
This paper is included in the Proceedings of the
19th USENIX Conference on File and Storage Technologies.

February 23–25, 2021
978-1-939133-20-5

Open access to the Proceedings
of the 19th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX.

Pattern-Guided File Compression with
User-Experience Enhancement for Log-Structured

File System on Mobile Devices
Cheng Ji, Nanjing University of Science and Technology; Li-Pin Chang,

National Chiao Tung University, National Yang Ming Chiao Tung University;
Riwei Pan and Chao Wu, City University of Hong Kong; Congming Gao,

Tsinghua University; Liang Shi, East China Normal University; Tei-Wei Kuo
and Chun Jason Xue, City University of Hong Kong
https://www.usenix.org/conference/fast21/presentation/ji

Pattern-Guided File Compression with User-Experience Enhancement for
Log-Structured File System on Mobile Devices

Cheng Ji1, Li-Pin Chang2,3, Riwei Pan4, Chao Wu4, Congming Gao5, Liang Shi6, Tei-Wei Kuo,4 and Chun Jason Xue4

1Nanjing University of Science and Technology 2National Chiao Tung University 3National Yang Ming Chiao Tung University

4City University of Hong Kong 5Tsinghua University 6East China Normal University

Abstract

Mobile applications exhibit unique file access patterns, often
involving random accesses of write-mostly files and read-
only files. The high write stress of mobile applications sig-
nificantly impacts on the lifespan of flash-based mobile stor-
age. To reduce write stress and save space without sacrific-
ing user-perceived latency, this study introduces FPC, file
access pattern guided compression. FPC is optimized for the
random-writes and fragmented-reads of mobile applications.
It features dual-mode compression: Foreground compression
handles write-mostly files for write stress reduction, while
background compression packs random-reading file blocks
for boosted read performance. FPC exploits the out-of-place
updating design in F2FS, a log-structured file system for mo-
bile devices, for the best effect of the proposed dual-mode
compression. Experimental results showed that FPC reduced
the volume of total write traffic and executable file size by
26.1% and 23.7% on average, respectively, and improved the
application launching time by up to 14.8%.

1 Introduction

Mobile devices including smartphones, tablets, and wearable
devices are now a necessity in everyone’s daily life. Recent
researches reported that the number of smartphone shipments
surpassed 1.37 billion in 2019 [1] and 86% of them were
based on the Android [2]. Mobile devices employ flash mem-
ory for persistent data storage. While the performance of
mobile processors is improving drastically, the improvement
of mobile storage performance is, however, relatively slow.
Recent studies report that I/O operations on mobile storage
are write-dominant [3–7], and the write pattern is highly
random and synchronous. These write operations are iden-
tified closely related to user-perceived latencies due to the
relatively high write latency of flash memory [8, 9]. In ad-
dition, as flash memory technology is evolving toward high
cell-bit-density at the cost of degraded endurance, the high
write stress negatively impacts on the flash-storage lifespan.

Android-based mobile devices exhibit very distinct file
usage patterns compared with desktop systems: First, mo-
bile applications heavily rely on an embedded database layer,
SQLite, for transactional data management; Second, Android
packs various runtime resources such as executable binaries
and compiled resources into large executable files. We exam-
ined the contents of these files and found that they are highly
compressible. While the database files contribute to a large
portion of the write traffic, executable files are large in size.
Intuitively, existing file compression techniques, such as those
reported in [10–13], can be adopted to reduce write stress
and to save space. However, the existing designs might not be
effective or risk degraded user experience in mobile devices.

Manipulating SQLite databases generates many small file
overwrite and append operations [6, 14]. These small op-
erations are highly fragmented in the storage space and the
cause has been identified related to the file fragmentation
problem [8]. With the fragmented updates, file compression
on top of a conventional in-place-updating file system, like
Ext4 [15], may create many holes in the storage space because
a compressed file block may not fit in its original space after
an update. With the small append operations, file compression
cannot use a large compression window on new data for a
better compression result. Regarding Android executable files,
although they are sequentially written upon installation, they
are subject to small, random read operations during applica-
tion launching. Decompressing file blocks from random file
offsets significantly amplifies the I/O read overhead because
of the larger unit size of block I/O [12, 13]. These unique
file access patterns of database files and executable files in
Android mobile devices are, however, not well studied in prior
file compression work.

We believe that file compression should be judiciously
applied to files based on their access patterns. This study
presents File Pattern-guided Compression (FPC) for mo-
bile devices. FPC features foreground compression and back-
ground compression. Considering the timing overhead of
compression, foreground compression is applied only on the
write-intensive, highly compressible SQLite files. In particu-

USENIX Association 19th USENIX Conference on File and Storage Technologies 127

lar, SQLite journal files are barely read (write-ahead logging
journal) or never read (roll-back journal). For the journal files,
FPC further applies deep compression by packing file-system
metadata with user data and compressing them using a larger
compression window. Executable files, which are also highly
compressible, are subject to small, random reads upon appli-
cation launching. Hence they are not suitable for sequential
compression in the foreground. Instead, this paper proposes
to apply infrequent background compression to re-organize
read-critical blocks of executable files through compression.
As a result, both user-perceived application launching latency
and storage space utilization can be improved.

The effect of the proposed FPC is best achieved by an
implementation on top of a log-structured file system, e.g.,
F2FS [16] for mobile storage. FPC exploits out-of-place up-
dating and reverse mapping, which are existing mechanisms
in F2FS, for foreground compression and critical block re-
organization, respectively. With out-of-place updating, small,
fragmented writes and appends to SQLite files and their an-
cillary file-system metadata can be combined as sequential,
deep compression with a large compression window. With
the reverse mapping of storage addresses to file block offsets,
it is possible to load multiple compressed read-critical blocks
of executable files through a single block I/O request to accel-
erate application launching. In summary, this work makes the
following contributions:

• Proposing a foreground compression method for write
mostly, highly compressible files to improve write stress
and energy consumption of mobile storage;

• Proposing a background compression method that iden-
tifies and re-organizes read-critical blocks in executable
files for fast application launching and space saving;

• Exploiting out-of-place updating and reverse mapping
of F2FS for the best effect of deep, metadata-level file
compression and fast application launching.

2 Background and Motivation

2.1 I/O System and Storage of Mobile Devices

Android is the dominant operating system for mobile devices
today. The Android I/O system consists of host system soft-
ware and a flash storage device. The host software includes
a lightweight database layer, SQLite, for transactional data
management. SQLite operates on top of the file system layer,
where two major options are provided: Ext4 [15], an in-place
updating file system, and F2FS [16], a log-structured file sys-
tem. Because random file writes may unexpectedly increase
the cost of garbage collection of flash storage, F2FS benefits
flash storage by converting random updates into sequential,
out-of-place updates. As out-of-place updates create outdated
data in the storage space, F2FS needs to timely compact valid
data to provide contiguous free space for future sequential
writes.

0%

20%

40%

60%

80%

100%

Write Read Write Read Write Read Write Read Write Read

Facebook Messenger G. Earth Firefox Reddit

1 2 3 4 >4

(a)

1

1.2

1.4

1.6

1.8

2

0

1

2

3

4

C
o

m
p

ressio
n

 A
m

p
lificatio

n
 R

atio
 (C

A
R

)

D
ec

o
m

p
re

ss
io

n
 A

m
p

lif
ic

at
io

n
 R

at
io

 (
D

A
R

)

DAR CAR

(b)

Figure 1: (a) Characterization of file write and read sizes for
mobile applications (unit: page). (b) Low compression effi-
cacy of traditional sequential compression approaches. Com-
pression Amplification Ratio (CAR) and Decompression Am-
plification Ratio (DAR) are presented, respectively.

