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Abstract

Erasure coding is a low-cost redundancy mechanism for dis-
tributed storage systems by storing stripes of data and par-
ity chunks. Wide stripes are recently proposed to suppress
the fraction of parity chunks in a stripe to achieve extreme
storage savings. However, wide stripes aggravate the repair
penalty, while existing repair-efficient approaches for erasure
coding cannot effectively address wide stripes. In this paper,
we propose combined locality, the first mechanism that sys-
tematically addresses the wide-stripe repair problem via the
combination of both parity locality and topology locality. We
further augment combined locality with efficient encoding
and update schemes. Experiments on Amazon EC2 show that
combined locality reduces the single-chunk repair time by up
to 90.5% compared to locality-based state-of-the-arts, with
only a redundancy of as low as 1.063×.

1 Introduction
Erasure coding is an established low-cost redundancy mech-
anism for protecting data storage against failures in modern
distributed storage systems [25, 34, 47]; in particular, Reed-
Solomon (RS) codes [61] are widely adopted in today’s era-
sure coding deployment [26, 45, 47, 59, 72]. At a high level,
for some configurable parameters n and k (where k < n), RS
codes compose multiple stripes of n chunks, including k orig-
inal uncoded data chunks and n−k coded parity chunks, such
that any k out of n chunks of the same stripe suffice to recon-
struct the original k data chunks (see §2.1 for details). Each
stripe of n chunks is distributed across n nodes to tolerate
any n− k node failures. RS codes incur a minimum redun-
dancy of n

k× (i.e., no other erasure codes can have a lower
redundancy than RS codes while tolerating any n− k node
failures). In contrast, traditional replication incurs a redun-
dancy of (n−k+1)× to tolerate the same number of any n−k
node failures. For example, Facebook f4 [47] uses (14,10)
RS codes to tolerate any four node failures with a redundancy
of 1.4×, while replication needs a redundancy of 5× for the
same four-node fault tolerance. With proper parameterization
of (n,k), erasure coding can limit the redundancy to at most
1.5× (see Table 1).

Conventional wisdom suggests that erasure coding param-
eters should be configured in a medium range [53]. Table 1
lists the parameters (n,k) used by state-of-the-art production
systems. We see that the number of tolerable failures n− k is

Storage systems (n,k) Redundancy
Google Colossus [25] (9,6) 1.50
Quantcast File System [49] (9,6) 1.50
Hadoop Distributed File System [3] (9,6) 1.50
Baidu Atlas [36] (12,8) 1.50
Facebook f4 [47] (14,10) 1.40
Yahoo Cloud Object Store [48] (11,8) 1.38
Windows Azure Storage [34] (16,12) 1.33
Tencent Ultra-Cold Storage [8] (12,10) 1.20
Pelican [12] (18,15) 1.20
Backblaze Vaults [13] (20,17) 1.18

Table 1: Common parameters of (n,k) in state-of-the-art erasure
coding deployment. Note that a similar table is also presented in [22],
while we add Azure and Pelican here.

typically three or four, while the stripe size n is no more than
20. One major reason of choosing a moderate stripe size is
to limit the repair penalty of erasure coding, in which repair-
ing any single lost chunk needs to retrieve multiple available
chunks of the same stripe for decoding the lost chunk (e.g., k
chunks are retrieved in (n,k) RS codes). A larger stripe size
n, and hence a larger k for tolerating the same n− k node fail-
ures, implies more severe bandwidth and I/O amplifications
in repair and hence compromises storage reliability.

While erasure coding effectively mitigates storage redun-
dancy, we explore further redundancy reduction under erasure
coding to achieve extreme storage savings; for example, a
redundancy reduction of 14% (from 1.5× to 1.33×) can trans-
late to millions of dollar savings in production [52]. This
motivates us to explore wide stripes, in which n and k are
very large, while the number of tolerable failures n− k re-
mains three to four as in state-of-the-art production systems.
Wide stripes are studied in storage industry (e.g., VAST [9]),
and provide an opportunity to achieve near-optimal redun-
dancy (i.e., n

k approaches one) with the maximum possible
storage savings. For example, VAST [9] considers a setting
of (n,k) = (154,150), thereby incurring only a redundancy
of 1.027× . We argue that the significant storage efficiency
of wide stripes is attractive for both cold and hot distributed
storage systems. Erasure coding is traditionally used by cold
storage systems (e.g., backup and archival applications), in
which data needs to be persistently stored but is rarely ac-
cessed [2, 10, 12]. Wide stripes allow cold storage systems
to achieve long-term data durability at extremely low cost.
Erasure coding is also adopted by hot storage systems (e.g.,
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in-memory key-value stores) to provide data availability for
key-value objects that are frequently accessed in the face of
failures and stragglers [18, 57, 73, 74]. Wide stripes allow hot
storage systems to significantly reduce expensive hardware
footprints (e.g., DRAM for in-memory key-value stores).

While wide stripes achieve extreme storage savings, they
further aggravate the repair penalty, as the repair bandwidth
(i.e., the amount of data transfers during repair) increases with
k. Many existing repair-efficient approaches for erasure-coded
storage leverage locality to reduce the repair bandwidth. There
are two types of locality: (i) parity locality, which introduces
extra local parity chunks to reduce the number of available
chunks to retrieve for repairing a lost chunk [14,27,34,39,51,
63]; and (ii) topology locality, which takes into account the
hierarchical nature of the system topology and performs local
repair operations to mitigate the cross-rack (or cross-cluster)
repair bandwidth [31, 32, 56, 65, 66, 68].

However, existing locality-based repair approaches still
mainly focus on stripes with a small k (e.g., k = 12 [34]
and k = 6 [32]). They inevitably increase the redundancy or
degrade the repair performance for wide stripes as k increases
(§2.3). The reason is that the near-optimal redundancy of wide
stripes reduces the benefits brought by either parity locality
or topology locality (§3.5).

In this paper, we present combined locality, a new repair
mechanism that systematically combines both parity local-
ity and topology locality to address the repair problem in
wide-stripe erasure coding. Combined locality associates lo-
cal parity chunks with a small subset of data chunks (i.e.,
parity locality) and localizes a repair operation in a limited
number of racks (i.e., topology locality), so as to provide bet-
ter trade-offs between redundancy and repair performance
than existing locality-based state-of-the-arts. In addition, we
revisit the classical encoding and update problems for wide-
stripe erasure coding under combined locality and design the
corresponding efficient schemes. Our contributions include:

• We are the first to systematically address the wide-stripe
repair problem. We propose combined locality, which miti-
gates the cross-rack repair bandwidth under ultra-low stor-
age redundancy. We examine the trade-off between redun-
dancy and cross-rack repair bandwidth for different locality-
based schemes (§3).

• We design ECWide, which realizes combined locality to
address two types of repair: single-chunk repair and full-
node repair. We also design (i) an efficient encoding scheme
that allows the parity chunks of a wide stripe to be encoded
across multiple nodes in parallel, and (ii) an inner-rack
parity update scheme that allows parity chunks to be locally
updated within racks to reduce cross-rack transfers (§4).

• We implement two ECWide prototypes, namely ECWide-C
and ECWide-H, to realize combined locality. The former
is designed for cold storage, while the latter builds on a
Memcached-based [5, 6] in-memory key-value store for

hot storage (§5). The source code of our prototypes is now
available at https://github.com/yuchonghu/ecwide.

