
This paper is included in the Proceedings of the
19th USENIX Conference on File and Storage Technologies.

February 23–25, 2021
978-1-939133-20-5

Open access to the Proceedings
of the 19th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX.

FlashNeuron: SSD-Enabled Large-Batch Training of
Very Deep Neural Networks

Jonghyun Bae, Seoul National University; Jongsung Lee, Seoul National University
and Samsung Electronics; Yunho Jin and Sam Son, Seoul National University;

Shine Kim, Seoul National University and Samsung Electronics; Hakbeom Jang,
Samsung Electronics; Tae Jun Ham and Jae W. Lee, Seoul National University

https://www.usenix.org/conference/fast21/presentation/bae

FlashNeuron: SSD-Enabled Large-Batch Training of Very Deep Neural Networks

Jonghyun Bae† Jongsung Lee†‡ Yunho Jin† Sam Son† Shine Kim†‡ Hakbeom Jang‡

Tae Jun Ham† Jae W. Lee†

†Seoul National University ‡Samsung Electronics

Abstract
Deep neural networks (DNNs) are widely used in various
AI application domains such as computer vision, natural lan-
guage processing, autonomous driving, and bioinformatics.
As DNNs continue to get wider and deeper to improve accu-
racy, the limited DRAM capacity of a training platform like
GPU often becomes the limiting factor on the size of DNNs
and batch size—called memory capacity wall. Since increas-
ing the batch size is a popular technique to improve hardware
utilization, this can yield a suboptimal training throughput.
Recent proposals address this problem by offloading some of
the intermediate data (e.g., feature maps) to the host memory.
However, they fail to provide robust performance as the train-
ing process on a GPU contends with applications running on a
CPU for memory bandwidth and capacity. Thus, we propose
FlashNeuron, the first DNN training system using an NVMe
SSD as a backing store. To fully utilize the limited SSD write
bandwidth, FlashNeuron introduces an offloading scheduler,
which selectively offloads a set of intermediate data to the
SSD in a compressed format without increasing DNN evalua-
tion time. FlashNeuron causes minimal interference to CPU
processes as the GPU and the SSD directly communicate for
data transfers. Our evaluation of FlashNeuron with four state-
of-the-art DNNs shows that FlashNeuron can increase the
batch size by a factor of 12.4× to 14.0× over the maximum
allowable batch size on NVIDIA Tesla V100 GPU with 16GB
DRAM. By employing a larger batch size, FlashNeuron also
improves the training throughput by up to 37.8% (with an
average of 30.3%) over the baseline using GPU memory only,
while minimally disturbing applications running on CPU.

1 Introduction
Deep neural networks (DNNs) are the key enabler of emerg-
ing AI-based applications and services such as computer vi-
sion [19,22,38,53,54], natural language processing [2,11,13,
51, 67], and bioinformatics [46, 73]. With a relentless pursuit
of higher accuracy, DNNs have become wider and deeper to
increase network size [65]. It is because even a 1% accuracy
loss (or gain) potentially affects the experience of millions of
users if the AI application serves a billion of people [47].

DNNs must be trained before deployment to find optimal
network parameters that minimize the error rate. Stochastic
Gradient Descent (SGD) is the dominant algorithm used for
DNN training [15]. In SGD, the entire dataset is divided into
multiple (mini-)batches, and weight gradients are calculated
and applied to the network parameters (weights) for each
batch via backward propagation. Unlike inference, the train-
ing algorithm reuses the intermediate results (e.g., feature
maps) produced by a forward propagation during the back-
ward propagation, thus requiring a lot of memory space [55].

This GPU memory capacity wall [33] often becomes the
limiting factor on DNN size and its throughput. Specifically,
such a large memory capacity requirement forces a GPU de-
vice to operate at a relatively small batch size, which often ad-
versely affects its throughput. The use of multiple GPUs can
partially bypass the memory capacity wall because a careful
use of multiple GPUs can achieve near-linear improvements
in throughput [27, 28, 59]. However, such a throughput im-
provement comes with the linear increase in the GPU cost,
which is often a major component of the overall system cost.
As a result, the use of multiple GPUs often ends up with
sub-optimal cost efficiency (i.e., throughput/system cost) as it
does not change the fact that each GPU is not operating at its
full capacity due to the limited per-GPU batch size.

This memory capacity problem in DNN training has drawn
much attention from the research community. The most pop-
ular approach is to utilize the host CPU memory as a backing
store to offload some of the tensors that are not immediately
used [8, 9, 24, 42, 55, 62]. However, this buffering-on-memory
approach fails to provide robust performance as the training
process on the GPU contends with applications running on
the CPU for memory bandwidth and capacity (e.g., data aug-
mentation tasks [5, 41, 57, 61] to boost training accuracy).
Moreover, these proposals focus mostly on increasing batch
size but less on improving training throughput. Therefore,
they often yield a low training throughput as the cost of CPU-
GPU data transfers outweighs a larger batch’s benefits.

Thus, we propose FlashNeuron, the first DNN training
system using a high-performance SSD as a backing store.
While NVMe SSDs are a promising alternative to substitute
or augment DRAM, they have at least an order of magnitude

USENIX Association 19th USENIX Conference on File and Storage Technologies 387

Input

Forward

Backward

Input-grad

MatMul

Loss

True output
Activation

Fully-connected (FC) FC FC

Figure 1: DNN training iteration and data reuse pattern.

lower bandwidth than both HBM DRAM on GPU and DDRx
DRAM on CPU. Therefore, it is critical to effectively smooth
bandwidth utilization to minimize bandwidth waste while
overlapping GPU computation with GPU-SSD data transfers.
To this end, FlashNeuron introduces an offloading scheduler,
which judiciously selects a set of tensors to offload to the SSD.
On the host side, FlashNeuron is realized by a lightweight
user-level I/O stack, which leaves a minimal resource foot-
print on CPU cycles and memory usage as the GPU and the
SSD directly communicate for tensor data transfers utilizing
GPUDirect [17] technology.