High Write Stress. Applications heavily rely on the
SQLite journaling mechanism for data integrity guarantee,
producing enormous synchronous, random block writes [6].
The write traffic is further amplified by other components
of the I/O system. Specifically, free-space defragmentation
for F2FS involves many extra data migrations [16], and flash
garbage collection inside mobile storage requires data move-
ments before memory erasing [17]. The multiple levels of
write amplification become even worse when the level of file
system fullness is high. The amplified write traffic noticeably
degrades user-perceived latency [9]. In addition, as modern
flash technology is evolving toward high bit-cell density at
the cost of reduced endurance, e.g., a TLC flash block can
only withstand about 1,000 P/E (program-erase) cycles [18],
the excessive write traffic also poses concerns to the storage
lifespan.

2.2 Pitfalls of File Compression

File compression is expected to save storage space and reduce
the amount of I/O. However, it may not be the case for mobile
storage because of the highly random nature of file reads and
writes of mobile applications. In this section, we demonstrate
the high randomness of read and write under selected popular
applications and show that existing file compression designs
could be harmful to space utilization and read performance.

In Android devices, read traffic and write traffic are mainly

128 19th USENIX Conference on File and Storage Technologies USENIX Association

contributed by executable files and SQLite files, respectively
[3, 14]. Figure 1(a) reports the size distribution of file read
operations on *.apk executable files and that of file write
operations on SQLite files. Results indicate that roughly more
than one half of the write operations to SQLite files were not
larger than 4 pages (16KB). Most of these small writes were
bound for random file offsets. For read operations, nearly
90% of all read operations were not larger than one page in all
applications. The file offsets of these reads were also highly
fragmented.

Many existing compression file systems, e.g., Btrfs [10],
JFFS2 [11] and EROFS [12], allow only compressed file
blocks of consecutive offsets to be stored in the same storage
block. A new storage block is allocated for a compressed file
block if it does not continue the file offset of the last com-
pressed file block. This design, referred as the sequential com-
pression method, can seriously degrade the space utilization
in mobile storage. To assess the severity of the problems, in
Fig 1(b) we report Compression Amplification Ratio (CAR),
which is the ratio of the total number of physical blocks 1

required to store a series of compressed logical blocks with
the sequential compression method to the minimal number of
physical blocks required to store all the compressed logical
blocks. CAR reflects how the sequential compression method
degrades space efficiency on random write through internal
fragmentation. The CAR values indicated that the sequential
compression method incurred more than 40% extra space
requirement for 4 out of the 5 applications.

We then show how application launching suffered from
an amplified read overhead with the sequential compression
method. We employed Decompression Amplification Ratio
(DAR) to show the ratio of the total number of compressed
logical blocks stored in the physical blocks that are read to
launch an application to the total number of compressed logi-
cal blocks that are actually required to launch the application.
For example, DAR is 4 if a physical block stores four com-
pressed logical blocks and only one of them is actually used.
Fig 1(b) shows the DAR values were even higher than the
CAR values because one-page reads dominated the overall
read traffic. The CAR and DAR results showed that the exist-
ing sequential compression method unexpectedly degrades
space utilization and amplifies the read overhead for applica-
tion launching on mobile devices. This underlines the need
for a new space management strategy to cope with the unique
random I/O pattern of mobile applications.

2.3 Benefits of File Compression with LFS
File system compression should achieve a high compres-
sion efficiency (space saving) with a reduced decompression
penalty. It is possible to achieve both by taking advantage
of the file system structure and application behaviors of file

1In the rest of this paper, we refer to blocks in the storage space as physical
blocks and blocks in the file address space as logical blocks.

1 3 5
PBN
100

Old block

(a)

Valid Invalid

Update B3

3

Physical-to-Logical Block Mapping

inode
30
30
30

PBN
100
100
100

PBN
100
101

30101

102

3 5

Physical block

1 2 3 4

1

5 6 ...

...

Se
gm

en
t

LBN
1
3
5
3

3

Inode num
30

103
...

File Space

File System

valid
1
0
1
1

(b)

Figure 2: Updating compressed data with (a) in-place-
updating file system and (b) a log-structured file system.

access. This study is based on the log-structured file system
for mobile storage. Compared with conventional in-place-
updating file systems, e.g., Ext4, LFS is highly friendly to file
compression, as discussed below:

Out-of-Place Updating. Conventional in-place-updating
file systems have a disadvantage of handling compression. In
Figure 2(a), three data blocks are compressed and packed to-
gether into the same physical block (PBN 100). Consider that
B3 is updated. If the new compressed size of B3 is larger than
the old version, it is impossible to overwrite B3 in place. One
solution is to re-write B1, B3, and B5 and repack them tightly
in another free space. Another option is to align compressed
data to predefined boundaries to allow future size changes of
compressed data. However, with both options above, file com-
pression suffers, from either amplified write traffic or internal
fragmentation [19, 20]. By contrast, as shown in Figure 2(b),
LFS appends the compressed B3 to a new block, avoiding
rewriting of existing data and wasting of free space.

Reverse (Physical-to-Logical) Mapping. To support data
migration of space cleaning, LFS, e.g., F2FS, maintains
physical-to-logical block (P2L) mapping. The P2L mapping
is necessary to determine whether a piece of data is valid (and
requires migration) and to update new locations of data during
cleaning. As Figure 2(b) shows, the P2L mapping provides the
inode number and file offset of a compressed logical block
(§ 4.3). Interestingly, file compression can leverage the exist-
ing P2L mapping mechanism for efficient decompression. We
discerned that the launching of mobile applications, whose
latency affects user experience the most [8], generated small,
random reads on executable files (Section 3.3.1). With P2L
mapping, it is possible to compress the file blocks necessary
to application launching and pack them into physical blocks.
This way, fewer block read requests are required to launch an
application, improving the user-perceived latency.

Although the log-structured file system is friendly to com-
pression, prior compression studies paid little attention to the
read/write patterns of mobile systems. This study proposes to
exploit the file access behaviors of mobile applications and the
structure of F2FS to address two major design challenges: 1)
Efficient file compression for write stress reduction and space
saving and 2) Efficient re-organization and decompression of

USENIX Association 19th USENIX Conference on File and Storage Technologies 129

Page
Cache

File
System

90

91

92

93

94

Page

80 81

VFS

Segment Segment Segment

padding80 81

93

2. foreground compression

Page

90 91

5. background compression

92

92 93 94

1. write()

3. flush or fsync 4. call ioctl() 6. compact pages

invalid

valid

79

...

padding

w
rite

80 81

padding

90 91

C
ri
ti
ca
l

C
ri
ti
ca
l

Figure 3: FPC architecture. Steps 1 to 3 show foreground
compression on write-intensive files and Steps 4 to 6 show
background compression/re-arrangement of read-critical data.

executable files for improved user experience.

3 Pattern-Guided File Compression

This section presents the proposed design principle and the
details of foreground and background compression.

3.1 File Access Behaviors of Mobile Apps

We propose categorizing files according to their types of ac-
cess (read or write) and hotness (access frequency): 1) Write-
hot, read-cold files: Roll-back journals (*.db-journal) are a
good fit in this category because they are frequently writ-
ten [21]. However, they are rarely read (except during crash
recovery). SQLite database files are also a good fit because
many mobile applications frequently write SQLite database
files but barely read them [22]. 2) Write-cold, read-hot files:
Executable files fall in this category because they are im-
mutable after installation or update. Android executable files
are large and highly compressible [13]. However, the read
latency of executable files is critical to user experience, so it
is crucial to optimize the decompression overhead.

Both SQLite files and executable files are subject to ran-
dom access: SQLite database files are prone to random up-
dates, while executable files are subject to random reads. Al-
though random updates will be converted into bulk writes
through out-of-place updating, random reads, however, should
be optimized through rearrangement of file blocks. Figure 3
shows the architecture of the proposed File Pattern-guided
Compression approach (FPC). FPC performs foreground
compression on SQLite files for write stress reduction. On the
other hand, executable files are left to background activities
of block re-arrangement and compression for improved user
experience and space saving.

Traditional
compression

1 2

5 page write

1 210

10 11

21

1 2

Our
approach

3 page write 1 page write

No compression

1121

10 11

21

Req 1

Req 2

Req 3

Figure 4: Comparison of traditional sequential compression
approaches and the proposed compression approach. The Log-
ical Block Number (LBN) is shown inside each data block.