• We compare via Amazon EC2 experiments ECWide-C and
ECWide-H with two existing locality-based schemes: (i)
Azure’s Local Reconstruction Codes (Azure-LRC) [34]
adopted in production, and (ii) the recently proposed
topology-locality-based repair approach [32, 65] that min-
imizes the cross-rack repair bandwidth for fast repair.
We show that combined locality significantly reduces the
single-chunk repair time by up to 87.9% and 90.5% of
the above two schemes, respectively, while incurring a re-
dundancy of as low as 1.063× only. We also validate the
efficiency of our encoding and update schemes (§6).

2 Background and Motivation
We provide the background details of erasure coding for dis-
tributed storage (§2.1), and state the challenges of deploying
wide-stripe erasure coding (§2.2). We describe how existing
studies exploit locality to address the repair problem (§2.3),
and motivate the idea of our combined locality design (§2.4).

2.1 Erasure Coding for Distributed Storage
Consider a distributed storage system that organizes data in
fixed-size chunks spanning across a number of storage nodes,
such that erasure coding operates in units of chunks. Depend-
ing on the types of storage workloads, the chunk size used
for erasure coding can vary significantly, ranging from as
small as 4 KiB in in-memory key-value storage (i.e., hot stor-
age) [18, 73, 74], to as large as 256 MiB [59] in persistent file
storage (i.e., cold storage) for small I/O seek costs. Erasure
coding can be constructed in different forms, among which
RS codes [61] are the most popular erasure codes and widely
deployed (§1).

To deploy RS codes in distributed storage, we configure
two integer parameters n and k (where k < n). An (n,k) RS
code works by encoding k fixed-size (uncoded) data chunks
into n−k (coded) parity chunks of the same size. RS codes are
storage-optimal (a.k.a. maximum distance separable (MDS)
in coding theory terms), meaning that any k out of the n
chunks suffice to reconstruct all k data chunks (i.e., any n−
k lost chunks can be tolerated for data availability), while
the redundancy (i.e., n

k times the original data size) is the
minimum among all possible erasure code constructions. We
call each set of n chunks a stripe. A distributed storage system
contains multiple stripes that are independently encoded, and
the n chunks of each stripe are stored in n different nodes to
provide fault tolerance against any n− k node failures.

Mathematically, each parity chunk in an (n,k) RS code
is formed by a linear combination of the k data chunks of
the same stripe based on the arithmetic of the Galois Field
GF(2w) in w-bit words [53] (where n≤ 2w). Specifically, let
D1, D2, · · · , Dk be the k data chunks of a stripe, and P1, P2, · · · ,
Pn−k be the n−k parity chunks of the same stripe. Each parity
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chunk Pi (1≤ i≤ n−k) can be expressed as Pi = ∑
k
j=1 αi, jD j,

where αi, j denotes some encoding coefficient. In this work,
we focus on Cauchy RS codes [15, 55], where the encoding
coefficients are defined based on the Cauchy matrix, so that
we can construct systematic RS codes (i.e., the k data chunks
are included in a stripe for direct access).

2.2 Challenges of Wide-Stripe Erasure Coding
We explore wide-stripe erasure coding with both large n and k,
so as to achieve an ultra-low redundancy n

k (i.e., approaching
one). However, it poses three performance challenges.

Expensive repair. Erasure coding is known to incur the re-
pair penalty, and it is even more severe for wide stripes. For
an (n,k) RS code, the conventional approach for repairing
a single lost chunk is to retrieve k available chunks from
other non-failed nodes, implying that the bandwidth and
I/O costs are amplified k times. Even though new erasure
code constructions can mitigate the repair bandwidth and
I/O costs (e.g., regenerating codes [23] or locally repairable
codes [27,33,34,51,63]), the repair bandwidth and I/O ampli-
fications still exist and become more prominent as k increases,
as proven by theoretical analysis [23].

The high repair penalty of wide stripes manifests differently
in cold and hot storage workloads. For cold storage workloads
with large chunk sizes, the repair bandwidth is much more
significant for large k. For example, if we configure a wide
stripe with k = 128 and the chunk size is 256 MiB [59], the
single-chunk repair bandwidth becomes 32 GiB. We may in-
terpolate that the daily repair bandwidth of 180 TiB for the
(14,10) RS code [59] will increase to 2.25 PiB for k = 128.
For hot storage workloads with small chunk sizes, although
its single-chunk repair bandwidth is much less than in cold
storage, a large k incurs a significant tail latency under fre-
quent accesses, as the repair is now more likely bottlenecked
by any straggler node out of the k non-failed nodes.

Expensive encoding. The (per-stripe) encoding overhead of
erasure coding becomes more prominent as k increases (the
same arguments hold for decoding). In an (n,k) RS code,
each parity chunk is a linear combination of k data chunks
(§2.1), so the computational overhead increases linearly with
k. Most importantly, as k increases, it becomes more difficult
for the encoding process to fit the input data of a wide stripe
into CPU cache, leading to significant encoding performance
degradations. Figure 1 shows the encoding throughput on
three Intel CPU families versus k, using the Intel ISA-L en-
coding APIs [4]. Here, we fix a chunk size of 64 MiB and
n− k = 4. We see that the encoding throughput remains high
from k = 4 to k = 16, but drops dramatically as k further in-
creases from k = 32 onwards; for example, the throughput
drops by 43-70% from k = 4 to k = 128.

Expensive updates. The (per-stripe) update overhead of era-
sure coding is significant: if any data chunk of the same stripe
has been updated, all n− k parity chunks need to be updated.
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Figure 1: Encoding throughput on different Intel CPU families
versus k for a chunk size of 64 MiB and n− k = 4.

Wide stripes suffer the same expensive update issue as in
traditional stripes of moderate sizes.

2.3 Locality in Erasure-coded Repair
The main challenge of wide-stripe erasure coding is the repair
problem. Existing studies on the erasure-coded repair problem
have led to a rich body of literature, and many of them focus
on using locality to reduce the repair bandwidth, including
parity locality and topology locality.
Parity locality. Recall that an (n,k) RS code needs to retrieve
k chunks for repairing a lost chunk. Parity locality adds local
parity chunks to reduce the number of surviving chunks (and
hence the repair bandwidth and I/O) for repairing a lost chunk.
Its representative erasure code construction is the locally
repairable codes (LRCs) [27, 33, 34, 51, 63]. Take Azure’s
Local Reconstruction Codes (Azure-LRC) [34] as an example.
Given three configurable parameters n, k, and r (where r <
k < n), an (n,k,r) Azure-LRC encodes each local group of
r data chunks (except the last group, which may have fewer
than r data chunks) into a local parity chunk, so that the repair
of a lost chunk now only accesses r surviving chunks (r < k).
It also contains n− k−d k

r e global parity chunks encoded
from all data chunks. Azure-LRC satisfies the Maximally
Recoverable property [34] and can tolerate any n−k−d k

r e+1
node failures.

Figure 2(a) shows the (32,20,2) Azure-LRC [34]. It has
20 data chunks (denoted by D1,D2, . . . ,D20). It has 10 local
parity chunks, in which the `-th local parity chunk P̀ [i- j]
(where 1 ≤ ` ≤ 10) is a linear combination of data chunks
Di,Di+1, . . . ,D j. It also has two global parity chunks Q1[1-20]
and Q2[1-20], each of which is a linear combination of all 20
data chunks. All the above 32 chunks are placed in 32 nodes
to tolerate any three node failures. Thus, the (32,20,2) Azure-
LRC has a single-chunk repair bandwidth of two chunks (e.g.,
repairing D1 needs to access D2 and P1[1-2]), while incurring
a redundancy of 1.6×. In contrast, the (23,20) RS code also
has 20 data chunks and is tolerable against any three node
failures. Its single-chunk repair bandwidth is 20 chunks, yet
its redundancy is only 1.15×. In short, parity locality reduces
the repair bandwidth but incurs high redundancy.
Topology locality. Existing erasure-coded storage systems
[34, 47, 58, 60, 63] (including Azure-LRC) place each chunk
of a stripe in a distinct node residing in a distinct rack. This
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(a) Parity locality: (32, 20, 2) Azure-LRC (b) Topology locality: (23, 20, 8) TL (c) Combined locality: (26, 20, 5, 9) CL

Figure 2: Examples of three locality-based schemes, each of which stores 20 data chunks and can tolerate any three node failures.

provides tolerance against the same numbers of node failures
and rack failures, but the repair incurs substantial cross-rack
bandwidth, which is often much more constrained than inner-
rack bandwidth [20].