We prototype FlashNeuron on PyTorch [50], a popular
DNN framework, and evaluate it using four state-of-the-
art DNN models. Our evaluation with the state-of-the-art
NVIDIA V100 GPU with 16GB DRAM shows that Flash-
Neuron can scale the batch size by a factor of 12.4× to 14.0×
over the maximum allowable batch size using the GPU mem-
ory only. By selecting the optimal batch size, FlashNeuron
improves the training throughput by 30.3% on average over
the baseline with no offloading, with a maximum gain of
37.8%. At the same time, FlashNeuron also provides excel-
lent isolation between CPU and GPU processes. Even under
an extreme condition of CPU applications utilizing 90% host
memory bandwidth, the slowdown of the DNN training on
GPU falls within 8% of standalone execution, while the slow-
down of buffering-on-memory can be as high as 67.8% (i.e.,
less than one-third of the original throughput).

Our contributions can be summarized as follows:

• We identify a bandwidth contention problem in recent
buffering-on-memory proposals [8, 9, 24, 42, 55, 62] and
propose FlashNeuron, the first buffering-on-SSD solu-
tion to overcome this problem.

• We introduce a novel offloading scheduler to fully utilize
the scarce SSD write bandwidth.

• We implement a lightweight user-space I/O stack cus-
tomized for DNN training, which orchestrates SSD-GPU
direct data transfers with minimal CPU intervention.

• We prototype FlashNeuron on PyTorch, a popular DNN
framework, and evaluate it using four state-of-the-art
DNNs to demonstrate its effectiveness for increasing
batch size and hence training throughput, while mini-
mally disturbing applications on CPU.

M
em

y
us

ag
e

(G
B)

WeightInput + Intermediate result Temporary buffer

0

32

64

96

1x 2x 8x 1x 2x 8x 1x 2x 8x 1x 2x 8x

ResNet-1922 DenseNet-1001 BERT-XLarge HBMP

Ba
se

lin
e

G
PU

 H
BM

Figure 2: Breakdown of GPU memory usage in DNN training.

2 Background and Motivation

2.1 DNN Training
Deep Neural Networks (DNN) are widely used for many

machine learning tasks such as computer vision [19,22,38,53,
54], natural language processing [2, 11, 13, 51, 67], bioinfor-
matics [46, 73] and so on. For a DNN to effectively perform
a target task, it has to learn optimal network parameters using
a large amount of labeled data — a process called training.
DNN training is often performed using mini-batch stochastic
gradient descent (SGD) algorithm [15]. In this algorithm, a
training process is divided into multiple epochs, where a sin-
gle epoch processes the entire dataset exactly once. Then, a
single epoch is further divided into multiple iterations, where
each iteration processes a single partition of the dataset, called
(mini-)batch, to update network parameters.

As shown in Figure 1, an iteration consists of two steps: for-
ward pass — a process of computing error for the given input
batch, and backward pass — a process of back-propagating
errors and updating network weights. A forward pass starts
from the very first layer. Given input data, it simply per-
forms the computation associated with the first layer using
the layer’s current weight and then passes the outcome to
the next layer. This process is repeated until the last layer is
reached. At that point, the error (also called loss) of the model
is computed by comparing the last layer’s outcome with the
correct output. Then, the backward propagation starts from
the last layer. During this step, i) the gradient of a layer’s
inputs to the final error is computed (using the gradient of
the next layers’ inputs to the final error) and passed to the
next layer, and ii) the gradient of the layer’s weights to the
final error is computed using i) and stored. Once the back-
ward propagation finishes in the first layer, the weights of all
layers are updated accordingly based on the weight gradient
computed during the backward pass.

2.2 Memory Capacity Wall in DNN Training
This training process exhibits an interesting data reuse

pattern. Specifically, during a forward pass, inputs and inter-
mediate computation results (e.g., products of weights and
inputs in the feed-forward layer, followed by activation) of
each layer should be buffered. Then, during the backward
pass, i) the buffered intermediate computation results of a

388 19th USENIX Conference on File and Storage Technologies USENIX Association

0
20
40
60
80

LSTM

0

50

100

150

200

Conv BN Misc

Se
qu

en
ce

s
/ s

ec

(a) ResNet-1922

0

40

80

120

160

Conv BN Misc

(b) DenseNet-1001

Im
ag

es
 /

se
c

Im
ag

es
 /

se
c

(d) HBMP(c) BERT-XLarge

1x 2x Max

0

100

200

300

MM
BMM Misc

Se
qu

en
ce

s
/ s

ec 347.6

Conv

backward BN

backward Conv

backward BN

backward MM

backward BMM

backward RNN

backward

Figure 3: Per-layer throughput of key layers in various DNN models. (Conv: Convolution, BN: BatchNorm, MM: Matrix
Multiplication, BMM: Batched Matrix Multiplication). 1× represents the maximum batch size of the baseline using GPU memory
only. Max represents the batch size that saturates the training throughput with an idealized assumption of zero offloading
overhead.

layer are used to compute the layer’s gradient, and ii) the
buffered inputs are used to compute the gradient of the layer’s
weights. Arrows in Figure 1 illustrates this data reuse pattern.
This data buffering does not cause a problem when the net-
work is shallow. However, a recent trend in deep learning is
to utilize networks with a large number of layers (i.e., deep
networks). With this trend, the amount of memory capacity
required to buffer data (i.e., inputs and intermediate compu-
tation results for each layer) becomes much larger. It is not
feasible in these deep networks to train the network using
a large batch size as the required memory capacity for data
buffering exceeds the available GPU memory size.