3.2 Foreground Compression
This section presents the proposed foreground compression
(FC) solution for write stress reduction. FC is focused on the
compression of write-hot but read-cold files.

3.2.1 Non-Sequential File Block Compression

On-line file compression is a feature of existing file systems
such as Btrfs [10] and JFFS2 [11]. In the prior designs, a
physical block can only store compressed logical blocks of
contiguous file offsets. This is because, first, file writes in
desktop computers and servers are large in size (compared
with mobile devices), so a sequential burst of compressed data
sufficiently utilizes a physical block. Second, file compression
is a separate layer in file system, and therefore compression
of sequential file blocks minimally affects the existing index
scheme of file blocks. This sequential compression method,
which is adopted by Btrfs and JFFS2, results in poor space
utilization in mobile storage, because the major write traffic
contributor SQLite [4, 14] produces many small writes bound
for random file offsets. In this case, a compressed file block
usually demands a new physical block due to the irrelevant
file offset from the prior compressed file block.

Fig. 4 shows the problem of the sequential compression
method. Consider the three pending file write operations on
the left-hand side. Three physical blocks are required for com-
pression because the three file writes do not have sequential
file offsets. Because compression reduces the file block sizes,
these three physical blocks suffer from poor space utilization.
On the contrary, we propose allowing file blocks of irrelevant
file offsets to share the same physical block. As the right-
hand side of Fig. 4 shows, only one physical block is used
and the space utilization is high. However, compression of
non-sequential file blocks is challenging because it increases
the index resolution of file blocks to the sub-block level.

3.2.2 Selective Foreground File Compression

Foreground compression (FC) is performed in real time. Since
unconditional compression risks poor write latency and ex-
tra energy consumption, foreground compression is highly
selective to avoid such a drawback.

130 19th USENIX Conference on File and Storage Technologies USENIX Association

2

3

4

Node Block

No compression Our
approach

432

3
b

lo
ck

1

b
lo

ck

1
 b

lo
ck432

Data Block

Traditional
compression

4 page write 2 page write 1 page write

Figure 5: Comparison of traditional compression approaches
and the proposed metadata-level file compression approach.

Selection of File Types. Since FC is part of the file system,
it can simply ignore writes associated with the file types that
are known to be incompressible, e.g., files with multimedia
extensions *.jpg, *.mp4 and so on. Among all the other file
types, SQLite files have been identified write-intensive and
highly compressible [23]. In this study, compression ratio is
defined as the ratio of the size after compression to that before
compression. The smaller the better. We measured that the
compression ratio of many SQLite files was better (lower)
than 0.2, and compressing these SQLite files could benefit
the write latency. On the other hand, although executable
files are also highly compressible, sequential compression
of executable files will significantly amplify the read over-
head because such files are subject to small, random reads
during application launching. FC leaves executable files to
background compression.

Selection of Page Writes. Although FC can simply com-
press all writes associated with files having a *.db extension,
it is possible that SQLite files are embedded with incompress-
ible contents. For example, the Google Earth app stores map
image tiles in *.db files using the BLOB (binary large ob-
ject) format. A prior study reports that real-time identification
of data compressibility is feasible [24]. Here, FC employs a
sampling technique to quickly identify such incompressible
contents: FC always compresses the first cached file page
of an SQLite file write operation. If the first cached page is
highly compressible, i.e., its data size can be reduced by at
least one half, then FC compresses the rest cached pages of
the write. Otherwise, FC forwards all the cached pages of the
write to the original F2FS write logic.

3.2.3 Metadata-Level File Compression

F2FS stores user data in data blocks and file-system metadata
(e.g., inodes) in node blocks. These two types of blocks are
written to separate free spaces because node blocks are consid-
ered being updated more often. Small, synchronously-written
files will experience a high metadata overhead.

The left-hand side of Fig. 5 shows the space allocation
without file compression. Now, let the file undergo compres-
sion, the middle of Fig. 5 shows that the three data blocks
are packed into a physical block while the uncompressed
node block still occupies a second physical block. In this
study, we propose writing data blocks of a *.db-journal file

and their associated node block to the same segment through
compression. The right-hand side of Fig. 5 shows that only
one physical block is written with this method, while the tra-
ditional compression in the middle requires two. There are
several rationales behind this design: First, the node block
and data blocks of a *.db-journal file share the same lifetime
because a rollback journal is discarded upon a successful
SQLite transaction. Second, rollback journals are write-only
(except during crash recovery) so packing metadata and user
data together would have little impact on read performance.
Although the design described above is based on rollback jour-
naling in DELETE mode, it is also applicable to PERSIST
mode. In PERSIST mode, rollback journals are reused. Like
in DELETE mode, data blocks and the node block of reused
journals are updated through F2FS out-of-place writing, and
they are packed together for compression.

F2FS flushes data blocks before writing node blocks to
avoid reference to uninitialized data. In our method, physical
blocks containing all compressed data blocks are still flushed
first. Let a mixed block be a physical block storing a few com-
pressed data blocks and their associated, compressed node
block. It is possible that upon crash recovery, the compressed
node block in a mixed block is valid but its associated com-
pressed data blocks in the same mixed block contain uninitial-
ized data. To deal with this problem, we propose inserting a
checksum to every mixed block. If a checksum fail is detected
on a mixed block during crash recovery, the compressed node
block in the mixed block is discarded.

3.3 Background Compression

Foreground compression on sequentially-written, random-
read executable files risks degraded application launching
performance. This part investigates the access patterns of
executable files and proposes background compression (BC).

Figure 6: Distribution of read addresses within executable
files during application launching. The X-axis shows the
block offsets relative to the begin of files. Read requests hav-
ing consecutive LBAs are marked in the same color (red and
blue are used alternatively for clear presentation).

USENIX Association 19th USENIX Conference on File and Storage Technologies 131

3.3.1 Highly Random Reads of Executable Files

Executable files, including .apk, .dex, .odex and .oat files,
contribute to a large proportion of storage space [14], and they
are highly compressible. The latencies of reading executable
during application launching are crucial to user experience,
because users have to wait until all necessary executable data
are decompressed and loaded into memory.

We inspected how executable files were read with typi-
cal mobile applications. In order to accurately identify the
required file data, we inserted routines to the Virtual File
System (VFS) to extract related system calls, e.g., instrument-
ing do_mmap function to record reads on memory-mapped
executable files and instrumenting do_generic_file_read
function to extract reads on non-memory-mapped files. The
duration of launching ended when the executable file of the
application did not receive any read for one second.

Figure 6 shows the distributions of read addresses within
the base.apk file, which is the main executable file for Face-
book, Chrome, and Messenger. Results show that read re-
quests of the inspected applications were small and random.
While the executable files were large, only a small portion of
executable file data was actually fetched for launching. For
example, the executable file of Facebook was 80.6 MB, but
only 632 KB of the file was read to launch Facebook. File
pages were fetched through run-time demand paging, but the
address distribution shows that these required pages were not
well organized based on their correlation.

Apk files are actually a package of resource files. These
files contribute a significant portion of read traffic during
application launching, e.g., 49%, 27% and 21% of total read
requests for Facebook, Chrome, Messenger, respectively. The
random reads of apk files had great impacts on application
launching latencies, which will be shown in Section 5. We
de-compiled the Facebook’s base.apk and analyzed which
resource files were actually read for launching. The accessed
resource files were identified by matching the read addresses
and the file offsets of the resource files within the apk. The
base.apk contained 17,439 resource files. Table 1 shows that
only a small subset of the resource files (110 out of 17,439)
were read. These required resource files (*.xml, *.png, etc.)
were dispersed to random locations within the apk and were
all accessed through single-block read requests. These small,
random reads increased the block I/O count and degraded the
user-perceivable application-launching latency.

Table 1: Resource files read from Facebook’s base.apk.