Recent studies [31, 32, 65] exploit topology locality to re-
duce the cross-rack repair bandwidth by localizing the repair
operations within racks, at the expense of reduced rack-level
fault tolerance. They store the chunks of a stripe in multiple
nodes within a rack, and split a repair operation into inner-rack
and cross-rack repair sub-operations. The cross-rack repair
bandwidth is provably minimized, subject to the minimum
redundancy [31, 32, 65]. Some similar studies focus on min-
imizing the cross-cluster repair bandwidth via inner-cluster
repair sub-operations [56, 66, 68]. We define a topology local-
ity scheme as (n,k,z) TL, in which (n,k) RS-coded chunks
are placed in z racks (or clusters).

Figure 2(b) shows the (23,20,8) TL that places 20 data
chunks and three RS-coded parity chunks in 23 nodes that
reside in eight racks, so as to tolerate any three node failures
and one rack failure. The (23,20,8) TL has the minimum
redundancy of 1.15×, but transfers seven cross-rack chunks
to repair a lost chunk. For example, repairing D1 needs to
retrieve Q1[1-20] and six chunks that are linear parts of Q1[1-
20] from other racks, so that D1 can be solved from Q1[1-20]
by canceling out the linear parts, D2, and D3. The single-
chunk repair bandwidth is higher than that of the (32,20,2)
Azure-LRC (i.e., two chunks). In short, topology locality
achieves the minimum redundancy, but incurs high cross-rack
repair bandwidth.

2.4 Motivating Example
For wide stripes with a large k, neither parity locality (high
redundancy) nor topology locality (high repair penalty) can
effectively balance the trade-off between redundancy and
repair penalty. This motivates us to combine both types of
locality to obtain a better trade-off and hence make wide
stripes practically applicable.

Figure 2(c) shows the idea. We encode 20 data chunks
into 26 chunks via the (26,20,5) Azure-LRC. We place the
chunks across nine racks, and denote the scheme by the
(26,20,5,9) CL (see §3.1 for definition). In this case, re-
pairing the lost chunk D1 can be solved by canceling out
D2, D3, D4, and D5 from P1[1-5]. The single-chunk repair
bandwidth is only one cross-rack chunk, less than both the
(32,20,2) Azure-LRC (two chunks) and the (23,20,8) TL
(seven chunks). Meanwhile, the redundancy is 1.3×, much
closer to the minimum redundancy than the (32,20,2) Azure-
LRC (1.6×).

3 Combined Locality
In this section, we present combined locality, which exploits
the combination of parity locality and topology locality to re-
duce the cross-rack repair bandwidth subject to limited redun-
dancy for wide-stripe erasure coding. We provide definitions
and state our design objective (§3.1), and show our design
idea of combined locality (§3.2). We analyze and select the
suitable LRC construction for combined locality (§3.3). We
present the details of the combined locality mechanism (§3.4),
and analyze its trade-off between redundancy and cross-rack
repair bandwidth (§3.5). Finally, we present reliability anal-
ysis on combined locality (§3.6). Table 2 summarizes the
notation.

3.1 Design Objective
We define the combined locality mechanism as (n,k,r,z) CL,
which combines (n,k,r) Azure-LRC and (n,k,z) TL across z
racks (note that we justify our choice of Azure-LRC in §3.3).
Our primary objective of the combined locality mechanism
is to determine the parameters (n,k,r,z) that minimize the
cross-rack repair bandwidth, subject to: (i) the number of
tolerable node failures (denoted by f ) and (ii) the maximum
allowed redundancy (denoted by γ). For wide-stripe erasure
coding, we consider a large k (e.g., k = 128) for a typical fault
tolerance level shown in Table 1 (e.g., f = 4).
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Notation Description
n total number of chunks of a stripe
k number of data chunks of a stripe
r number of retrieved chunks to repair a lost chunk
z number of racks to store a stripe
c number of chunks of a stripe in a rack
f number of tolerable node failures of a stripe
γ maximum allowed redundancy

Table 2: Notation for combined locality.

Here, we ensure that the maximum number of chunks of a
stripe residing in each rack (denoted by c) cannot be larger
than the number of tolerable node failures f of a stripe; other-
wise, a rack failure can lead to data loss. Thus, we require:

c≤ f . (1)

Each of the first z−1 racks stores c chunks of a stripe and the
last rack stores the n− c(z−1) (≤ c) remaining chunks.

We focus on optimizing two types of repair operations:
single-chunk repair and full-node repair (§4.1). Both repair
operations assume that each failed stripe has exactly one failed
chunk as in most prior studies (§7), including those on parity
locality [27, 33, 34, 51, 63] and topology locality [31, 32, 65].
For the failed stripes with multiple failed chunks, we resort to
the conventional repair that retrieves k available chunks for
reconstructing all failed chunks as in RS codes.

3.2 Design Idea
To achieve the objective of combined locality, we observe
from Figure 2 that combined locality repairs a data chunk by
downloading r−1 data chunks plus one local parity chunk
(i.e., the repair bandwidth is r chunks). Since combined local-
ity places some of the r chunks in identical racks, it can apply
a local repair to the chunks in each rack, so as to reduce the
cross-rack repair bandwidth. Intuitively, if c increases (i.e.,
more chunks of a stripe can reside in one rack), a local re-
pair can include more chunks, thereby further reducing the
cross-rack repair bandwidth. Thus, we aim to find the largest
possible c. Recall that c≤ f (Equation (1)). If c = f , then the
cross-rack repair bandwidth can be minimized.

Thus, the construction of (n,k,r,z) CL is to ensure c = f .
However, there are different constructions of (n,k,r) LRCs
that provide different levels of fault tolerance f [35]. Thus,
our idea is to select the appropriate LRC construction that has
the highest fault tolerance (§3.3).

3.3 LRC Selection
We consider four representative LRCs discussed in [35].

• Azure-LRC [34]: It computes a local parity chunk as a
linear combination of r data chunks of each local group,
and computes the global parity chunks via RS codes. Note
that repairing a global parity chunk needs to retrieve k
chunks.

(n,k,r) (16,10,5)

Azure-LRC [34] f = n− k−dk/re+1 f = 5
Xorbas [63] f ≤ n− k−dk/re+1 f = 4
Optimal-LRC [69] f ≤ n− k−dk/re+1 f = 4
Azure-LRC+1 [35] f = n− k−dk/re f = 4

Table 3: Number of tolerable node failures f for different LRCs for
(n,k,r) = (16,10,5) [35].

• Xorbas [63]: It differs from Azure-LRC in that it allows
each global parity chunk to be repairable by at most r
chunks, which may include the other global parity chunks
and the local parity chunks.

• Optimal-LRC [69]: It divides all data chunks and global
parity chunks into local groups of size r, and adds a local
parity to each local group to allow the repair of any lost
chunk by at most r chunks.

• Azure-LRC+1 [35]: It builds on Azure-LRC by adding a
new local parity chunk for all global parity chunks, allowing
the local repair of any lost global parity chunk.