Figure 2 shows the required memory capacity of the DNN
models across different batch sizes. Specifically, for each
model, the figure shows the minimum memory capacity re-
quired to perform training for a certain batch size successfully.
Here, 1× represents the maximum batch size that this model
can run on a state-of-the-art GPU (i.e., Tesla V100) with
16GB memory. 2× and 8× represent the 2× and 8× batch
sizes of the base (1×) batch size. To run on these large batch
sizes, we offload all the tensors to host CPU memory except
for those of the layer currently being executed. On the base
batch size (1×), the required capacity is just below 16GB,
indicating that this model almost fully utilizes the provided
GPU memory. However, this model cannot be run on a GPU
with 16GB memory when we set the batch size to be 2× or
8× as the required memory size far exceeds the available
memory size. This figure also shows that most of the memory
capacity is occupied by the inputs and the intermediate com-
putation results for each layer. Other memory objects such
as weights or temporary buffers (e.g., temporary workspace
for convolution operations) take a relatively small portion of
these models’ total memory consumption.

GPU memory capacity bottleneck described above signif-
icantly limits the per-GPU batch size of the DNN models.
Using a small batch size often results in the GPU’s lower
utilization, which leads to lower throughput [3, 16, 68, 69].
Figure 3 presents the per-layer throughput of key layers (i.e.,

layers accounting for a significant fraction of the total time) in
various DNN models. We run each layer in isolation for this
exploratory experiment without considering the overheads
of tensor offloading, host-GPU communication, etc. The fig-
ure shows that there is still significant room for additional
throughput by increasing the batch size. GPU resources are
being underutilized even at the maximum per-GPU batch
size if only GPU memory is used. In this scenario, a GPU
throughput can be improved by ameliorating the GPU mem-
ory capacity bottleneck. One potential concern is that larger
batch size can sometimes negatively affect the model accu-
racy [20,30,40]. However, for extremely deep neural network
models, the base batch size is relatively small, and thus an
increase in batch size is expected not to affect the final model
accuracy severely.

2.3 Overcoming GPU Memory Capacity Wall
A popular approach to overcome GPU memory capacity

bottleneck is to buffer data in the host CPU memory. For
example, both vDNN [55] and SuperNeurons [62] (selec-
tively) offload activation tensors to the CPU memory. These
buffering-on-memory solutions can interfere with the CPU
processes for memory bandwidth and capacity to pay a signif-
icant opportunity cost. For example, running data augmenta-
tion on CPU at every iteration of DNN training is a common
practice [32, 41, 66] to prevent overfitting to the training data
set. A typical data augmentation pipeline consists of image
loading, decoding, and a sequence of geometric transforma-
tions [5, 41, 57, 61], requiring high memory bandwidth.

Figure 4 shows the GPU training throughput of a buffering-
on-memory system while the CPU is continuously running a
multi-threaded data augmentation task composed of rotation,
transposition, and color conversion. By adjusting the number
of data augmentation threads, we control the amount of mem-
ory bandwidth consumed by the CPU task (i.e., 50%: 21GB/s,
70%: 29GB/s, 90%: 36GB/s). The throughput of DNN train-
ing with buffering-on-memory is noticeably degraded due to
memory bandwidth contention. To avoid this problem, we

USENIX Association 19th USENIX Conference on File and Storage Technologies 389

N
or

m
. t

hr
ou

gh
pu

t

0

0.5

1

50% 70% 90% 50% 70% 90% 50% 70% 90% 50% 70% 90%

ResNet-1922 DenseNet-1001 BERT-XLarge HBMP

Figure 4: Normalized throughput of buffering-on-memory
system (vDNN [55]-like) when the host CPU is running a
data augmentation with varying degrees of contention.

propose a new solution that buffers inputs and intermediate
data (tensors) to SSDs. Specifically, we leverage direct peer-
to-peer communication between the GPU and NVMe SSD
devices so that data buffering does not consume either host
CPU cycles or memory bandwidth. This buffering-on-SSD
approach complements the popular buffering-on-memory ap-
proach, hence improving overall resource utilization over
various use cases.

3 FlashNeuron Design

3.1 Overview
FlashNeuron is a library that can be integrated into popular

DNN execution frameworks. Figure 5 shows the system
overview of FlashNeuron. FlashNeuron consists of three
components: offloading scheduler, memory manager, and
peer-to-peer direct storage access. Specifically, the offloading
scheduler identifies a set of tensors (i.e., multidimensional
matrices) to offload and generates an offloading schedule
by considering multiple factors such as tensor sizes, tensor
transfer times, and forward/backward pass runtime. Once the
schedule is determined, the memory manager orchestrates
data transfers between the GPU memory and the SSDs using
peer-to-peer direct storage access to minimize performance
overheads from offloading.

