smith, for his thorough, detailed, and patient guidance
during our camera-ready preparation. This work was sup-
ported by the National key R&D Program of China under
Grant 2018YFB0203902, and the National Natural Science
Foundation of China under Grants 61672315 and 62025203.

References

[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D. Davis, and Rina Panigrahy. Design tradeoffs for
SSD performance. In the 2008 USENIX Annual Techni-
cal Conference (USENIX’08), pages 57–70, 2008.

[2] Paul Alcorn. Intel Optane DIMM Pricing.
https://www.tomshardware.com/news/intel-o
ptane-dimm-pricing-performance,39007.html,
2019.

[3] Guillermo A. Alvarez, Walter A. Burkhard, Larry J.
Stockmeyer, and Flaviu Cristian. Declustered disk ar-
ray architectures with optimal and near-optimal paral-
lelism. In Proceedings of 25th International Symposium
on Computer Architecture (ISCA’98), pages 109–120,
1998.

[4] Jens Axboe. FIO: Flexible I/O Tester. https://gith
ub.com/axboe/fio, 2019.

[5] Mahesh Balakrishnan, Asim Kadav, Vijayan Prab-
hakaran, and Dahlia Malkhi. Differential RAID: Re-
thinking RAID for SSD reliability. ACM Transactions
on Storage (TOS), 6(2):4, 2010.

[6] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. SILK: Preventing latency spikes in log-structured
merge key-value stores. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC’19), pages 753–766,
2019.

[7] Suparna Bhattacharya, Steven Pratt, Badari Pulavarty,
and Janet Morgan. Asynchronous I/O support in Linux
2.5. In Proceedings of the Linux Symposium, pages
371–386, 2003.

[8] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.
LightNVM: The Linux open-channel SSD subsystem.
In 15th USENIX Conference on File and Storage Tech-
nologies (FAST’17), pages 359–374, Santa Clara, CA,
February 2017. USENIX Association.

[9] Jeff Bonwick and Bill Moore. ZFS: The Last Word in
File Systems. https://www.snia.org/sites/def

ault/orig/sdc_archives/2008_presentations/
monday/JeffBonwick-BillMoore_ZFS.pdf, 2008.

[10] Dhruba Borthakur. RocksDB: A persistent key-value
store. https://rocksdb.org/, 2014.

[11] Eric Burgener. Justifying investment in all-flash arrays.
https://www.emc.com/collateral/analyst-rep
orts/justifying-investments-in-all-flash-a
rrays.pdf, 2019.

[12] Feng Chen, David A Koufaty, and Xiaodong Zhang.
Understanding intrinsic characteristics and system im-
plications of flash memory based solid state drives. In
ACM SIGMETRICS Performance Evaluation Review,
volume 37, pages 181–192. ACM, 2009.

[13] Tzi-cker Chiueh, Weafon Tsao, Hou-Chiang Sun, Ting-
Fang Chien, An-Nan Chang, and Cheng-Ding Chen.
Software orchestrated flash array. In Proceedings of
International Conference on Systems and Storage (SYS-
TOR’14), pages 1–11. ACM, 2014.

[14] Ching-Che Chung and Hao-Hsiang Hsu. Partial parity
cache and data cache management method to improve
the performance of an SSD-based RAID. IEEE Transac-
tions on Very Large Scale Integration (VLSI’14) Systems,
22(7):1470–1480, 2014.

[15] John Colgrove, John D Davis, John Hayes, Ethan L
Miller, Cary Sandvig, Russell Sears, Ari Tamches, Neil
Vachharajani, and Feng Wang. Purity: Building fast,
highly-available enterprise flash storage from commod-
ity components. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data
(SIGMOD’15), pages 1683–1694. ACM, 2015.

[16] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing (SoCC’10), pages
143–154. ACM, 2010.

[17] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56(2):74–80, 2013.

[18] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly avail-
able key-value store. In ACM SIGOPS operating sys-
tems review, volume 41, pages 205–220. ACM, 2007.

[19] Veera Deenadhayalan. GPFS Native RAID for 100,000-
Disk Petascale Systems. In 25th Large Installation
System Administration Conference (LISA’11), 2011.