Table 3 shows the number of tolerable node failures f for a
practical setting (n,k,r) = (16,10,5) [35]. Note that Xorbas
and Optimal-LRC give their upper bounds of f , but in fact
the bounds are not attainable for some parameters, including
(n,k,r) = (16,10,5) [35]. Table 3 shows that Azure-LRC
has the largest f under the same (n,k,r), so it can be the
appropriate selection of LRC for combined locality.

The reason why Azure-LRC achieves the highest fault tol-
erance f is that it neither introduces extra local parity chunks
that are linearly dependent on the global parity chunks (e.g.,
Optimal-LRC and Azure-LRC+1), nor makes the global par-
ity chunks linearly dependent on the local parity chunks (e.g.,
Xorbas). In fact, for a given level of redundancy, adding linear
dependency does not improve fault tolerance.

Note that Azure-LRC needs to download k chunks to repair
a global parity chunk, which may be inefficient in repairing
a failed node that stores multiple global parity chunks. Nev-
ertheless, we argue that the number of global parity chunk
accounts for a small fraction for wide stripes with a large k.
For example, in the (128,120,24) Azure-LRC, which con-
tains three global parity chunks, only 3/128 = 2.34% of the
chunks stored in each node are global parity chunks. Also, the
cross-rack repair bandwidth of a single global parity chunk
can be significantly reduced via topology locality. In our fol-
lowing discussion, unless otherwise specified, we focus on a
single-chunk repair for a data chunk or a local parity chunk.

3.4 Construction of (n,k,r,z) CL
We provide the construction of (n,k,r,z) CL as follows. Here,
we focus on one stripe that has k data chunks with a fixed
number of tolerable node failures f subject to the maximum al-
lowed redundancy γ (i.e., n

k ≤ γ). The construction comprises
two steps: (i) finding the parameters for (n,k,r) Azure-LRC,
and (ii) placing all n chunks across z racks for local repair
operations.
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Step 1. Given (n,k,r) Azure-LRC, Table 3 states that:

n = k+ dk/re+ f −1. (2)

Due to n
k ≤ γ , we have:

dk/re ≤ k(γ−1)− f +1. (3)

We can obtain the minimum value of r that satisfies Equa-
tion (3), denoted by rmin. Since r represents the single-chunk
repair bandwidth (§3.2), rmin refers to the minimum single-
chunk repair bandwidth.
Step 2. Based on rmin, we proceed to minimize the cross-
rack repair bandwidth. First, we can obtain the value of n
from Equation (2) and rmin. Next, we place these n chunks
across n nodes that reside in z racks as follows. For each
local group, we put r + 1 chunks (note that r = rmin here),
including r data chunks and the corresponding local parity
chunk, into (r + 1)/c different racks (for the simplicity of
discussion, we assume that r+ 1 is divisible by c to have a
symmetric distribution of chunks across racks). Thus, for any
lost chunk in a rack, we can perform a local repair over the
(r+1)/c racks, such that the cross-rack repair bandwidth is
(r+ 1)/c− 1 chunks collected from the other (r+ 1)/c− 1
racks. By setting c = f to minimize the cross-rack repair
bandwidth (§3.2), the minimum cross-rack repair bandwidth
is (r+1)/ f −1 chunks.

Figure 2(c) illustrates the (26,20,5,9) CL with k = 20
and f = 3. Each local group of r + 1 = 6 chunks (where
r = rmin = 5) is stored in (r+1)/ f = 2 racks. The cross-rack
repair bandwidth is only one chunk (i.e., (r+1)/ f −1 = 1).

3.5 Trade-off Analysis
Each set of the parameters (n,k,r,z) in combined locality
yields the corresponding set of values of redundancy and
cross-rack repair bandwidth based on the results in §3.4. We
can also derive the values for Azure-LRC and topology lo-
cality in terms of k and f . For Azure-LRC, we obtain its
redundancy via Equation (2) and cross-rack repair bandwidth
as r chunks (assuming each chunk is stored in a distinct rack).
For topology locality, we obtain its redundancy subject to
f = n− k and cross-rack repair bandwidth as the number of
racks minus one (in chunks) (i.e., dn/ f e− 1) (Figure 2(b)).
Table 4 lists the redundancy and cross-rack repair bandwidth
for Azure-LRC, topology locality, and combined locality, rep-
resented as (n,k,r) Azure-LRC, (n,k,z) TL, and (n,k,r,z)
CL, respectively.

Figure 3 plots the results of Table 4 for k = 128 and f =
2,3,4 subject to the maximum allowed redundancy γ = 1.1.
We set k as a sufficiently large value for wide stripes, and set
f as in state-of-the-arts (Table 1). We set γ to close to one to
achieve extreme storage savings with wide stripes.

Each point in Figure 3 represents a trade-off between re-
dundancy and cross-rack repair bandwidth for a specific set
of parameters. Note that topology locality has three points for

Redundancy Cross-rack
repair bandwidth

(n,k,r) Azure-LRC k+dk/re+ f−1
k r

(n,k,z) TL k+ f
k d(k+ f )/ f e−1

(n,k,r,z) CL k+dk/re+ f−1
k (r+1)/ f −1

Table 4: Redundancy and cross-rack repair bandwidth (in chunks)
given k and f for (n,k,r) Azure-LRC, (n,k,z) TL, and (n,k,r,z) CL.
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Figure 3: Trade-off between redundancy and cross-rack repair band-
width for Azure-LRC (LRC), topology locality (TL), and combined
locality (CL) for k = 128 and f = 2,3,4.

the three respective values of f ; in contrast, Azure-LRC and
combined locality have three curves for the three respective
values of f , since they have an additional parameter r that
leads to different points along each curve for different val-
ues of r. We only plot the points that satisfy r = rmin for the
minimum cross-rack repair bandwidth.

Combined locality outperforms both Azure-LRC and topol-
ogy locality in terms of the trade-off between redundancy
and cross-rack repair bandwidth via the combination of both
parity locality and topology locality. Take f = 4 as an ex-
ample. For topology locality, the (132,128,33) TL has the
minimum redundancy 1.031×, yet its cross-rack repair band-
width reaches 32 chunks, even though many racks perform
local repair operations. The (140,128,15) Azure-LRC largely
reduces the cross-rack repair bandwidth to r = 15 chunks via
parity locality, yet its redundancy (1.094×) is not close to
the minimum one. The reason is that Azure-LRC’s redun-
dancy is ∝ (1/r), while its cross-rack repair bandwidth is ∝ r
(Table 4), so r should be small for small cross-rack repair
bandwidth, at the expense of incurring higher redundancy. In
contrast, for combined locality, the (136,128,27,34) CL not
only has closer redundancy (i.e., 1.063×) to the minimum
one, but also further significantly reduces the cross-rack repair
bandwidth to at most (r+1)/ f −1 = 6 chunks (we show a
more precise calculation in §3.6), a reduction of 60% com-
pared to Azure-LRC. The reason is that the cross-rack repair
bandwidth of combined locality is ∝ (r/ f ) (Table 4), so it has
lower cross-rack repair bandwidth under limited redundancy.
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Figure 4: Markov model for (136,128,27,34) CL.

3.6 Reliability Analysis
We analyze the mean-time-to-data-loss (MTTDL) metric via
Markov modeling as in prior studies [19,26,32,34,63,67]. We
compare six different codes with f = 4: (i) (16,12) RS, (ii)
(16,12,6) Azure-LRC, (iii) (132,128) RS, (iv) (132,128,33)
TL, (v) (140,128,15) Azure-LRC, and (vi) (136,128,27,34)
CL. The former two codes are moderate-stripe codes, while
the latter four codes are wide-stripe codes.