3.2 Memory Manager
Tensor Allocation/Deallocation. Instead of buffering all in-
put and intermediate data in memory, FlashNeuron chooses
to buffer selected tensors in SSDs, which requires extra tensor
allocations and deallocations. Since frequent GPU memory
allocations and deallocations using runtime (e.g., CUDA) in-
cur noticeable performance overheads, FlashNeuron employs
a custom memory allocator. The custom memory allocator
first reserves the whole GPU memory space initially and man-
ages memory allocation/deallocation itself. In FlashNeuron,
tensors are allocated when i) a tensor is first created during the
forward propagation or ii) an offloaded tensor is prefetched
from the SSD to the memory during a backward pass. On
the other hand, tensors are deallocated when i) a tensor is
completely offloaded from the memory to the SSD, or ii) a
tensor is no longer used by any layer during the iteration. To
track the lifetime of a tensor, a reference counting mechanism

Memory Manager

Training model structure

Scheduling result
Offload/prefetch

using tensor index
Peer-to-peer

Direct Storage Access
User-space NVMe Driver

I/O cmd. Completion

Memory
(de-)allocation

Operation Core
Tensor

offload/prefetch

Profiling result

Result of
offload/prefetch

DNN Training Framework

Offloading
Scheduler

Figure 5: System overview of FlashNeuron.

(used in PyTorch [50] and TensorFlow [1]) is utilized. For
DNN frameworks employing a static computational graph
like Caffe, the memory manager traverses the computational
graph and tracks the tensor lifetime through pointer chasing
of tensors attached to each layer.

One crucial issue in the tensor allocation and deallocation
is fragmentation. If we allocate memory addresses for all
tensors from the beginning, severe memory fragmentation
can occur since only some tensors are offloaded to the SSDs,
effectively making holes in the GPU physical memory address
space. To avoid this issue, we allocate memory-resident (i.e.,
not offloaded) tensors from the lowest end of the memory
address space and allocate ephemeral (i.e., offloaded) tensors
from the highest end of the memory address space. Since the
ephemeral data has a very short lifetime during the forward
pass, only a tiny portion of the memory address space is
utilized for such data, and thus the amount of fragmented
memory space becomes negligible.
Managing Offloading and Prefetching. The memory man-
ager interacts with peer-to-peer direct storage access (P2P-
DSA) to perform offloading and prefetching. It initiates an
offloading request of a tensor to P2P-DSA during the forward
pass immediately after its use by the next layer. At the end of
each layer’s execution, the memory manager checks whether
the offloading request is completed (i.e., the tensor is wholly
offloaded to the SSD). Then, the tensor is deallocated from
the GPU memory at this point.

The memory manager issues prefetch requests to the SSD
during the backward pass. At the beginning of the backward
pass, it first allocates memory and initiates prefetch requests
for the set of tensors that are soon to be used. Then, when-
ever those tensors are used and freed, the memory manager
eagerly prefetches additional tensors using the available mem-
ory space while reserving enough memory for execution to
run the largest layer.
Augmented Compressed-Sparse Row (CSR) Compres-
sion and Decompression. When offloading a tensor, the

390 19th USENIX Conference on File and Storage Technologies USENIX Association

memory manager applies CSR compression if the compres-
sion ratio estimated during the profiling iteration is greater
than one. The CSR compression is only applied to output
tensors of ReLU. We observe that ReLU outputs have a high
sparsity, ranging from 43% up to 75% during the training
process. Since a tensor is a multi-dimensional matrix, we cast
the tensor into a two-dimensional matrix whose column has
128 entries. Then, we apply a slightly different CSR format
where we replace a vector storing the column index of each
element (often called JA vector) to a set of bit-vectors where
each bit vector represents a set of nonzero elements for a row.
By doing so, the size of CSR format representation decreases
by 8 bits (to represent the column index) × the number of
nonzero elements in the matrix and increases by 1 bit × the
total number of elements in the matrix. This representation
is beneficial when more than one-eighth of all the elements
are nonzero. Since this is the typical case for input and in-
termediate tensors, we apply this technique to improve the
compression ratio. We implement a specialized routine to
perform this augmented-CSR compression/decompression in
GPU. According to our evaluation, the runtime overhead of
these compression/decompression operations is negligible.
Use of a Half-precision Floating Points (FP16) for Of-
floaded Tensors. To further reduce the traffic between the
GPU and the SSD, the memory manager exploits the fact
that neural network can tolerate a certain level of precision
loss without significantly degrading the final model accuracy.
Specifically, during a forward path, the memory manager first
converts the offloaded tensor to FP16 format (from FP32) and
then stashes them in the SSD. Later, during a backward prop-
agation, the offloaded FP16 tensor is prefetched, padded to
FP32, and reused. Naturally, the use of a lower-precision ten-
sor comes with the potential degradation in the final model ac-
curacy [44, 63]. However, a previous study demonstrates that
the technique of selectively utilizing FP16 for the offloaded
tensors incurs less accuracy degradation than processing all
tensors in FP16 [25]. The key observation is that the FP32
tensor is utilized during forward propagation, and the stashed
FP16 version of the same tensor is only utilized during a
backward propagation (Delayed Precision Reduction in [25]).

3.3 Offloading Scheduler
The offloading scheduler in FlashNeuron takes a DNN

model as input and derives an optimal tensor offloading sched-
ule, which is designed with the following rationale. First,
it should offload enough tensors so that the GPU can cor-
rectly run at the target batch size without triggering an out-of-
memory error. Second, it should avoid excessive data transfers
from the GPU to the SSD (and vice versa), thus minimizing
the increase of the iteration time induced by tensor offloading.