USENIX Association 19th USENIX Conference on File and Storage Technologies 367

https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://github.com/axboe/fio
https://github.com/axboe/fio
https://www.snia.org/sites/default/orig/sdc_archives/2008_presentations/monday/JeffBonwick-BillMoore_ZFS.pdf
https://www.snia.org/sites/default/orig/sdc_archives/2008_presentations/monday/JeffBonwick-BillMoore_ZFS.pdf
https://www.snia.org/sites/default/orig/sdc_archives/2008_presentations/monday/JeffBonwick-BillMoore_ZFS.pdf
https://rocksdb.org/
https://www.emc.com/collateral/analyst-reports/justifying-investments-in-all-flash-arrays.pdf
https://www.emc.com/collateral/analyst-reports/justifying-investments-in-all-flash-arrays.pdf
https://www.emc.com/collateral/analyst-reports/justifying-investments-in-all-flash-arrays.pdf
https://www.emc.com/collateral/analyst-reports/justifying-investments-in-all-flash-arrays.pdf

[20] DELL EMC. VMAX All Flash Family,
https://www.dellemc.com/en-us/collater
als/unauth/data-sheets/products/storage
-2/h16051-vmax-all-flash-250f-950f-ss.pdf.
2020.

[21] Bin Fan, Wittawat Tantisiriroj, Lin Xiao, and Garth Gib-
son. DiskReduce: Replication as a prelude to erasure
coding in data-intensive scalable computing. SC’11,
2011.

[22] FUJITSU. FUJITSU Storage ETERNUS AF650 S3.
https://www.fujitsu.com/global/products/co

mputing/storage/all-flash-arrays/eternus-a
f650-s3/index.html, 2020.

[23] Mingzhe Hao, Gokul Soundararajan, Deepak
Kenchammana-Hosekote, Andrew A. Chien, and
Haryadi S. Gunawi. The Tail at Store: A revelation from
millions of hours of disk and SSD deployments. In 14th
USENIX Conference on File and Storage Technologies
(FAST’16), pages 263–276, Santa Clara, CA, February
2016. USENIX Association.

[24] Md E Haque, Yuxiong He, Sameh Elnikety, Ricardo
Bianchini, Kathryn S McKinley, et al. Few-to-many:
Incremental parallelism for reducing tail latency in inter-
active services. In ACM SIGPLAN Notices, volume 50,
pages 161–175. ACM, 2015.

[25] Mark Holland and Garth A. Gibson. Parity decluster-
ing for continuous operation in redundant disk arrays.
In Proceedings of the 5th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS’92), pages 23–35, 1992.

[26] Mark Holland, Garth A. Gibson, and Daniel P.
Siewiorek. Fast, on-line failure recovery in redundant
disk arrays. In Proceedings of The Twenty-Third In-
ternational Symposium on Fault-Tolerant Computing
(FTCS’93), pages 422–431, 1993.

[27] IBM. IBM Spectrum Scale RAID.
https://www.ibm.com/support/knowledgecen
ter/en/SSYSP8_5.3.1/raid_adm.pdf, 2017.

[28] Soojun Im and Dongkun Shin. Flash-aware RAID tech-
niques for dependable and high-performance flash mem-
ory SSD. IEEE Transactions on Computers, 60:80–92,
01 2011.

[29] Intel. Intel Solid State Drives. https:
//www.intel.com/content/www/us/en/produc
ts/memory-storage/solid-state-drives.html.
2020.

[30] I/O Umass Trace Repository. OLTP Application I/O
and Search Engine I/O. http://traces.cs.umass.
edu/index.php/Storage/Storage.

[31] Itnews. ANZ Bank goes all-flash for storage.
https://www.itnews.com.au/news/anz-bank-g
oes-all-flash-for-storage-490262. 2020.

[32] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao
Liu, Amirsaman Memaripour, Yun Joon Soh, Zixuan
Wang, Yi Xu, Subramanya R Dulloor, et al. Basic per-
formance measurements of the Intel Optane DC persis-
tent memory module. arXiv preprint arXiv:1903.05714,
2019.

[33] Dawoon Jung, Jeong Uk Kang, Heeseung Jo, Jin Soo
Kim, and Joonwon Lee. Superblock FTL: A superblock-
based flash translation layer with a hybrid address trans-
lation scheme. ACM Transactions on Embedded Com-
puting Systems, 9(4):1–41, 2010.

[34] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and
Sangyeun Cho. The multi-streamed solid-state drive. In
6th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage’14), 2014.

[35] Jaeho Kim, Donghee Lee, and Sam H Noh. Towards
SLO complying SSDs through OPS isolation. In 13th
USENIX Conference on File and Storage Technologies
(FAST’15), pages 183–189, 2015.