Figure 4 shows the Markov model for (136,128,27,34)
CL; other codes are modeled similarly. Each state repre-
sents the number of available nodes of a stripe. For example,
State 136 means that all nodes are healthy, while State 131
means data loss. We make two assumptions to simplify our
analysis. First, we assume that data loss always occurs when-
ever there exist five failed nodes, yet in reality some com-
binations of five failed nodes remain repairable [34] (e.g.,
the loss of five local parity chunks). Thus, the reliability of
(136,128,27,34) CL is an underestimate; we make similar
treatments when we model Azure-LRC. Second, we only fo-
cus on independent node failures, but do not consider rack
failures with multiple nodes failing simultaneously (e.g., a
power outage [19]). Our justification is that node failures are
much more common than rack failures [47]. We plan to relax
the assumptions in our future work.

Our reliability modeling follows the prior work [34]. Let
λ be the failure rate of each node. Thus, the state transition
rate from State i to State i− 1 (where 132 ≤ i ≤ 136) is iλ ,
since any one of the i nodes in State i fails independently. To
model repair, let µ be the repair rate of a failed node from
State 135 to State 136, and µ ′ be the repair rate for each node
from State i to State i+1 (where 132≤ i≤ 134). We assume
that the repair time of a single-node failure is proportional
to the amount of repair traffic. Specifically, let N be the total
number of nodes in a storage system, S be the capacity of
each node, B be the network bandwidth of each node, and ε

be the fraction of available network bandwidth of each node
for repair due to rate throttling. If a single node fails, the
repair load is evenly distributed over the remaining N − 1
nodes, and the total available network bandwidth for repair
is ε(N − 1)B. Thus, we have µ = ε(N − 1)B/(CS), where
C is the single-node repair cost (which is derived below).
If multiple nodes fail, we set µ ′ = 1/T , where T denotes
the time of detecting multiple node failures and triggering
a multi-node repair, based on the assumption that the multi-
node repair is prioritized over the single-node repair [34].

We compute C as the average cross-rack repair bandwidth.
Take (136,128,27,34) CL as an example. There exist d k

r e= 5
local groups, in which the first four local groups (each with

1/λ (years) 2 4 10

(16,12) RS 2.47e+11 7.87e+12 7.66e+14
(16,12,6) Azure-LRC 4.38e+11 1.40e+13 1.36e+15
(132,128) RS 6.33e+05 1.53e+07 1.20e+09
(132,128,33) TL 1.61e+06 4.64e+07 4.24e+09
(140,128,15) Azure-LRC 2.06e+06 6.20e+07 5.82e+09
(136,128,27,34) CL 5.82e+06 1.82e+08 1.75e+10

Table 5: MTTDLs of codes (in years) for varying 1/λ (years) and
B = 1 Gb/s.

B (Gb/s) 0.5 1 10

(16,12) RS 3.96e+12 7.87e+12 7.83e+13
(16,12,6) Azure-LRC 7.00e+12 1.40e+13 1.39e+14
(132,128) RS 1.01e+07 1.53e+07 1.09e+08
(132,128,33) TL 2.57e+07 4.64e+07 4.20e+08
(140,128,15) Azure-LRC 3.29e+07 6.20e+07 5.85e+08
(136,128,27,34) CL 9.30e+07 1.82e+08 1.78e+09

Table 6: MTTDLs of codes (in years) for varying B (Gb/s) and
1/λ = 4 years.

r+1= 28 chunks) span seven racks (i.e., the cross-rack repair
bandwidth is six chunks), while the last local group (with 21
chunks) spans six racks (i.e., the cross-rack repair bandwidth
is five chunks). For the remaining n− k−d k

r e = 3 global
parity chunks (which reside in one rack), we repair each of
them by accessing the other z−1 = 33 racks, each of which
sends one cross-rack chunk computed from an inner-rack
repair sub-operation as in topology locality. Thus, we have
C = (6×112+5×21+33×3)/136 = 6.44 chunks.

We configure the default parameters as follows. We set N =
400, S= 16 TB, ε = 0.1, and T = 30 minutes [34]. We also set
the mean-time-to-failure 1/λ = 4 years and B = 1 Gb/s [63].
We show the MTTDL results for varying λ (Table 5) and
varying B (Table 6).

We see that (136,128,27,34) CL has a lower MTTDL than
(16,12) RS and (16,12,6) Azure-LRC with moderate stripes,
but achieves a significantly higher MTTDL than other locality-
based schemes for wide stripes by minimizing the cross-
rack repair bandwidth for a single-node repair. For example,
when B = 1 Gb/s and 1/λ = 4 years, the MTTDL gain of
(136,128,27,34) CL is 10.90× of (132,128) RS, 2.92× of
(132,128,33) TL, and 1.94× of (140,128,15) Azure-LRC.

In general, combined locality achieves a higher MTTDL
gain when 1/λ increases or B decreases. The former implies
that multiple node failures are less probable, while the latter
implies that the cross-rack bandwidth is more constrained. In
either case, minimizing the cross-rack repair bandwidth for a
single-node repair is critical for a high MTTDL gain.

4 Design
We design ECWide, a wide-stripe erasure-coded storage sys-
tem that realizes combined locality. ECWide addresses the
challenges of achieving efficient repair, encoding, and updates
in wide-stripe erasure coding (§2.2), with the following goals:
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Figure 5: Repair in ECWide.

• Minimum cross-rack repair bandwidth: ECWide mini-
mizes the cross-rack repair bandwidth via combined local-
ity (§4.1).

• Efficient encoding: ECWide applies multi-node encoding
that supports efficient encoding for wide stripes (§4.2).

• Efficient parity updates: ECWide applies inner-rack par-
ity updates that allow both global and local parity chunks
to be updated mostly within local racks (§4.3).

4.1 Repair
ECWide realizes combined locality for two types of repair
operations: single-chunk repair and full-node repair.

Single-chunk repair. ECWide realizes two steps of com-
bined locality in repair (§3.4). Consider a storage system that
organizes data in fixed-size chunks given k, f , and γ . In Step 1,
ECWide determines the parameters n and r via Equations (2)
and (3). It then encodes k data chunks into n− k local/global
parity chunks. In Step 2, ECWide selects (r+1)/ f racks for
each local group, and places all r+ 1 chunks of each local
group into r + 1 different nodes evenly across these racks
(i.e., f chunks per rack). Since the above two steps ensure
that the cross-rack repair bandwidth for a single-chunk repair
is minimized as (r+ 1)/ f − 1 chunks (§3.4), ECWide only
needs to provide the following details for the repair operation.

Figure 5 describes the repair of a lost chunk D1 in rack
R1. Specifically, ECWide selects one node N1 (called the
requestor) in R1 to be responsible for reconstructing the
lost chunk. It also selects one node N4 (called the local re-
pairer) in rack R2 to perform local repair. N4 then collects all
chunks D5 and P1[1-5] within R2, computes an encoded chunk
P1[1-5]−D4−D5 (assuming that P1[1-5] is the XOR-sum of
D1,D2, . . . ,D5 for simplicity), and sends the encoded chunk
to the requestor N1. Finally, N1 collects data chunks D2 and
D3 within R1, and solves for D1 by cancelling out D2 and D3
from the received encoded chunk P1[1-5]−D4−D5.

Full-node repair. A full-node repair can be viewed as mul-
tiple single-chunk repairs for multiple stripes (i.e., one lost
chunk per stripe), which can be parallelized. However, each
single-chunk repair involves one requestor and multiple lo-
cal repairers, so multiple single-chunk repairs may choose
identical nodes as requestors or local repairers, thereby over-
loading the chosen nodes and degrading the overall full-node
repair performance. Thus, our goal is to choose as many dif-
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Figure 6: Multi-node encoding in ECWide.

ferent nodes to be requestors and local repairers as possible
for effective parallelization of multiple single-chunk repairs.