The offloading scheduler finds an optimal schedule for a
given target batch size. It first performs a profiling iteration.
At this iteration, all the tensors that are buffered during the
forward pass (i.e., input and intermediate data for each layer)

(a) Initial state

Transfer timeNon-offloaded

Spillover: 16MB

Offloaded
4MB 4MB 2MB 2MBTensor Size: 4MB2MB6MB

Spillover: 0MB

Spillover: 0MB

Spillover: 0MB

(b) Phase 1 processing

(c) Phase 2 processing

Spillover: 8MB D E F GC

A B D E F GC

E F G

D F G

B D G

Offload A Offload B

Offload A Offload B Offload C Offload D

Offload A Offload B Offload C Offload E

Offload A Offload C Offload E Offload F

Figure 6: Tensor selection walk-through. Darker boxes indi-
cate tensors with a higher compression ratio, whereas lighter
boxes those with lower compression ratio.

are offloaded to the SSD so that the system can run with
a large target batch size without causing an out-of-memory
error. Profiling iteration collects i) the size of each buffered
tensor, ii) the time it takes to offload each buffered tensor,
iii) the expected compression ratio of a tensor using CSR
(Compressed Sparse Row) format and half-precision floating-
point conversion, iv) the execution time for the forward pass
and the backward pass (excluding tensor offloading time),
and v) the total size of the other memory-resident objects
(e.g., weights, temporary workspace). Once this profiling
iteration completes, information collected during this iteration
is passed to the offloading scheduler.
Phase 1: Linear Tensor Selection. The first phase of the
scheduler is to iteratively select a certain number of tensors
from the beginning until the total size of the unselected tensors
plus the total size of the other memory-resident objects (i.e.,
weights and temporary workspace) becomes smaller than
the total GPU memory size. Figure 6 illustrates this process,
where the forward-pass with seven buffered tensors (labeled A
through G) is to run on a hypothetical GPU with 8MB physical
memory. Figure 6(b) shows the example selection process
of Phase 1. At this point, the scheduler checks whether the
total data transfer time, which is computed by summing up
the individual tensor offloading times, is smaller than the
total execution time of all layers in the forward pass. If this
condition is satisfied, the scheduler adopts this schedule and
stops because it can fully overlap tensor offloading with layer
computation via scheduling. If not, the offloading scheduler
enters the second phase.
Phase 2: Compression-aware Tensor Selection. The sec-
ond phase of the scheduler is run only when a satisfactory

USENIX Association 19th USENIX Conference on File and Storage Technologies 391

schedule is not found in the first phase. This indicates that
the current schedule spends too much time offloading the
tensors, and such the transfer time has now become the new
bottleneck. To solve the issue, our scheduler replaces the
already selected tensors with compression-friendly tensors
expected to have high compression ratios with CSR and FP16
conversion illustrated in Figure 6(c). Specifically, the sched-
uler performs the following steps in an iterative way to refine
the existing schedule. First, the scheduler excludes the last
uncompressible tensor selected from Phase 1. It is replaced
with one or more tensors having the highest expected com-
pression ratios among the tensors that are not yet selected,
such that the size of the newly selected tensors exceeds the
excluded tensor size. Then, it recomputes the expected total
data transfer time, assuming that the compressed tensor takes
a fraction (inversely proportional to the compression ratio) of
the original offloading time. If this total transfer time does not
exceed the forward pass’s total execution time, the scheduler
stops. Otherwise, it repeats this process until the condition is
satisfied or there exist no compression-friendly tensors (i.e.,
tensors whose size does not decrease after compression).

If a satisfactory schedule is found, the corresponding batch
size is likely not to increase the iteration time and achieve
higher throughput than the baseline. On the other hand, if our
scheduler stops as it cannot find more compression-friendly
tensors, the generated schedule is expected to incur some
delay from tensor transfers. However, this schedule can still
be used to run DNN training at a larger batch size (but likely
at a lower throughput).

3.4 Peer-to-Peer Direct Storage Access
Peer-to-peer direct storage access (P2P-DSA) enables di-

rect memory access between a GPU and NVMe SSDs without
using the host DRAM buffer to minimize host intervention
during SSD read/write. P2P-DSA builds on GDRCopy [14]
and SPDK [58] to communicate tensors from/to a GPU
to/from NVMe SSDs. GDRCopy is a fast GPU memory
copy library based on NVIDIA GPUDirect [17], a technol-
ogy that exposes the GPU memory to be accessed directly
by other PCIe peripherals. Intel SPDK exposes a block-level
I/O interface directly to the user-space software. P2P-DSA
is a lightweight layer that leverages these two technologies
to enable direct offloading/prefetching tensors from GPUs to
SSDs. To maintain each tensor’s metadata offloaded to SSDs,
P2P-DSA contains a metadata table consisting of a long LBA
value and a boolean value to check the I/O completion.
Example Walk-through of a Transfer Request. Figure 7
illustrates the operations of the transfer request (offload-
ing from the GPU to the SSD) in greater details. When
P2PDSA_issue is called, 1 P2P-DSA get the index, buffer,
and direction(write) information from the transfer request.
Then, 2 the logical block address (LBA) allocator is called
to allocate a set of contiguous blocks on a single SSD device
or multiple SSD devices (when multiple SSDs are utilized

GPU

Metadata Table

NVMe SSD
0 1 2048

Index DoneLBA
0 True0
1 2048
…

…

Set contiguous LBAs

8192
Index 1Index 0

… …

GPU BAR

5 Transfer

2

Index “1” transfer request1

PCIe Bus

Issue
cmd.