Type .xml .arsc .png .dex others apk metadata

File count 51 1 41 9 8 1

Blocks read 1 32 1 1 1 17

Read critical data Read critical data

Logical file offset

...Storage space

3 blocks

Compress

......

2 blocks

...

3 blocks 2 blocks

Figure 7: Compression of read-critical data in executable files.

3.3.2 Read-Guided File Compression

Decompressing small pieces of data from random file offsets
negatively impacts on read performance. Compression pro-
vides an opportunity of reorganizing necessary file blocks to
reshape the read patterns for better decompression efficiency.

Read-Critical Data Compression: We refer to a piece of
data in an executable file as read-critical data if the data is
required to launch an application. Because of the random
read pattern of application launching, sequential compression
of executable files risks the mixture of read-critical and non-
read-critical data in a physical block. The mixture of data
significantly amplifies application launching time because
non-read-critical data are loaded and decompressed. The up-
per half of Figure 7 illustrates that critical data are scattered
in an executable file. We propose monitoring the read-critical
data set during application launching. Later on, upon requests,
the file system compacts these critical data and compresses
them into file blocks, as shown in the bottom half of Figure 7.
Notice that the compaction changes the storage layout of file
blocks but not the logical order of file blocks.

Compacting and compressing read-critical data avoids to
load and decompress non-read-critical data and thus prevents
decompression from degrading application launching time. It
also complements the existing file pre-fetching mechanism,
which could unexpectedly load non-read-critical data from
sequential file offsets. When reading and decompressing a
piece of read-critical data, the file system also brings the
other read-critical data of the same physical block into the
page cache. The prefetching of read-critical data requires the
physical-to-logical mapping of F2FS (see Section 4.3), which
is a unique feature of log-structure file systems.

Read-Critical Data Identification: The efficacy of the
proposed read-critical data compression is subject to the I/O
pattern of executable files. It has been reported that appli-
cation launching exhibits highly predictable I/O patterns on
desktop computers [25]. This phenomenon is also true for
mobile applications: a cold start process of launching an appli-
cation was tested through the am start command of the adb
shell with the page cache cleared beforehand. We monitored
the file read operations on the file blocks of the base.apk file
of Facebook, Chrome, Messenger, Twitter, Google Earth, and
Firefox for 5 rounds of cold starts. Results show that the set of
file blocks read during the multiple cold starts barely changed
(difference was between 1% to 3%). The read performance of
these file blocks affects the user experience the most because

132 19th USENIX Conference on File and Storage Technologies USENIX Association

the application screen is not fully rendered yet. As the ap-
plications continued to launch after the am start command
returned, a higher degree of variation in the start-up file blocks
was observed as they began to display random advertisements
and splash screens.

Based on the results above, we propose capturing the core
set of the read-critical data, i.e., those shared among different
rounds of application cold starts, for fast application launch.
When an executable file is opened (or memory-mapped), our
method records the offsets of file reads. The proposed design
collects the read offsets for the first three rounds of cold starts
of a new application. After this, the core read-critical data will
be compacted and compressed into a set of physical blocks.
Non-core read-critical data will be compressed to another
set of physical blocks. When the system is lightly loaded,
a resident user-level process invokes an ioctl() with an
argument of an inode number of an executable file, and the
file system begins to compress the read-critical data of the file
in the background. The compression of executable file blocks
is conducted during system idle periods (see Section 4.4).

4 Implementation

This section discusses how to implement the proposed FPC
in a log-structured file system, F2FS, for mobile devices.

4.1 Dynamic Compression Window
A large compression window sufficiently populates a large
dictionary for effective data compression. However, partial
reads in a large chunk of compressed data would induce a
high overhead because the compressed data must be read and
decompressed as a whole. The selection of the compression
window size is based on the following rules: The default size
of the compression window is set to 4 KB to avoid an am-
plified read overhead. Exceptions are as follows: First, for
foreground compression on SQLite journals, the compression
window is large as the block write request. Because these files
are barely read, using a large compression window has little
effect on read performance. Second, background compres-
sion uses 32 pages (128 KB) as the compression window size
for *.dex and *.odex, as mobile applications often performed
bulk, sequential read on such executable files through mmap().
Since a page fault in Linux is handled by fetching a set of 32
pages into the page cache, using a compression window as
large as the pre-paging size effectively improves the compres-
sion ratio without sacrificing the read performance. Due to the
bulk reading, a chunk of compressed data of *.dex and *.odex
files is allowed to be stored across physical block boundaries.

4.2 Sub-Block L2P Mapping
To better accommodate small file reads and writes of mobile
applications, we enhance the mapping process to improve the

PBN 200

LBN flag
10 1
11 1

32 1

idx
1
2

3

10

41 01

Uncompressed block

LBN flagidx

inode

PBN
200
200

200

PBN
201

PBN 201

L2P mapping

cn
t

of
fse

t
of

fse
t

of
fse

t

Header Compressed blocks

...

Figure 8: The extended L2P mapping.

read-write data compression efficacy. Because a compressed
file system stores multiple compressed blocks in a physical
block, it requires logical-to-physical (L2P) mapping at the
sub-block level 2. The existing L2P mapping for F2FS is
managed at the block level using special node blocks inode.
However, the current F2FS inode structure is 4 KB and it
cannot accommodate all the extra metadata for sub-block
indexing. To deal with this problem, our design appends ex-
tra bits to each mapping entry of an inode block: 3 bits for
sub-block indexing and 1 bit as a compression flag. In the
storage space, if a physical block contains compressed blocks,
then the physical block is formatted into a header area and
a compressed block area. A header entry is indexed by the
sub-block number of an inode mapping entry, and the header
entry contains a starting offset (16 bits) of the corresponding
compressed block within the physical block.

Figure 8 shows an example of the extended L2P mapping
and physical block layout. Suppose that a read of the tenth
logical block (LBN 10) of a file will be served. The file system
first locates the inode of the file and reads the LBN-to-PBN
mapping entry for LBN 10. It identifies that the corresponding
physical block PBN 200 is compressed (flag=1) and LBN 100
is the first compressed block (idx=1) in the physical block. Af-
ter reading PBN 200, the file system loads the decompressed
data of LBN 10 into the page cache and completes the read.
It is possible that the header entries of multiple logical blocks
refer to the same compressed block. To distinguish between
logical blocks in the same compressed block, each header
entry contains a logical block sequence number.

Since a physical block contains multiple compressed
blocks, a physical block may be partially invalidated after
write operations. We adopt a Block State Table (BST) to keep
track of the valid/invalid status of compressed blocks in a
physical block. The existing F2FS SIT (Segment Information
Table) stores the valid/invalid status of data at the block level.
Our BST is an extension to the SIT and is protected by the
checkpoint mechanism. Let a physical block contain up to N
compressed blocks. The BST extension uses a counter and
a validity bitmap of the compressed blocks, which require
log2 N and N bits, respectively.

2In this paper, L2P mapping refers to the mapping of a file block offset
(LBN within a file) to a storage address (PBN in storage).

USENIX Association 19th USENIX Conference on File and Storage Technologies 133

P2L mapping

inode
55
55
55

PBN
100
100
100

55101

Physical block

1 2 3 ... 15 16 ...

Segm
ent

LBN
1
3

15
16

Inode 55 File Space

File System

valid
1
1
1
1

1 3

28 ...

55101 28 1

PBN
100
101
102
...

15
2816

de
co

m
pr

es
s

Figure 9: Decompression for read-critical blocks with
physical-to-logical (P2L) mapping.

4.3 Decompression with P2L Mapping
When decompressing a logical block, the file system requires
the inode number and file offset of the block to properly load
the block into the page cache address space. For a file block
that is explicitly requested by a read operation, this informa-
tion is known to the file system upon the request. However, as
shown in Figure 8, when reading the physical block at PBN
200, the file system cannot find such information for the other
two compressed blocks in the physical block. Therefore, the
file system will have to ignore these two compressed blocks,
although they have been brought into memory. Thanks to the
reverse (physical-to-logical) mapping, a unique feature of log-
structured file systems, our design can identify the inode and
file offset of the other two compressed blocks and opportunis-
tically load them into memory. The reverse mapping for F2FS
is provided by the Segment Summary Area (SSA) [16]. The
original purpose of SSA is for the space cleaning procedure
to identify the valid/invalid status and logical block address
of each block in a victim segment.