To this end, ECWide designs a least-recently-selected
method to select nodes as requestors or local repairers, and
implements it via a doubly-linked list and a hashmap. The
doubly-linked list holds all node IDs to track which node has
been recently selected or otherwise, and the hashmap holds
the node ID and the node address of the list. We can then ob-
tain the least-recently-selected node as the requestor or local
repairer by simply selecting the bottom one of the list and
updating the list via hashmap in O(1) time.

4.2 Encoding

Recall from §2.2 that single-node encoding for wide stripes
leads to significant performance degradation for a large k. We
observe that the current encoding implementation (e.g., Intel
ISA-L [4] and QFS [49]) often splits data chunks of large
size (e.g., 64 MiB) into smaller-size data slices and performs
slice-based encoding with hardware acceleration (e.g., Intel
ISA-L) or parallelism (e.g., QFS). To encode a set of k data
slices that are parts of k data chunks, the CPU cache of the
encoding node prefetches successive slices from each of the
k data chunks. If k is large, the CPU cache may not be able
to hold all prefetched slices, thereby degrading the encoding
performance of the successive slices.

To overcome the limitation of single-node encoding, we
consider a multi-node encoding scheme that aims to achieve
high encoding throughput for wide-stripes. Its idea is to divide
a single-node encoding operation with a large k into multiple
encoding sub-operations for a small k across different nodes.
It is driven by three observations: (i) the encoding perfor-
mance of stripes with a small k (e.g., k = 16) is fast (Figure 1
in §2.2); (ii) the parity chunks are linear combinations of data
chunks (§2.1), so a parity chunk can be combined from mul-
tiple partially encoded chunks of different subsets of k data
chunks; and (iii) the bandwidth among the nodes within the
same rack is often abundant.

Figure 6 depicts the multi-node encoding scheme with
k = 64, assuming that two global parity chunks Q1[1-64] and
Q2[1-64] are to be generated. ECWide first evenly distributes
all 64 data chunks across four nodes N1, N2, N3, and N4 in
the same rack. It lets each node (e.g., N1) encode its 16 local
data chunks (e.g., D1,D2, . . . ,D16) into two partially encoded
chunks (e.g., Q1[1-16] and Q2[1-16]). The first node N1 sends
Q1[1-16] and Q2[1-16] to its next node N2. N2 combines the
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Figure 7: Inner-rack parity updates in ECWide.

two received partially encoded chunks with its local partially
encoded chunks Q1[17-32] and Q2[17-32] to form two new
partially encoded chunks Q1[1-32] and Q2[1-32], which are
sent to the next node N3. Similar operations are performed in
N3 and N4. Finally, N4 generates the final global parity chunks
Q1[1-64] and Q2[1-64]. Note that the partially encoded chunks
are encoded in parallel and forwarded from N1 to N4 via fast
inner-rack links, so as to efficiently calculating the global
parity chunks of wide stripes.

ECWide needs to generate local parity chunks under com-
bined locality, yet the local parity chunks can be more effi-
ciently encoded from r data chunks of each local group in a
single node, as r is typically much smaller than k. In addi-
tion, ECWide needs to distribute all data chunks, local parity
chunks, and global parity chunks to different racks. Such a
distribution incurs cross-rack data transfers; minimizing the
cross-rack data transfers for the encoding of wide stripes is
our future work.

4.3 Updates
To alleviate the expensive parity update overhead in wide
stripes (§2.2), we present an inner-rack parity update scheme
for wide stripes. Its idea is to limit both global and local parity
updates within the same rack as much as possible, so as to
mitigate cross-rack data transfers.

Figure 7(a) depicts how to perform inner-rack parity up-
dates for two global parity chunks Q1[1-20] and Q2[1-20]
(also shown in Figure 2(c)). ECWide places all the global
parity chunks Q1[1-20] and Q2[1-20] in the same rack, which
is always feasible without violating rack-level tolerance given
that c = f and the number of global parity chunks is often no
more than f . In this case, when a data chunk D1 is updated to
D′1, ECWide first transfers a delta chunk D′1−D1 across racks
for the global chunk Q1[1-20] (§2.1). It updates Q1[1-20] by
adding α(D′1−D1), where α is the encoding coefficient of D1
in Q1[1-20]. ECWide updates the other global parity chunk
Q2[1-20] by transferring the delta chunk only via inner-rack
data transfers. Note that ECWide only incurs one cross-rack
transferred chunk for updating all global parity chunks.

Figure 7(b) depicts how to perform inner-rack parity up-
dates for the local parity chunk P1[1-5]. For each stripe,
ECWide first records the update frequency of data chunks
of each rack and finds the most update-intensive rack for each
local group. If P1[1-5] does not reside in the most update-
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Figure 8: Architecture of ECWide.

intensive rack of its group, then ECWide swaps P1[1-5] for
a random data chunk (say D3) in the most update-intensive
rack. In this way, P1[1-5] is moved to the rack that is the most
update-intensive, so that the local parity updates can mostly
be performed within the rack without incurring cross-rack
data transfers.

If a data chunk is updated, it is important to ensure that
all global and local parity chunks of the same stripe are con-
sistently updated. ECWide may handle consistent parity up-
dates in a state-of-the-art manner, for example, by leveraging
a piggybacking method to improve the classical two-phase
commits as one-phase commits [74].

5 Implementation
We implement ECWide (§4) in three major modules: a repair
module that performs the repair operations based on combined
locality, an encode module that performs multi-node encoding,
and an update module that performs inner-rack parity updates.
We implement two prototypes of ECWide, namely ECWide-C
and ECWide-H, for cold and hot storage systems, respectively,
as shown in Figure 8.
ECWide-C. ECWide-C is mainly implemented in Java with
about 1,500 SLoC, while the encode module is implemented
in C++ with about 300 SLoC based on Intel ISA-L [4]. It has
a MasterNode that stores metadata and organizes the repair
and encoding operations with a Scheduler daemon, as well
as multiple DataNodes that store data and perform the repair
and multi-node encoding operations. Note that ECWide-C
does not consider the update module, assuming that updates
are rare in cold storage.

For the repair operation, the Scheduler triggers the repair
module of each DataNode that serves as a local repairer. Such
DataNodes (which serve as local repairers) send the partially
repaired results to the DataNode that serves as the requestor,
which finally reconstructs the lost chunk. For the encoding
operation, the Scheduler selects a rack and triggers the en-
code module of each involved DataNode in the rack. Those
involved DataNodes perform multi-node encoding, and the
DataNode that serves as the destination node generates all
global parity chunks.
ECWide-H. ECWide-H builds on the Memcached in-
memory key-value store (v1.4) [6] and libMemcached
(v1.0.18) [5] for hot storage. It is implemented in C with about
3,000 SLoC. It follows a client-server architecture. It contains

USENIX Association 19th USENIX Conference on File and Storage Technologies    241



MemcachedServers that store key-value items, as well as
MemcachedClients that perform the repair and parity up-
date operations. It also includes the Coordinator for man-
aging metadata. The Coordinator includes a Scheduler

daemon that coordinates the repair and parity update opera-
tions and an Updater daemon that analyzes the update fre-
quency status. Note that ECWide-H does not include the
encode module as in ECWide-C, since the chunk size in
erasure-coded in-memory key-value stores is often small (e.g.,
4 KiB [18, 73, 74]) and a single-node CPU cache is large
enough to prefetch all data chunks of a wide stripe for high
encoding performance (§4.2).