4

Update6

3 Create and
push cmd.

Check “Done”7

Max. LBA

P2
P-

D
SA

Queue

cmd.

LBA Allocator

Figure 7: Overall structure of P2P-DSA with an example
walk-through (write).

to boost offloading/prefetching bandwidth). The LBA of the
first block allocated from the LBA allocator is updated at the
metadata table’s appropriate location. After this point, 3
P2P-DSA creates a command for each logical block and then
enqueues it to the command queue. Here, an NVMe com-
mand contains i) the source address (GPU memory address
is translated to PCIe bus address by GPUDirect), and ii) the
device address (computed using the LBA in metadata table).

When P2PDSA_update is called, 4 commands queued
in the software command queue are fetched and issued to
NVMe SSD as long as the NVMe device submission queue
has space. Then, 5 NVMe SSD devices will execute these
requests and perform direct data transfers between SSD de-
vices and the GPU. Sometime later, these transfer requests
will be completed, and their status will be updated in the
NVMe device completion queue. When the P2PDSA_update
is called once again, 6 P2PDSA_update will clear the com-
pletion queues and updates the metadata table by setting cor-
responding done bits. At this point, 7 if the application calls
P2PDSA_is_done for the already offloaded tensor, it will re-
turn true. The reverse-path (prefetching data from the SSD to
the GPU memory) is performed similarly except that i) LBAs
are read from the metadata table instead of being allocated,
and ii) read commands are issued instead of write commands.
In both offloading and prefetching cases, most data accesses
are sequential accesses, which are more advantageous than
random accesses in throughput and endurance.
Implications on SSD lifetime. The endurance of an SSD de-
pends on the program and erase (P/E) cycles for the NAND
blocks. Therefore, for write-intensive workloads, a primary
concern for the flash-based SSDs is the endurance degradation
by wear-out of NAND blocks. We estimate the guaranteed
(minimum) endurance of the SSD when running the P2P-DSA
workload, using drive writes per day (DWPD) (i.e., 3 DWPD

392 19th USENIX Conference on File and Storage Technologies USENIX Association

Table 1: System configurations.
CPU Intel Xeon Gold 6244 CPU 8 cores @ 3.60GHz
GPU NVIDIA Tesla V100 16GB PCIe
Memory Samsung DDR4-2666 64GB (32GB × 2)

Storage Samsung PM1725b 8TB PCIe Gen3 8-lane × 2
(Seq. write: 3.3GB/s, Seq. read: 6.3GB/s)

OS Ubuntu server 18.04.3 LTS
Python Version 3.7.3
PyTorch Version 1.2

for five years of Samsung PM1725b SSD [49], assuming a
50% write-50% read workload like P2P-DSA). If the training
workload is running 24×7, the endurance is estimated to be
about 7,374 hours, which is 307 days (i.e., 3 DWPD× 5 years
× 365 days × 8,000 GB × 2 (50% write) / 3.3 GB/s / 86,400
seconds/day). While a longer lifetime would be desirable,
we note that our estimation is conservative as P2P-DSA only
performs sequential writes to sustain the write amplification
factor (WAF) of (nearly) one to maximize endurance. SSD
manufacturers typically use 4KB random write [49] to report
the endurance number, which has a higher WAF than sequen-
tial writes at least by 3.5× [6, 21]. Furthermore, if P2P-DSA
uses the emerging low-latency SSDs, such as Intel Optane
SSD [45] and Samsung Z-SSD [70], the endurance can be
further improved by a factor of 5× to 10×. Finally, we can
further extend the SSD lifetime by leveraging tradeoffs be-
tween cell retention time and P/E cycles [7,26]. An offloaded
object has a very short lifetime and hence requires a much
lower retention time (i.e., one training iteration time, which is
in order of seconds and minutes at most, rather than years as
required by modern SSDs). This can improve the P/E cycles
by 46× or more [7]. With these optimizations, the expected
SSD lifespan can increase by multiple orders of magnitude.

4 Evaluation

4.1 Methodology
System Configurations. We evaluate FlashNeuron on a Gi-
gabyte R281-3C2 rack server with NVIDIA Tesla V100 and
two Samsung NVMe PM1725b SSDs. The details of hard-
ware and software configurations are summarized in Table 1.
Workloads. Among various DNN models, we choose four
state-of-the-art models and scale them up to represent the
future DNN models with very deep structures: ResNet-
1922 [19] and DenseNet-1001 [22, 74] are state-of-the-art
deep CNN models for image processing. BERT-XLarge [13]
and HBMP [60] are two of the top-performing models for nat-
ural language processing tasks. ResNet-1922 and DenseNet-
1001 [74] are selected based on the deepest network of ResNet
and DenseNet models. The depths of BERT-XLarge and
HBMP are increased by 2× and 4× from the maximum size
stated in the original papers. Note that these naively scaled
models do not necessarily improve accuracy. Our purpose is
to use them as proxies for future DNN models requiring a

Table 2: Suite state-of-the-art DNN models and datasets used,
major layer types and counts.
Network Dataset # of layers Structure

ResNet-1922 [19] ImageNet [12] 1922
(Conv1→BN1→
ReLU→Conv2→
BN2→ReLU)n

DenseNet-1001 [22, 74] ImageNet [12] 1001

(Conv1→BN1→
ReLU)n-1→
Conv2→BN2→
ReLU

BERT-XLarge [13] SQuAD 1.1 [52] 48 blocks

(Embd1→Embd2
→Embd3→FC1
→Attn→FC2
→LNorm)n

HBMP [60] SciTail [31]
24 hidden
layers FCm→LSTMn

much larger capacity for efficient training. The specifics are
summarized in Table 2.