Figure 9 shows an example of decompressing blocks based
on the P2L mapping. When the first logical block of the file
(LBN 1) is requested, the file system reads the physical block
at PBN 100, decompress the logical block of LBN 1, and loads
it into the page cache. By consulting the reverse mapping,
the file system also decompresses and loads the other two
compressed blocks along with their inode number (55) and
LBNs (3 and 15) into the page cache. Decompression with
P2L mapping is essential to the read-critical data compression
strategy because BC compacts and compresses correlated
executable file blocks into the same physical block.

4.4 Logging and Cleaning
Data Separation. F2FS writes data of different hotness (write
frequency) to separate segments through six logging heads to
improve cleaning efficacy. FPC inherits these logging heads
and employs three new logging heads: The first new log-
ging head is for FC to write compressed read-write files, i.e.,
SQLite files. A node-data-combined compressed block (Sec-
tion 3.2.3) is also written to this segment because the node
block and data blocks of a rollback journal share the same
lifetime. The second is for new, uncompressed executable

files, and the third is used by BC to write compressed exe-
cutable files. New executable files are written to the second
new logging head without compression. During background
compression, executable files are re-organized for read-critical
data and then compressed into the third new logging head.
FPC inherits the original F2FS victim selection policy with
a slight enhancement. A segment of the largest number of
invalid compressed blocks is selected as the victim for space
cleaning. Once a victim segment is selected, only valid com-
pressed blocks in the segment are copied for space cleaning.

On-Demand Background Compression. Since exe-
cutable files do not change after installation or update, back-
ground compression can be executed on demand: As de-
scribed in Section 3.3, a process running in the user space
is responsible for collecting the information of read-critical
blocks. The process begins to profile an application upon
installation or update. For an application under profiling, the
file read operations on its executable file are collected for at
least 5 rounds of launching. When done profiling an appli-
cation, the user process issues an ioctl call with the name
of the executable file of the application to the file system for
background compression. The background compression pro-
cedure is largely based on the data migration method of the
existing segment cleaning procedure of F2FS, but it selects
read-critical data for migration and compression. As reported
in [26], the typical update period of mobile applications is
half a month. In other words, the frequency of background
compression will be very low, minimally impacting the file
system performance and write traffic volume.

4.5 Design Summary

F2FS Modification. Our implementation of FPC requires
enhancements of the F2FS core data structures. The enhance-
ments are described below: 1) File indexing (L2P mapping)
requires to augment each direct pointer in the inode and di-
rect node with additional information, which now may refer
to a compressed block in a physical block. An original di-
rect pointer is of 32 bits, while a new direct pointer adds 1
bit for compression indication and 3 bits as an offset in a
physical block (the compressed block number in a physical
block is no larger than 8). The original inode structure has
an array of 923 direct pointers, and our design replaces them
with an array of 820 upgraded direct pointers. This design
slightly reduces the largest file size from 3.94 TB to 3.50
TB. 2) Reverse (P2L) mapping requires to modify the Seg-
ment Summary Area (SSA). A physical block can contain
multiple compressed blocks, so the structure f2fs_summary
is extended to represent the reverse mapping information of
each compressed block in a physical block. 3) Metadata-level
compression requires one additional bit for each Node Ad-
dress Table (NAT) entry to indicate whether or not a node
block is compressed with data blocks into a physical block.
Our design adds a separate bitmap to NAT for this purpose.

134 19th USENIX Conference on File and Storage Technologies USENIX Association

R/W pattern File
type Compression policy Compression

type
write-intensive,

random-write
db

compression on

non-sequential blocks
FC for

reduced

write stress
(almost)

write-only

db-

journal

large compression window,

metadata-level compression

write-once,

random-read
apk

critical data compaction and

compression
BC for fast

launching

and space

saving
write-once,

seq-read

dex,

odex

large compression window,

across physical block boundary

Figure 10: Summary of compression policies for different
types of files and their read/write patterns.

4) The logging of compressed data requires three extra types
of segment (Section 4.4). The segment numbers of the three
active logging heads (along with those of existing logging
heads) are kept in Checkpoint (CP). 5) Segment cleaning
requires the valid/invalid status of data. This information is
provided by the original Segment Information Table (SIT).
If a physical block contains compressed blocks, our Block
State Table (BST, Section 4.2) uses five bits to represent the
invalid/invalid status of its compressed blocks and three bits
for counting invalid compressed blocks.

Crash Consistency. F2FS employs the checkpoint
scheme [16, 27] to maintain the data consistency in case of
system crashes. The proposed compression solutions extend
a set of core data structures including the summary blocks
of the added compression logging heads, and f2fs_inode and
direct_node node blocks. Since all the involved metadata ex-
tended in the compression designs belong to the data types
that have to be protected by existing F2FS checkpoints, sys-
tem consistency can be maintained by calling the recovery
procedure of F2FS.

Fig. 10 is a summary of the access patterns of file types
and their associated compression policy.

4.6 Overhead Analysis and Discussions

Space overhead. The primary space overhead of FC ap-
proach is related to the Block State Table (BST) for block
state tracking. Besides in the storage space, a copy of the BST
is made in memory for efficient access. For FC, the largest
number of compressed blocks that a physical block can store
is empirically set to 5 for a good balance between the metadata
overhead and compression space reduction. Each BST entry
for a physical block requires 8 extra bits (3 bits for a counter
of invalid compressed blocks and 5 bits for a valid/invalid
bitmap of compressed blocks). For a 16 GB storage space,
the extra DRAM overhead for the counters and bitmaps is
4 MB, which is affordable to modern smartphones. On the
other hand, for the metadata-level file compression, the Node
Address Table (NAT) is enhanced to locate the compressed
node block stored together with the compressed file blocks
by adding a 1-bit flag for each NAT entry. As mentioned in
Section 4.5, a new bitmap of the flag bits is added to the NAT,
and the bitmap requires no more than 0.5 MB storage over-

head for a 16 GB storage device. At last, the checksum stored
in each physical block costs 4 bytes, and 16 GB storage space
introduces a maximal 16 MB space overhead.

General Applicability. It is possible to generalize our
pattern-guided compression for unknown file types. This is
because the proposed method employs only a few simple
properties of file access, including access sequentiality and
read-write tendency, as shown in Fig. 10. The file system can
adopt a profiling module to observe how files are accessed
and apply proper compression strategies accordingly. In par-
ticular, the access pattern discovery mechanism is already part
of the proposed BC design (Section 3.3.2), and the read-write
tendency of new files can be monitored using counters.

Compression Deployment. While compression of user
data is feasible at the application level, this study focuses on a
file-system approach because it enables deep integration with
system-level mechanisms, e.g., prefetching of compressed
blocks in the storage and compressing of file-system metadata,
which are difficult at the application level.

5 Performance Evaluation
5.1 Experimental Setup
We implemented and evaluated the proposed FPC based on
F2FS on a real platform Hikey 960 [28], which is an embed-
ded development board for AOSP. The platform was equipped
with a Kirin 960 8-core ARM processor, 4GB of RAM, and
a 32GB UFS. The Android and Linux kernel versions were
9.0 and 4.9, respectively. FPC employed LZO [29] as the data
compression algorithm. We configured F2FS in the lfs mode
for using out-of-place updating only. This is because, in the
current implementation, F2FS switches to in-place update
when the space utilization is extremely high or when perform-
ing fdatasync() on small files. As mentioned previously,
in-place updates risk severe internal fragmentation and thus
we turned it off for the best effect of FPC. The system-level
energy consumption was measured using the Monsoon power
monitor [30].