[36] Jaeho Kim, Jongmin Lee, Jongmoo Choi, Donghee Lee,
and Sam H Noh. Improving SSD reliability with RAID
via elastic striping and anywhere parity. In 2013 43rd
Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN’13), pages 1–12.
IEEE, 2013.

[37] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin
Lee, Changwoo Min, and Sam H. Noh. Alleviating
garbage collection interference through spatial separa-
tion in all flash arrays. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC’19), pages 799–812,
Renton, WA, July 2019. USENIX Association.

[38] Youngjae Kim, Junghee Lee, Sarp Oral, David A Dil-
low, Feiyi Wang, and Galen M Shipman. Coordinating
garbage collection for arrays of solid-state drives. IEEE
Transactions on Computers, 63(4):888–901, 2014.

[39] Youngjae Kim, Sarp Oral, Galen M Shipman, Junghee
Lee, David A Dillow, and Feiyi Wang. Harmonia: A
globally coordinated garbage collector for arrays of
solid-state drives. In 2011 IEEE 27th Symposium on
Mass Storage Systems and Technologies (MSST’11),
pages 1–12. IEEE, 2011.

[40] Chunghan Lee, Tatsuo Kumano, Tatsuma Matsuki, Hi-
roshi Endo, Naoto Fukumoto, and Mariko Sugawara.
Understanding storage traffic characteristics on enter-
prise virtual desktop infrastructure. In Proceedings of

368 19th USENIX Conference on File and Storage Technologies USENIX Association

https://www.dellemc.com/en-us/collaterals/unauth/data-sheets/products/storage-2/h16051-vmax-all-flash-250f-950f-ss.pdf
https://www.dellemc.com/en-us/collaterals/unauth/data-sheets/products/storage-2/h16051-vmax-all-flash-250f-950f-ss.pdf
https://www.dellemc.com/en-us/collaterals/unauth/data-sheets/products/storage-2/h16051-vmax-all-flash-250f-950f-ss.pdf
https://www.dellemc.com/en-us/collaterals/unauth/data-sheets/products/storage-2/h16051-vmax-all-flash-250f-950f-ss.pdf
https://www.fujitsu.com/global/products/computing/storage/all-flash-arrays/eternus-af650-s3/index.html
https://www.fujitsu.com/global/products/computing/storage/all-flash-arrays/eternus-af650-s3/index.html
https://www.fujitsu.com/global/products/computing/storage/all-flash-arrays/eternus-af650-s3/index.html
https://www.ibm.com/support/knowledgecenter/en/SSYSP8_5.3.1/raid_adm.pdf
https://www.ibm.com/support/knowledgecenter/en/SSYSP8_5.3.1/raid_adm.pdf
https://www.ibm.com/support/knowledgecenter/en/SSYSP8_5.3.1/raid_adm.pdf
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives.html
http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
https://www.itnews.com.au/news/anz-bank-goes-all-flash-for-storage-490262
https://www.itnews.com.au/news/anz-bank-goes-all-flash-for-storage-490262
https://www.itnews.com.au/news/anz-bank-goes-all-flash-for-storage-490262

the 10th ACM International Systems and Storage Con-
ference, pages 1–11, 2017.

[41] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Ji-
hong Kim, and Arvind. Application-managed flash. In
14th USENIX Conference on File and Storage Tech-
nologies (FAST’16), pages 339–353, Santa Clara, CA,
February 2016. USENIX Association.

[42] Yongkun Li, Helen HW Chan, Patrick PC Lee, and Yin-
long Xu. Elastic parity logging for SSD RAID arrays.
In 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN’16), pages
49–60. IEEE, 2016.

[43] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai
Qian, Yongwei Wu, Weimin Zheng, and Jinglei Ren.
DudeTM: Building durable transactions with decou-
pling for persistent memory. ACM SIGPLAN Notices,
52(4):329–343, 2017.

[44] Huawei Technologies Co., Ltd. RAID 2.0+ Technical
White Paper. https://actfornet.com/HUAWEI_S
TORAGE_DOCS/Storage_All2/Enterprise%20Unifi
ed%20Storage%20RAID%202.0+%20Technology-H
UAWEI%20OceanStor%20Technical%20White%20Pap
er.pdf, 2014.

[45] Michael Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on Par-
allel and Distributed Systems, 12(10):1094–1104, 2001.