4.2 Performance Evaluation
Overview. Figure 8 shows the training throughput over vary-
ing batch sizes. The baseline uses GPU memory only. Flash-
Neuron (SSD) and FlashNeuron (Memory) offload tensors
to SSD and CPU memory, respectively, with no interference
from CPU processes. Note that FlashNeuron (Memory) rep-
resents a state-of-the-art buffering-on-memory scheme. The
dotted line shows the best throughput that can be achieved
by the baseline. To demonstrate the effectiveness of Flash-
Neuron, we mark with an arrow the maximum batch size
for which the proposed offloading scheduler is able to find
an effective schedule (i.e., a schedule that does not increase
the estimated forward-pass time). The training throughput
indeed peaks at the batch size marked with the arrow. As we
further increase the batch size, the throughput gets degraded
as the cost of tensor offloading outweighs the benefits of the
increased batch size.

FlashNeuron (SSD) improves the training throughput by up
to 37.8% by selecting the optimal batch size and can increase
the batch size by up to 5.0× while achieving at least the same
throughput as the baseline (or higher). In some cases, increas-
ing batch size may give additional benefits to reduce total
training time further. For example, the effectiveness of batch
normalization is known to diminish for small batches, and
increasing the batch size can yield higher accuracy, faster con-
vergence, or both [36]. However, when the batch size is too
large, the limited bandwidth between the GPU and the SSD
becomes the bottleneck and offsets the higher utilization ben-
efits. Some configurations in Figure 8 (e.g., batch size of 8+
in ResNet-1922 and 10+ in DenseNet-1001) represent these
cases. The performance gap between FlashNeuron (SSD)
and FlashNeuron (Memory) is attributed to the difference in
sustainable write throughput. While FlashNeuron (Memory)
can utilize the nearly full PCIe write bandwidth (13.0GB/s),
FlashNeuron (SSD) is limited by the write throughput of
the SSD device (3.0GB/s×2). Thus, FlashNeuron (Memory)

USENIX Association 19th USENIX Conference on File and Storage Technologies 393

0
5

10
15
20

12 20 28 36 44 52 60 68
0

2

4

6

1 2 3 4 5
0
1
2
3
4
5

2 4 6 8 10 12
0
2
4
6
8

2 3 4 5 6 7 8 9 10

(b) DenseNet-1001(a) ResNet-1922 (c) BERT-XLarge

Im
ag

es
 /

se
c

Im
ag

es
 /

se
c

Baseline FlashNeuron (SSD) FlashNeuron (Mem)

Se
qu

en
ce

s
/ s

ec

(d) HBMP
Batch sizeBatch size Batch size Batch size

Se
qu

en
ce

s
/ s

ec

P2P P2P+CSR P2P+FP16

Figure 8: Throughput of FlashNeuron with varying batch sizes (P2P: Baseline with P2P, P2P+CSR: With P2P and CSR
compression, P2P+FP16: With P2P and FP16 conversion). The arrow shows the maximum throughput of FlashNeuron (SSD).

(b) DenseNet-1001(a) ResNet-1922 (c) BERT-XLarge (d) HBMP

Baseline FlashNeuron (SSD) FlashNeuron (Memory)

N
or

m
. t

hr
ou

gh
pu

t

0
0.5

1
1.5

2
2.5

Conv BN Misc
0

0.5
1

1.5
2

Conv BN Misc
0

0.5
1

1.5
2

2.5

MM
BMM Misc

0
0.5

1
1.5

2

LSTM

N
or

m
. t

hr
ou

gh
pu

t

N
or

m
. t

hr
ou

gh
pu

t

N
or

m
. t

hr
ou

gh
pu

t

Conv

backward BN

backward Conv

backward BN

backward MM

backward BMM

backward RNN

backward

Figure 9: Normalized per-layer throughput of key layers across training scenarios (Conv: Convolution, BN: BatchNorm, MM:
Matrix Multiplication, BMM: Batched Matrix Multiplication).

achieves up to 49.1% throughput gain (with an average of
43.9%) over the baseline. This performance gap can be closed
by FlashNeuron (SSD) employing additional SSDs to saturate
the PCIe channel bandwidth.
Source of Performance Improvement. Overall, FlashNeu-
ron benefits from its two optimizations: CSR and offloading
tensors using FP16 representation. Figure 8 shows the im-
provements from each optimization. Here, P2P represents the
configuration where tensors are offloaded using P2P-DSA,
but without any other optimization (e.g., CSR compression or
FP16). This configuration enables the use of a larger batch
size beyond the GPU memory capacity limit. However, the
limited bandwidth between the GPU and the SSD limits the
performance. P2P with CSR compression (P2P+CSR) im-
proves the baseline performance by 7.14%. Note that the
tensor compression does not improve the performances of
BERT-XLarge and HBMP because those models do not uti-
lize a ReLU layer. P2P with FP16 conversion (P2P+FP16)
improves the performance by 21.41% over the baseline. The
improvement is greater than that of P2P+CSR because the
use of the FP16 format cuts the traffic by half, while the CSR
compression is only applied for a limited set of tensors (e.g.,
output tensors of ReLU).

Figure 9 shows the per-layer throughput of FlashNeuron at
the optimal batch size normalized to the baseline using GPU
memory only. By employing a larger batch size, FlashNeu-
ron substantially increases the throughput for the key layers.
Batch normalization (BN) and LSTM layers benefit the most

Table 3: Batch sizes achieving maximum throughput and the
maximum batch size FlashNeuron can run.