FPC was evaluated using a set of popular mobile applica-
tions, including Facebook (FB), FB Messenger (MS), Google
Earth (GE), Firefox(FF), Reddit (RD), Line (LN), Twitter
(TW), Instagram (IG), Wechat (WC) and Chrome (CR). The
evaluation of foreground compression (FC) was based on
the first five applications as they produced a high volume of
SQLite-related writes. The evaluation of background compres-
sion (BC) involved all the applications. The following meth-
ods were evaluated for performance comparison: 1) Base-
line: The original F2FS without any compression. 2) Comp:
F2FS with unconditional compression of incoming data. It
employed a fixed compression window size of 4 KB and al-
lowed only file blocks of sequential file offsets to share the
same physical block. 3) FPC-N: The proposed FPC but with-
out metadata-level compression. 4) FPC: The full-fledged
version of the proposed approach (see Fig. 10). Currently,

USENIX Association 19th USENIX Conference on File and Storage Technologies 135

0

0.2

0.4

0.6

0.8

1

1.2

FB MS EA FF RD Avg.

W
ri

te
 V

o
lu

m
e

Baseline Comp FPC-N FPC

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FB MS EA FF RD Avg.

W
ri

te
 L

at
en

cy

Baseline Comp FPC-N FPC

(b)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FB MS EA FF RD Avg.

En
er

gy
 C

o
n

su
m

p
ti

o
n Baseline Comp FPC-N FPC

(c)

Figure 11: Results of normalized (a) SQLite write volume (b) SQLite write latency and (c) system energy consumption using
different compression approaches.

there is little choice of read-write compression file system
readily available for Android devices. We implemented the
core idea of existing compression file systems in F2FS for
performance comparison. Specifically, Comp employed the
sequential compression method (Section 3.2.1), which is
adopted by Btrfs and JFFS2.

Table 2: Workload characteristics. The percentage reflects the
contribution of SQLite files to the total write traffic.

write count avg. size write contribution compression ratio
FB 3215 39.2 KB 31.6% 0.39
MS 2597 32.4 KB 21.4% 0.25
EA 19919 55.2 KB 99.5% 0.65
FF 17695 33.2 KB 57.8% 0.12
RD 2658 30.5 KB 39.2% 0.40

Because the efficacy of foreground compression (FC) is pri-
marily concerned with the compression ratio of incoming data,
we employed content-accurate trace replay for performance
evaluation of FC: First, we used each mobile application for
30 minutes and recorded their file operations on SQLite files
at the VFS layer. The traces reflected highly common user
scenarios, including viewing online news feeds (FB, FF, RD),
viewing online satellite maps (EA), and sending/receiving text
messages (MG). Each of the recorded operation consisted of
an inode number, a file name, a write time, a file block off-
set, and the data content. The characteristics of the collected
traces can be found in Table 2. Second, a user-level process
was created to replay the file writes on a set of files with their
original SQLite file names, and these writes were captured
and compressed by foreground compression inside of F2FS.

We conducted experiments on background compression
(BC) with the following steps: For each of the listed applica-
tions, we installed an application and performed five times
of cold-start launching (with the page cache cleared). The
read-critical data set of the application’s executable files were
identified by BC during the launching. After this, when the
system was idle, an ioctl request was sent to BC to explicitly
request compression of read-critical data in executable files.

5.2 Evaluation Results
This section presents the evaluation results of 1) foreground
compression, including write volume, write latency, and en-
ergy consumption and 2) background compression, involving

space requirement and application launching time.
Write Volume: Figure 11(a) shows the write-traffic vol-

umes bound for SQLite files of Baseline, Comp, FPC-N, and
FPC. All results are normalized to Baseline. Compared with
Baseline, FPC greatly reduced the SQLite write volume by
47.5%, indicating that foreground compression was highly
effective in terms of write stress reduction. In particular, dur-
ing the 30-minute execution of Facebook, FPC reduced the
SQLite write volume from 123.1 MB to 67.5 MB through fore-
ground compression. FPC also outperformed Comp thanks
to the use of a larger compression window on SQLite files
and the storage of compressed file blocks having random
file offsets in the same physical block. The improvement of
FPC upon FPC-N depends is highly subject to the applica-
tion scenario. Under the FF workload, FPC reduced the write
volume by 5.3% by appending compressed node blocks of
*.db-journal files to their associated compressed data blocks.
Overall, the reduction in SQLite write volume contributed to
a 26.1% reduction in the entire system write volume (from
3044.1 MB to 2250.9 MB). This large reduction is beneficial
to the flash storage lifespan because the wear degree in flash
memory is proportional to the volume of inbound write traffic.

Write Latency: Figure 11(b) shows that FPC reduced the
write latency of SQLite files by 7.1% on average compared
with Baseline. In other words, the benefit of a reduced write
I/O count was larger than the cost of data compression. The
only exception is Google Earth, whose SQLite files contain
a large amount of incompressible multimedia data. Fortu-
nately, many of the incompressible data were not selected for
compression thanks to the compression ratio sampling tech-
nique mentioned in 3.2.2. By contrast, Comp suffered from
the highest write latency because it compressed all incoming
data, including those incompressible ones. To observe how
high is the time overhead of data compression on the CPU,
we measured the CPU utilization of all methods using the
TOP utility during the trace replay. In our experiment, data
compression was affiliated with a specific core. We observed
that the average utilization of the involved core was between
3% and 8% under FPC, while that was between 1% and 2%
under Baseline. In other words, data compression of FPC only
marginally increased the CPU utilization.

Energy Consumption: Energy consumption is a critical

136 19th USENIX Conference on File and Storage Technologies USENIX Association

0

200

400

600

800

1000

1200

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.6 0.8 1

Total W
rite Latency (m

s)

En
er

gy
 C

on
su

m
pt

io
n

(u
J/

KB
)

Compression Ratio

32KB-Energy 128KB-Energy 32KB-Latency 128KB-Latency

Figure 12: Sensitive study of write latency and energy con-
sumption as compression ratio improves. Data are not com-
pressed for compression ratio of 1.

concern for battery-powered mobile devices [31]. File com-
pression takes extra CPU cycles but reduces flash storage
writes. Although file compression induced an extra energy
overhead, Figure 11(c) shows that FPC still achieved a lower
energy consumption for most of the applications compared
with Baseline. In particular, the energy-saving was larger
when SQLite files were highly compressible, which was a
common case among all applications. In particular, the largest
write volume reduction for Firefox also led to the largest en-
ergy saving. FPC slightly increased the energy consumption
of Google Earth. This is again because Google Earth stored in-
compressible multimedia contents in SQLite files and a small
portion of them underwent ineffective data compression.

SQLite Journaling: In our experiments, although the sys-
tem default for SQLite journaling was WAL, we found that
the five applications (in Table 2) operated 23 out of 33 SQLite
files in DELETE mode. In practice, many applications explic-
itly specify a journal mode to override the system default.

A rollback journal in DELETE mode is write-only except
during crash recovery. However, rollback journals in PER-
SIST mode were reused, and reusing a rollback journal re-
quired to read the journal header block. However, due to page
caching, the read barely reached the storage during successive
transactions. For example, RD read only two blocks from its
journal files in a 30-minute session. A similar result was also
reported in [22]. The observation confirmed that rollback
journals are (almost) write only.

Effect of Compression Ratio: An experiment was con-
ducted to understand the trade-off between the cost and ben-
efit of compression as the compression ratio changes. We
created a 100 MB file beforehand and then sequentially over-
wrote the entire file with large (128 KB) and small (32 KB)
file writes. Each file write was followed by an fsync() op-
eration. For each test, the data pattern was pre-generated to
match the desired compression ratio. As shown in Figure 12,
compared with the results without compression (compres-
sion ratio=1), the write latency and total energy consumption
became lower when the compression ratios were not lower
than 0.4 and 0.2, respectively. In other words, when data were
highly compressible, compression benefited both write la-
tency and energy consumption. The result indicates when

data compress reasonably well, the benefit of our foreground
compression design outweighs the cost of compression.