For the repair operation, ECWide-H performs the same
way as ECWide-C, except that it uses MemcachedClients
as local repairers. For the updates of global parity chunks, the
Scheduler locates the rack where the global parity chunks re-
side, and triggers the update modules of MemcachedClients
to perform the inner-rack parity updates. For the updates of
local parity chunks, the Updater first triggers the swapping,
in which the two involved MemcachedClients exchange the
corresponding chunks. The inner-rack parity updates for the
local parity chunks can be later performed. Note that some
existing in-memory systems (e.g., Cocytus [74]) also deploy
multiple Memcached instances in a single physical node and
have a form of hierarchical topology that is suitable for topol-
ogy locality.

6 Evaluation
We conduct our experiments on Amazon EC2 [1] with a
number of m5.xlarge instances connected by a 10 Gb/s net-
work. One instance represents a MasterNode for ECWide-
C or a Coordinator for ECWide-H (§5), while the other
instances represent the DataNodes for ECWide-C or the
MemcachedClients/MemcachedServers for ECWide-H.
To simulate the heterogeneous bandwidth within a rack and
across racks, we partition nodes into logical racks and as-
sign one dedicated instance as a gateway in each rack. The
instances within the same logical rack can communicate di-
rectly via the 10 Gb/s network, while the instances in different
racks communicate via the gateways. We use the Linux traf-
fic control command tc [7] to limit the outgoing bandwidth
of each gateway to make cross-rack bandwidth constrained.
In our experiments, we vary the gateway bandwidth from
500 Mb/s up to 10 Gb/s.

We set the chunk size as 64 MiB for ECWide-C and 4 KiB
for ECWide-H (§2.2). We plot the average results of each
experiment over ten runs. We also plot the error bars for the
minimum and maximum results over the ten runs. Note that
the error bars may be invisible in some plots due to the small
variance.

We present the experimental results of ECWide-C and
ECWide-H for combined locality (CL), compared with Azure-
LRC (LRC) and topology locality (TL) that represent state-of-
the-art locality-based schemes. We show that CL outperforms

LRC and TL for both single-chunk repair and full-node repair.
We also show the efficiency of our multi-node encoding and
inner-rack parity update schemes.

6.1 ECWide-C Performance
Experiment A.1 (Repair). We evaluate the repair perfor-
mance of LRC, TL, and CL using ECWide-C. Here, we let
32≤ k ≤ 64 and 2≤ f ≤ 4, and configure different gateway
bandwidth settings. For (n,k,r,z) CL, we deploy n+ 1 in-
stances, including n instances as DataNodes and one instance
as MasterNode. We select two types of LRC and two types of
CL for each set of f and k with different r. We also compute
the corresponding redundancy of each scheme based on Ta-
ble 4. Given k, f , and r, we can compute n = k+ d k

r e+ f −1
and z = d n

f e. Thus, in the following discussion, we only show
the values of k, f , and r.

Figures 9(a)-9(e) show the average single-chunk repair
times of LRC, TL, and CL for different values of k and f ,
under the gateway bandwidth of 1 Gb/s and 500 Mb/s. CL
always outperforms LRC and TL under the same k, f , and the
gateway bandwidth, while TL with the minimum redundancy
often performs the worst. For example, in Figure 9(c), when
the gateway bandwidth is 1 Gb/s, the single-chunk repair time
of CL with r = 7 is 0.8 s, while those of LRC with r = 7 and
TL are 3.9 s and 9.0 s, respectively; equivalently, CL reduces
the single-chunk repair times of LRC and TL by 79.5% and
91.1%, respectively.

CL shows a higher gain compared to LRC under smaller
gateway bandwidth. For example, in Figure 9(c), when the
gateway bandwidth is 500 Mb/s, the gain of CL over LRC
is 82.1%, which is higher than 79.5% when the gateway
bandwidth is 1 Gb/s. The reason is that CL minimizes the
cross-rack repair bandwidth, so its performance gain is more
obvious when the gateway bandwidth is more constrained.

Also, the single-chunk repair time of CL increases when
only r increases (see r = 7 and r = 11 in Figure 9(c)), and
keeps stable when only k changes (see Figure 9(a)-9(c)). The
empirical results are consistent with the theoretical results in
Table 4, as the single-chunk cross-rack repair bandwidth is
equal to (r+1)/ f −1.

Figure 9(f) shows the average full-node repair rates of LRC,
TL, and CL for different values of f ; we also compare CL with
and without the least-recently-selected (LRS) method (§4.1).
We fix k = 64, r = 11, and the gateway bandwidth as 1 Gb/s.
To mimic a single node failure, we erase 64 chunks from
64 stripes (i.e., one chunk per stripe) in one node. We then
repair all the erased chunks simultaneously. Note that practical
storage systems often store many more chunks per node, yet
each chunk of the failed node is independently associated with
one stripe. Thus, we expect that using 64 chunks sufficiently
provides stable performance. From the figure, we see that CL
shows a higher full-node repair rate than TL and LRC. Its full-
node repair rate increases with f , as the single-chunk cross-
rack repair bandwidth is equal to (r + 1)/ f − 1. Also, CL
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Figure 9: Experiment A.1: Average single-chunk repair time (in seconds) for different k and f under the gateway bandwidth of 1 Gb/s and
500 Mb/s (figures (a)-(e)), and average full-node repair rate for different f (figure (f)).
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Figure 10: Experiment A.1: Single-chunk repair time and full-node
repair rate for different gateway bandwidth.

with LRS increases the full-node repair rate by 14.1% when
f = 4 compared to CL without LRS, thereby demonstrating
the efficiency of the LRS method.

Finally, Figure 10 shows how the average single-chunk
repair time and the average full-node repair rate vary with the
gateway bandwidth, ranging from 1 Gb/s to 10 Gb/s. Here,
we fix k = 64 and f = 4. From Figure 10(a), CL still outper-
forms LRC and TL in single-chunk repair under all gateway
bandwidth settings, although the difference becomes smaller
as the gateway bandwidth increases. For example, when the
gateway bandwidth is 10 Gb/s, the single-chunk repair time
of CL with r = 7 (0.34 s) reduces those of LRC with r = 7
(0.49s) and TL (1.11s) by 30.6% and 69.4%, respectively.
Also, from Figure 10(b), CL maintains its performance gain
in full-node repair over LRC and TL, and LRS brings further
improvements.

One limitation of our current implementation is that the full-
node repair performance is not fully optimized. We can further
improve the throughput by state-of-the-art repair paralleliza-
tion techniques, such as parity declustering [30], PPR [46],
and repair pipelining [41]. Nevertheless, all coding schemes
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Figure 11: Experiment A.2: Encoding time and encoding throughput
for single-node encoding and multi-node encoding.

are fairly evaluated under the same implementation setting.
If we use parallelization techniques for all coding schemes,
we expect that CL should maintain its performance gain by
reducing the cross-rack repair bandwidth and I/O. We pose
this issue as future work.

Experiment A.2 (Encoding). We measure the average en-
coding time of CL per stripe. Here, we fix k = 64 and f = 4,
and let 11≤ r ≤ 19. Figure 11(a) shows the results of single-
node encoding and multi-node encoding. We see that multi-
node encoding shows significantly lower encoding time than
single-node encoding. For example, when r = 11, multi-node
encoding reduces 84% of the encoding time compared to
single-node encoding.