[46] Richard R. Muntz and John C. S. Lui. Performance
analysis of disk arrays under failure. In Proceedings of
the 16th International Conference on Very Large Data
Bases (VLDB’90), pages 162–173, 1990.

[47] Sampann N. Amazon found every 100ms of latency
cost them 1% in sales. https://www.linkedin.com
/pulse/amazon-found-every-100ms-latency-c
ost-them-1-sales-sampann/, 2016.

[48] David Nagle, Denis Serenyi, and Abbie Matthews. The
Panasas activescale storage cluster: Delivering scalable
high bandwidth storage. In Proceedings of the 2004
ACM/IEEE conference on Supercomputing (SC’04),
pages 1–10. IEEE Computer Society, 2004.

[49] NetApp. AFF A-Series All Flash Arrays.
https://www.netapp.com/us/products/stora
ge-systems/all-flash-array/aff-a-series.as
px#technical-specifications. 2020.

[50] David A. Patterson, Garth A. Gibson, and Randy H.
Katz. A case for redundant arrays of inexpensive disks
(RAID). In Proceedings of the 1988 ACM International
Conference on Management of Data (SIGMOD’88),
pages 109–116, 1988.

[51] PureStorage. FlashArray//X. https://www.purest
orage.com/products/nvme/flasharray-x.html.
2020.

[52] Sandisk. SanDisk InfiniFlash System. https://www.
solidstateworks.com/InfiniFlash.asp. 2020.

[53] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash reliability in production: The expected and the
unexpected. In 14th USENIX Conference on File and
Storage Technologies (FAST’16), pages 67–80, Santa
Clara, CA, 2016. USENIX Association.

[54] Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins,
Carlos Maltzahn, and Scott Brandt. Flash on Rails:
Consistent flash performance through redundancy. In
2014 USENIX Annual Technical Conference (USENIX
ATC’14), pages 463–474, Philadelphia, PA, June 2014.
USENIX Association.

[55] SNIA. Microsoft Enterprise Traces. http://iotta.
snia.org/traces/130, 2007.

[56] SNIA. Microsoft Production Server Traces. http:
//iotta.snia.org/traces/158, 2007.

[57] SNIA. MSR Cambridge Traces. http://iotta.sn
ia.org/traces/388, 2007.

[58] SNIA. SNIA Block I/O Traces. http://iotta.snia
.org/tracetypes/3, 2017.

[59] P Lalith Suresh, Marco Canini, Stefan Schmid, and Anja
Feldmann. C3: Cutting tail latency in cloud data stores
via adaptive replica selection. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI’15), pages 513–527. USENIX Association, 2015.

[60] Karl L. Swartz. 3PAR Fast RAID: High performance
without compromise. http://www.kls2.com/~kar
l/papers/raid-wp-10.0.pdf, 2010.

[61] Wei Wang, Tao Xie, and Abhinav Sharma. SWANS:
An interdisk wear-leveling strategy for RAID-0 struc-
tured SSD arrays. ACM Transactions on Storage (TOS),
12(3):10, 2016.

[62] Sage A Weil, Scott A Brandt, Ethan L Miller, and Car-
los Maltzahn. CRUSH: Controlled, Scalable, Decen-
tralized Placement of Replicated Data. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing
(SC’06), pages 1–12. IEEE, 2006.

[63] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gib-
son, Brian Mueller, Jason Small, Jim Zelenka, and Bin
Zhou. Scalable performance of the Panasas parallel file
system. In 6th Usenix Conference on File and Storage
Technologies (FAST’08), pages 17–33, 2008.