Space Requirement: Typically, executable files require
more storage space than SQLite files. Figure 13(a) shows the
executable file size of each application with the three methods.
With FPC, the total executable file size of all applications was
noticeably reduced from 846 MB to 646 MB (reduced by
23.7%). Interestingly, the size reduction of Facebook with
FPC was 24%, much better than the reduction 8% achieved by
unconditional compression Comp. The reason for the greater
reduction of FPC is that background compression BC used
a larger compression window on read-critical file blocks and
allowed the compressed data to be stored across the physical
block boundaries. By contrast, Comp always used a 4KB
compression window and did not allow the physical block
straddling, incurring a poor space efficacy.

App Launching Time: The application launching time
shown here is the value reported by the activity manager am
called by an adb command from a remote PC [32]. As shown
in Figure 13(b), compared with Baseline, FPC improved the
launching time of applications (except EA and FF, to be ex-
plained later), and the reduction was 5.2% on average. By
contrast, applications with Comp launched even slower than
with Baseline because Comp incurred a high cost of decom-
pression under small, random reads of executable files. FPC
significantly outperformed Comp by 22.3% on average in
terms of the launching time. This is because our BC method
identified read-critical data and then compacted/compressed
them into a few physical blocks, leading to a fewer number of
block read operations to launch applications. As Figure 13(c)
shows, while Comp and Baseline required comparable num-
bers of block read requests to launch an application, FPC
produced much fewer block read requests. In particular, com-
pared with Baseline, FPC reduced the total block read count
from 469 to 386, thus speeding up launching LN by 14.8%.

FPC marginally increased the launching time of EA and
FF (2 out of the 10 applications). As Figure 13(c) shows, EA
required a small number of block reads to launch. We also
discerned that the launching of EA was CPU-intensive, and
therefore the launching of EA did not much benefit from a
reduced I/O count. FF is another case, for which the launching
involved sequential reads mostly. Nevertheless, in summary,
FPC successfully reduced the I/O cost through read-critical
data compression, and the reduction concealed the time over-
head of decompression and accelerated application launching.

We use Decompression Amplification Ratio (DAR), which
has been defined in Section 2.2, to show how much non-read-
critical share the same physical block with read-critical data.
Table 3 shows the DAR values of the 10 applications. The
DAR values of 8 out of the 10 applications were large than
2, indicating that more than one half of a physical block was
occupied by compressed blocks of non-read-critical data. The
DAR values of Firefox (FF) were very low, explaining why
our FPC did not improve the launching time of FF in Fig-

USENIX Association 19th USENIX Conference on File and Storage Technologies 137

1
5
6

9
2

1
4

5
8

1
0
8

1
3
4

8
1

3
8

1
0
5

5
9

8
4
6

1
4
2

8
7 1
4 5
7

9
4

1
2
7

7
0

3
7

9
8

5
4

7
8
0

1
1
4 7
2 1
1

5
3

7
8 1
0
4

5
4

3
1

8
3

4
4 6
4
6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FB MS EA FF RD LN TW IG WC CR Total

Baseline Comp FPC

(a)

0

500

1000

1500

FB MS EA FF RD LN TW IG WC CR

Baseline Comp FPC

(b)

4
9
5

6
0
2

9
8

9
0

7
5
5

4
6
9

4
6
3

1
0
8

5
3
5

4
2
6

4
8
5

5
9
8

9
8

8
9 7
4
7

4
5
7

4
4
9

1
0
1 5
3
3

4
2
0

4
2
7

5
3
4

9
0 8
9

7
1
1

3
8
6 4
0
2

8
5

4
7
7

3
7
9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FB MS EA FF RD LN TW IG WC CR

Baseline Comp FPC

(c)

Figure 13: Results of (a) executable file sizes (unit: MB). (b) application launching time (unit: ms). (c) block read number during
application launching. The values of block read numbers are marked above each bar.

ure 13(b). Overall, most of the profiled applications had high
DAR values, and therefore we believe that small, random
reads on executable files are a common problem of mobile
applications. Provided that the launching process of an appli-
cation is not CPU-intensive, the proposed FPC approach can
help accelerate the launching process.

Table 3: DAR values of 10 mobile apps.
FB MS EA FF RD LN TW CR IG WC

DAR 3.8 3.1 2.5 1 2.1 2.6 2.7 3.2 3.7 1.4

6 Related Work
Host Level Compression: In-place update file systems with
compression support, such as JFFS2 [11], NTFS [33], and
compressed ext2 [34], could suffer from a low space effi-
cacy if the new compressed data size was larger than the
old version. Burrows et al. [19] proposed an on-line data
compression approach by leveraging the out-of-place write
behaviors of a log-structured file system to avoid the above
problem. Compression techniques were also recommended
in log-structured systems, e.g., enterprise storage system Pu-
rity [20] and the database engine Rose [35]. Btrfs [10] was a
B-tree file system with compression support. It sequentially
compressed incoming data in the fixed granularity upon file
updates and then wrote the compressed blocks to a new ex-
tent. However, the above studies paid little attention to the
compression optimization for small file writes, which could
incur a poor compression efficacy for mobile systems.

To reduce read amplification for mobile applications,
Zhang et al. [13] proposed a compression framework based
on the FUSE file system which compressed read-only files
only and required additional decompression hardware. A com-
pressed read-only file system (EROFS) was introduced to save
storage space and improve read performance [12]. It leveraged
the fixed-sized output compression to reduce read amplifica-
tion, but only sequentially compressed data without paying
attention to the unfriendly random reads of mobile applica-
tions that could degrade the decompression efficacy. FPC ex-
ploited the compression-friendly structures of log-structured
file systems. More importantly, FPC took advantage of the
unique file access behaviors of mobile devices and addressed
the impact of decompression on user-perceived latencies.

Device Level Compression: There are several solutions
for device compression. Zhang et al. [36] proposed a device-
side in-place delta compression technique to reduce write
stress on SLC-mode flash blocks. Ji et al. [23] proposed a
firmware-based compression that selectively compressed data
in eMMC devices. Several enterprise storage system vendors
including Nimble [37] and Pure Storage [38] had announced
their compression-enabled enterprise storage devices. Nev-
ertheless, unconditional device-side data compression is not
aware of much useful host information, e.g., the critical reads
associated with executable files, and hence it is difficult to
optimize decompression latency and improve user experience.
Another critical problem of device compression is that re-
cent Android versions have been equipped with block encryp-
tion [39], which renders the encrypted data uncompressible.

7 Conclusion
This paper proposed FPC, a file access pattern guided com-
pression framework, to reduce write stress and save storage
space for mobile devices. First, the compression was per-
formed at the foreground to selectively compress write-mostly,
highly compressible files that produced many small data up-
dates to reduce write stress. Second, background compression
re-grouped and compressed critical blocks in executable files
to reduce the application launching latency and improve space
utilization. The proposed FPC approach was implemented on
a real mobile device and experimental results showed both
the write traffic and the executable file size was substantially
reduced. FPC also reduced the application launching time.

Acknowledgement
We would like to thank our shepherd Youjip Won and the
anonymous reviewers for their valuable comments and guid-
ance. This work is partially supported by the Natural Science
Foundation of Jiangsu Province (BK20200462), Ministry of
Science and Technology of Taiwan (107-2628-E-009-002-
MY3 and 109-2221-E-009-075), Research Grants Council of
the Hong Kong Special Administrative Region, China (Project
No. CityU 11204718 and 11218720), NSFC 62072177, and
Shanghai S&T Project (20ZR1417200).

138 19th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Smartphone os market share.
https://www.idc.com/promo/smartphone-market-
share/, 2018.

[2] Umar Farooq and Zhijia Zhao. Runtimedroid:
Restarting-free runtime change handling for android
apps. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Ser-
vices (MobiSys’18), pages 110–122. ACM, 2018.

[3] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu.
Revisiting storage for smartphones. ACM Transactions
on Storage (TOS), 8(4), 2012.

[4] Wongun Lee, Keonwoo Lee, Hankeun Son, Wook-Hee
Kim, Beomseok Nam, and Youjip Won. WALDIO: elim-
inating the filesystem journaling in resolving the jour-
naling of journal anomaly. In Proceedings of USENIX
ATC, pages 235–247, 2015.