We further measure the average encoding throughput. Here,
we fix 4≤ k≤ 64 and f = 4. Figure 11(b) shows the results of
single-node encoding and multi-node encoding. Multi-node
encoding achieves significantly high encoding throughput
when k is large, since many nodes in the same rack can share
their computational resources to accelerate the encoding op-
eration. On the other hand, single-node encoding has low
throughput when k is large, consistent with our findings in
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Figure 12: Experiment B.1: Average single-chunk repair time (in milliseconds) for different k and f under different types of background traffic
(figures (a)-(e)), and average full-node repair rate for different f .

Figure 1. Note that Figure 1 shows higher throughput than
Figure 11(b), since the former only considers the computation
part of the encoding operations, while the latter also includes
disk I/O for reading chunks for encoding in addition to encod-
ing computation.

6.2 ECWide-H Performance

Experiment B.1 (Repair). We evaluate the repair perfor-
mance of LRC, TL, and CL using ECWide-H. For (n,k,z)
TL and (n,k,r,z) CL, we deploy n + 8z + 1 instances, in-
cluding n instances as MemcachedServers, 8z instances as
MemcachedClients (with eight instances in each of the z
racks), and one instance as Coordinator.

We consider two deployment scenarios of ECWide-H with
different loads of background traffic. To mimic background
traffic, in addition to the existing MemcachedClients in
ECWide-H, we add extra Memcached clients in the back-
ground (called background clients) that continuously is-
sue read requests to MemcachedServers. Specifically, we
consider a case of light background traffic where each
MemcachedServer serves 20 background clients, and a case
of heavy background traffic where each MemcachedServer

serves 80 background clients.
Figures 12(a)-12(e) show the average single-chunk repair

times of LRC, TL, and CL for different k and f under the light
and heavy background traffic loads. Here, we let 64≤ k≤ 128
and 2 ≤ f ≤ 4. As in Experiment A.1 (§6.1), we select two
types of LRC and two types of CL for each set of k and f with
different r. We also compute the corresponding redundancy of
each scheme based on Table 4. Similar to Experiment A.1, we
see that CL still performs the best in hot storage workloads.
For example, in Figure 12(c) under heavy background traffic,

the single-chunk repair time of CL with r = 27 is 10.3 ms,
while those of LRC with r = 27 and TL are 85.5 ms and
108.4 ms, respectively; equivalently, CL reduces the single-
chunk repair times of LRC and TL by 87.9% and 90.5%,
respectively. Also, CL with r = 27 only incurs a redundancy
of 1.063×, close to the minimum redundancy of TL (1.031×).

In addition, CL under heavy background traffic shows a
higher performance gain compared to the light one, similar
to Experiment A.1 that compares the gateway bandwidth of
500 Mb/s to that of 1 Gb/s. The reason is that the single-chunk
repair performance is more likely bottlenecked by the limited
available bandwidth under heavy background traffic, in which
the performance gain of CL is more prominent.

Figure 12(f) shows the average full-node repair rate for
different values of f . Here, we fix k = 64 and r = 7, and
focus on light background traffic. From the figure, CL shows
a higher full-node repair rate than LRC and TL, and CL with
LRS increases the full-node repair rate by 29.7% when f =
4 compared to CL without LRS. Also, the full-node repair
rate of CL increases with f , consistent with the results in
Figure 9(f) (see Experiment A.1 in §6.1) for the same reason.

Experiment B.2 (Updates). We evaluate the update time
of a chunk with and without the inner-rack parity updates
for global and local parity chunks using (136,128,27,34) CL
(§4.3); without the inner-rack parity updates, we assume that
each parity chunk is updated directly by the corresponding
delta chunk. We use workloads generated by Yahoo! Cloud
Serving Benchmark (YCSB) [21] with two read-to-update
ratios, namely read-mostly (95%:5%) and update-intensive
(50%:50%).

Figure 13 shows the average update times of different up-
date schemes. Compared to without inner-rack parity updates,
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Figure 13: Experiment B.2: Average update time (in milliseconds)
with inner-rack parity update methods for local and global parity
chunks under different read/update ratios, using (136,128,27,34) CL.

the inner-rack parity updates for global parity chunks reduce
the update time by up to 33.2%, the inner-rack parity updates
for local parity chunks reduce the update time by up to 14.4%,
and the inner-rack parity updates for both local and global
parity chunks reduce the update time by up to 47.6%.

7 Related Work
Wide-stripe erasure coding. Wide stripes have been com-
mercially adopted (e.g., VAST [9]), but little is known about
the design details, and there is no rigorous analysis on the
fundamental properties of wide-stripe erasure coding in real
deployment. Some studies in the literature address the wide-
stripe problem from different perspectives. Li et al. [42] ad-
dress the read-retry problem in hard disks using local erasure
coding, where n = 1024 and n− k ≤ 20. Haddock et al. [28]
use general-purpose GPUs to improve encoding/decoding
efficiency, where n = 24 and k = 20. Some studies consider
large stripes, where both k and n− k are large, for distributed
storage using low-density parity-check (LDPC) codes [54] or
rateless codes [44], but the minimum redundancy that they
consider (e.g., 1.167× [44] and 1.5× [54]) remains higher
than that in our wide-stripe problem. Our work is the first to
systematically study the performance issues in wide-stripe
erasure coding, including repair, encoding, and updates.
Erasure coding in distributed storage. Erasure coding has
been widely studied in distributed storage (see surveys [11,
52]). As erasure coding has higher performance overhead
than replication, it is often used in cold storage that treats
data persistence as a first-class citizen as opposed to access
performance [10, 12]. To ensure data reliability, fast repair
is critical for erasure coding in cold storage. Most studies
address the repair issue via either proposing new erasure codes
that minimize the repair bandwidth [23, 34, 50, 58, 60, 63,
71], or designing repair-efficient techniques that mitigate the
repair time [41, 46]. Erasure coding is also considered in
hot storage that requires high data access performance. One
notable example is erasure coding in in-memory key-value
storage, in which existing studies mainly address caching [57],
data management [43,73,74], and consistent hashing [18,70].
Some studies focus on updates in erasure-coded storage, and
mainly address performance [16, 37] and consistency [17].
Existing studies on erasure coding mainly focus on small k

and m. In contrast, we focus on the application of wide stripes
in both cold and hot storage.

Locality in erasure coding. Many studies exploit either par-
ity locality or topology locality to improve the performance of
erasure coding. In terms of parity locality, locally repairable
codes [27, 33, 34, 51, 63] reduce the repair bandwidth and I/O
costs by associating local parity chunks with different groups
of fewer than k data chunks. Product codes [24, 29, 40] asso-
ciate local parities with both horizontal and vertical groups of
data chunks for high fault tolerance. Several studies exploit
hierarchical parity locality to associate local parity chunks
with different levels of groups of data chunks to handle mul-
tiple failures [38, 62]. In terms of topology locality, existing
studies exploit rack-level locality to reduce cross-rack data
transfers in repair or update operations. Some studies propose
repair-optimal erasure code constructions [31,32,56] that min-
imize the cross-rack repair bandwidth, while the others design
new techniques for efficient repair [65, 66] or updates [64].
Our work combines both parity locality and topology locality
to solve the wide-stripe problem, especially on reducing the
repair bandwidth for wide stripes.

8 Conclusions
Wide stripes are a new notion for erasure-coded distributed
storage to achieve extreme storage savings. We propose com-
bined locality, a novel repair mechanism that combines parity
locality and topology locality to address the repair problem
effectively for wide stripes. We design ECWide, a prototype
system that realizes combined locality. We further design
multi-node encoding and inner-rack parity updates to improve
the encoding and update performance, respectively. We im-
plement ECWide for both cold and hot storage systems, and
our Amazon EC2 experiments demonstrate the efficiency of
ECWide in repair, encoding, and updates.
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