USENIX Association 19th USENIX Conference on File and Storage Technologies 369

https://actfornet.com/HUAWEI_STORAGE_DOCS/Storage_All2/Enterprise%20Unified%20Storage%20RAID%202.0+%20Technology-HUAWEI%20OceanStor%20Technical%20White%20Paper.pdf
https://actfornet.com/HUAWEI_STORAGE_DOCS/Storage_All2/Enterprise%20Unified%20Storage%20RAID%202.0+%20Technology-HUAWEI%20OceanStor%20Technical%20White%20Paper.pdf
https://actfornet.com/HUAWEI_STORAGE_DOCS/Storage_All2/Enterprise%20Unified%20Storage%20RAID%202.0+%20Technology-HUAWEI%20OceanStor%20Technical%20White%20Paper.pdf
https://actfornet.com/HUAWEI_STORAGE_DOCS/Storage_All2/Enterprise%20Unified%20Storage%20RAID%202.0+%20Technology-HUAWEI%20OceanStor%20Technical%20White%20Paper.pdf
https://actfornet.com/HUAWEI_STORAGE_DOCS/Storage_All2/Enterprise%20Unified%20Storage%20RAID%202.0+%20Technology-HUAWEI%20OceanStor%20Technical%20White%20Paper.pdf
https://www.linkedin.com/pulse/amazon-found-every-100ms-latency-cost-them-1-sales-sampann/
https://www.linkedin.com/pulse/amazon-found-every-100ms-latency-cost-them-1-sales-sampann/
https://www.linkedin.com/pulse/amazon-found-every-100ms-latency-cost-them-1-sales-sampann/
https://www.netapp.com/us/products/storage-systems/all-flash-array/aff-a-series.aspx#technical-specifications
https://www.netapp.com/us/products/storage-systems/all-flash-array/aff-a-series.aspx#technical-specifications
https://www.netapp.com/us/products/storage-systems/all-flash-array/aff-a-series.aspx#technical-specifications
https://www.netapp.com/us/products/storage-systems/all-flash-array/aff-a-series.aspx#technical-specifications
https://www.purestorage.com/products/nvme/flasharray-x.html
https://www.purestorage.com/products/nvme/flasharray-x.html
https://www.solidstateworks.com/InfiniFlash.asp
https://www.solidstateworks.com/InfiniFlash.asp
http://iotta.snia.org/traces/130
http://iotta.snia.org/traces/130
http://iotta.snia.org/traces/158
http://iotta.snia.org/traces/158
http://iotta.snia.org/traces/388
http://iotta.snia.org/traces/388
http://iotta.snia.org/tracetypes/3
http://iotta.snia.org/tracetypes/3
http://www.kls2.com/~karl/papers/raid-wp-10.0.pdf
http://www.kls2.com/~karl/papers/raid-wp-10.0.pdf

[64] Wikipedia. Trim (computing). https://en.wikiped
ia.org/wiki/Trim_(computing). 2020.

[65] John Wilkes, Richard Golding, Carl Staelin, and Tim Sul-
livan. The HP AutoRAID hierarchical storage system.
ACM Transactions on Computer Systems, 14(1):108–
136, 1996.

[66] Suzhen Wu, Haijun Li, Bo Mao, Xiaoxi Chen, and Kuan-
Ching Li. Overcome the GC-induced performance vari-
ability in SSD-based RAIDs with request redirection.
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 2018.

[67] Suzhen Wu, Bo Mao, Xiaolan Chen, and Hong Jiang.
LDM: Log disk mirroring with improved performance
and reliability for SSD-based disk arrays. ACM Trans-
actions on Storage (TOS), 12(4):22, 2016.

[68] Zhe Wu, Curtis Yu, and Harsha V Madhyastha. CosTLO:
Cost-effective redundancy for lower latency variance
on cloud storage services. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI’15), pages 543–557, 2015.

[69] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao
Tong, Swaminathan Sundararaman, Andrew A Chien,
and Haryadi S Gunawi. Tiny-tail flash: Near-perfect
elimination of garbage collection tail latencies in NAND
SSDs. ACM Transactions on Storage (TOS), 13(3):22,
2017.

[70] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
In 18th USENIX Conference on File and Storage Tech-
nologies (FAST’20), pages 169–182, 2020.

[71] Guangyan Zhang, Zican Huang, Xiaosong Ma, Songlin
Yang, Zhufan Wang, and Weimin Zheng. RAID+: De-
terministic and balanced data distribution for large disk
enclosures. In 16th USENIX Conference on File and
Storage Technologies (FAST’18), pages 279–294, Oak-
land, CA, 2018. USENIX Association.

370 19th USENIX Conference on File and Storage Technologies USENIX Association

https://en.wikipedia.org/wiki/Trim_(computing)
https://en.wikipedia.org/wiki/Trim_(computing)

	Introduction
	SSD RAID Latency Source Study
	Workload I/O Characteristics
	Write Overhead in SSD RAID
	Pathological Latency Spikes of SSDs

	Approach Overview
	FusionRAID Design
	Storage Organization
	Two-phase Write Operations
	Spike Detection and Request Redirection
	Metadata Management

	Performance Evaluation
	Experiment Setup
	Overall Performance
	Impact of Individual Techniques
	FusionRAID Overhead and Sensitivity

	Related Work
	Conclusion