[5] Cheng Ji, Riwei Pan, Li-Pin Chang, Liang Shi, Zongwei
Zhu, Yu Liang, Tei-Wei Kuo, and Jason Chun Xue. In-
spection and characterization of app file usage in mobile
devices. ACM Transactions on Storage (TOS), 16(4),
2020.

[6] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum
Son, and Youjip Won. I/O stack optimization for smart-
phones. In Proceedings of ATC, 2013, pages 309–320,
2013.

[7] Younghwan Go, Nitin Agrawal, Akshat Aranya, and
Cristian Ungureanu. Reliable, consistent, and efficient
data sync for mobile apps. In Proceedings of USENIX
Conference on File and Storage Technologies (FAST 15),
pages 359–372, 2015.

[8] Sangwook Shane Hahn, Sungjin Lee, Cheng Ji, Li-Pin
Chang, Inhyuk Yee, Liang Shi, Chun Jason Xue, and
Jihong Kim. Improving file system performance of mo-
bile storage systems using a decoupled defragmenter. In
Proceedings of Annual Technical Conference (USENIX
ATC 17), pages 759–771. USENIX Association, 2017.

[9] Sangwook Shane Hahn, Sungjin Lee, Inhyuk Yee,
Donguk Ryu, and Jihong Kim. Fasttrack: Foreground
app-aware I/O management for improving user experi-
ence of android smartphones. In Proceedings of Annual
Technical Conference (USENIX ATC 18), pages 15–28.
USENIX Association, 2018.

[10] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The
linux b-tree filesystem. ACM Transactions on Storage
(TOS), 9(3):9, 2013.

[11] Jffs2.
http://www.linux-mtd.infradead.org/doc/jffs2.html.

[12] Xiang Gao, Mingkai Dong, Xie Miao, Wei Du, Chao Yu,
and Haibo Chen. EROFS: A compression-friendly read-
only file system for resource-scarce device. In Proceed-
ings of Annual Technical Conference (USENIX ATC).
USENIX Association, 2019.

[13] Xuebin Zhang, Jiangpeng Li, Hao Wang, Danni Xiong,
Jerry Qu, Hyunsuk Shin, Jung Pill Kim, and Tong Zhang.
Realizing transparent os/apps compression in mobile
devices at zero latency overhead. IEEE Transactions on
Computers, 66(7):1188–1199, 2017.

[14] Kisung Lee and Youjip Won. Smart layers and dumb
result: IO characterization of an android-based smart-
phone. In Proceedings of the tenth ACM international
conference on Embedded software (EMSOFT), pages
23–32. ACM, 2012.

[15] S. Bhattacharya A. Dilger A. Tomas A. Mathur, M. Cao
and L. Vivier. The new ext4 filesystem: current status
and future plans. In Proceedings of the Linux Sympo-
sium, pages 21–33. Citeseer, 2007.

[16] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: A new file system for flash stor-
age. In Proceedings of the USENIX Conference on File
and Storage Technologies (FAST), 2015.

[17] Ming-Chang Yang, Yuan-Hao Chang, Chei-Wei Tsao,
and Chung-Yu Liu. Utilization-aware self-tuning design
for TLC flash storage devices. IEEE Trans. VLSI Syst.,
24(10):3132–3144, 2016.

[18] Samsung Semiconductors. 3D TLC NAND to beat MLC
as top flash storage. EETimes, 2015.

[19] Michael Burrows, Charles Jerian, Butler Lampson, and
Timothy Mann. On-line data compression in a log-
structured file system. In ASPLOS, pages 2–9. Citeseer,
1992.

[20] John Colgrove, John D Davis, John Hayes, Ethan L
Miller, Cary Sandvig, Russell Sears, Ari Tamches, Neil
Vachharajani, and Feng Wang. Purity: Building fast,
highly-available enterprise flash storage from commod-
ity components. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data,
pages 1683–1694. ACM, 2015.

[21] M. Son, J. Ahn, and S. Yoo. Nonvolatile write buffer-
based journaling bypass for storage write reduction in
mobile devices. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(9):1747–
1759, 2018.

USENIX Association 19th USENIX Conference on File and Storage Technologies 139

[22] Taeho Hwang, Myungsik Kim, Seongjin Lee, and Youjip
Won. On the I/O characteristics of the mobile web
browsers. In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing (SAC’18), pages 964–
966, 2018.

[23] Cheng Ji, Li-Pin Chang, Liang Shi, Congming Gao,
Chao Wu, Yuangang Wang, and Chun Jason Xue.
Lightweight data compression for mobile flash storage.
ACM Trans. Embed. Comput. Syst., (5s):183:1–183:18,
2017.

[24] Danny Harnik, Ronen Kat, Dmitry Sotnikov, Avishay
Traeger, and Oded Margalit. To zip or not to zip: Ef-
fective resource usage for real-time compression. In
Proceedings of USENIX Conference on File and Stor-
age Technologies (FAST 13), pages 229–241, 2013.

[25] Yongsoo Joo, Junhee Ryu, Sangsoo Park, and Kang G
Shin. Fast: Quick application launch on solid-state
drives. In Proceedings of the USENIX Conference on
File and Storage Technologies (FAST), pages 259–272,
2011.

[26] Dmitry Garbar. How often should you update your
mobile app?
https://www.apptentive.com/blog/2018/12/27/how-
often-should-you-update-your-mobile-app/, 2018.

[27] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind
Krishnamurthy, Emina Torlak, and Xi Wang. Specify-
ing and checking file system crash-consistency mod-
els. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 83–98, 2016.

[28] Hikey 960.
https://www.96boards.org/product/hikey960/.

[29] LZO real-time data compression library.
http://www.oberhumer.com/opensource/lzo/.

[30] Monsoon power monitor.
http://www.msoon.com/LabEquipment/PowerMonitor/,
2016.

[31] Jayashree Mohan, Dhathri Purohith, Matthew Halpern,
Vijay Chidambaram, and Vijay Janapa Reddi. Storage
on your smartphone uses more energy than you think.
In Proceedings of HotStorage. USENIX Association,
2017.

[32] Android debug bridge (adb).
https://developer.android.com/studio/command-
line/adb.html.

[33] Ntfs compressed files.
http://www.ntfs.com/ntfs-compressed.htm.

[34] e2compr.
http://e2compr.sourceforge.net/.

[35] Russell Sears, Mark Callaghan, and Eric Brewer. Rose:
Compressed, log-structured replication. Proceedings of
the VLDB Endowment, 1(1):526–537, 2008.

[36] Xuebin Zhang, Jiangpeng Li, Hao Wang, Kai Zhao, and
Tong Zhang. Reducing solid-state storage device write
stress through opportunistic in-place delta compression.
In Proceedings of USENIX Conference on File and Stor-
age Technologies (FAST 16), pages 111–124, 2016.

[37] Casl architecture in nimble storage.
http://www.nimblestorage.com/products/architecture.

[38] Flashreduce data reduction in pure storage.
http://www.purestorage.com/flash-
array/flashreduce.html.

[39] Android Encryption.
https://source.android.com/security/encryption/.

140 19th USENIX Conference on File and Storage Technologies USENIX Association

	Introduction
	Background and Motivation
	I/O System and Storage of Mobile Devices
	Pitfalls of File Compression
	Benefits of File Compression with LFS

	Pattern-Guided File Compression
	File Access Behaviors of Mobile Apps
	Foreground Compression
	Non-Sequential File Block Compression
	Selective Foreground File Compression
	Metadata-Level File Compression

	Background Compression
	Highly Random Reads of Executable Files
	Read-Guided File Compression

	Implementation
	Dynamic Compression Window
	Sub-Block L2P Mapping
	Decompression with P2L Mapping
	Logging and Cleaning
	Design Summary
	Overhead Analysis and Discussions

	Performance Evaluation
	Experimental Setup
	Evaluation Results

	Related Work
	Conclusion