Network Baseline Maximum Runnable
throughput maximum

Batch Batch Ratio Batch Ratio
ResNet-1922 4 7 1.75× 56 14.0×

DenseNet-1001 4 8 2.00× 52 13.0×
BERT-XLarge 1 3 3.00× 14 14.0×

HBMP 20 36 1.80× 248 12.4×

from the increase in batch size, whereas convolution (Conv)
layers demonstrate relatively modest improvements. It is be-
cause the Conv layer is known to be compute-intensive and
already has a high resource utilization even for the baseline.

Since the bandwidth of the PCIe channel and SSD writes is
the limiting factor for performance, future scaling of both
PCIe and SSD write bandwidth will further improve the
throughput. For example, PCIe 5.0 interconnects [48] will
provide 4× higher bandwidth than PCIe 3.0 used in this work,
enabling FlashNeuron (SSD) to utilize 4× larger batch size.
Figure 3 demonstrates that there is still substantial room for
further throughput improvement, and higher bandwidth inter-
connects in the future will close this performance gap.
Maximum Batch Size. Table 3 shows the largest batch size
for different configurations. The first column ("Baseline")
is the maximum batch size using GPU memory only (i.e.,
without using FlashNeuron). The second column ("Maximum
throughput") shows the batch size for which FlashNeuron
(SSD) yields the highest throughput, which is marked by

394 19th USENIX Conference on File and Storage Technologies USENIX Association

0
10
20
30
40
50

16 32 48 64 80 96 112128
0
2
4
6
8

10

1 2 3 4 5 6
0

4

8

12

2 4 6 8 10 12 14 16
0

5

10

15

2 6 10 14 18 22 26

(b) DenseNet-1001(a) ResNet-1922 (c) BERT-XLarge

Im
ag

es
 /

se
c

Im
ag

es
 /

se
c

Baseline FlashNeuron (SSD) FlashNeuron (Mem)

Se
qu

en
ce

s
/ s

ec

(d) HBMP
Batch sizeBatch size Batch size Batch size

Se
qu

en
ce

s
/ s

ec

Figure 10: Throughput of FlashNeuron with half-precision. The arrow shows maximum throughput of FlashNeuron (SSD).

0.E+00

5.E+09

1.E+10

0 1000 2000 3000
0.E+00

1.E+09

2.E+09

3.E+09

0 200 400 600 800

0.E+00

5.E+08

1.E+09

2.E+09

0 1000 2000
0.E+00

5.E+08

1.E+09

2.E+09

0 400 800 1200

ResNet-1922 DenseNet-1001

Lo
gi

ca
l b

lo
ck

 a
dd

re
ss

 (L
BA

)

BERT-XLarge

Time (ms)

HBMP

F B F B

Write Read

F B F B

0.5 x 106

1 x 106

1.5 x 106

0 0

0 0
1 x 106

2 x 106

3 x 106

1 x 106

2 x 106

1 x 106

2 x 106

3 x 106

0

Figure 11: LBA access pattern during a single iteration (F:
Forward propagation, B: Backward propagation).

an arrow in Figure 8. Finally, the third column ("Runnable
maximum") shows the maximum batch size that FlashNeuron
can run to completion. On average, FlashNeuron uses 2.09×
larger batch size to maximize the training throughput and
increases the maximum runnable batch size by a factor of
13.4×. When FlashNeuron is operating with the runnable
maximum batch size, FlashNeuron offloads 59.2GB of tensors
on average (up to 68.6GB for DenseNet-1001) and occupies
33.2GB (up to 48.9GB for HBMP) storage space.
Half-precision Training. Based on the observation that many
neural network models can still maintain the competitive ac-
curacy using FP16 representations, FP16 training is gaining
popularity. For example, the high-end NVIDIA GPUs come
with Tensor Cores, which are specialized functional units
for FP16 computations. Unfortunately, when the tensor is
already represented in FP16, FlashNeuron does not benefit
from converting the offloaded tensors to FP16. However,
our experiments still demonstrate that FlashNeuron can re-
sult in extra speedup as well as an increase in the per-GPU
batch size. Figure 10 shows the throughput of FlashNeu-
ron over varying batch sizes when FP16 values are used for
both weights and activations. FlashNeuron (SSD) enables the
use of a 1.8× larger batch size while preserving the training
throughput compared to the baseline. By employing larger
batch sizes, FlashNeuron (SSD) and FlashNeuron (Memory)
achieve 8.04% and 22.98% throughput improvement over the

baseline, respectively. This FP16 training requires less mem-
ory/storage capacity per batch and thus enables even larger
batch sizes. The speedup from FlashNeuron is smaller in
this scenario than full-precision as the overall iteration time
becomes shorter, thus having a much narrower window for
tensor offloading.
I/O Pattern. Ensuring the sequential read/write by P2P-DSA
is important for both performance and endurance. Figure 11
shows the SSD’s logical block address (LBA) access pattern
during a single iteration. During a forward propagation, of-
floaded tensors are allocated sequentially in the LBA space
(on the left side of the figure’s dotted line). In a backward
propagation, the most recently written tensors are read first,
and the least recently written tensors are read last, as shown
on the right side of the dotted line. Each offloaded/prefetched
tensor’s size ranges from 2MB to 310MB, and it is sufficiently
large to saturate the SSD’s read/write bandwidth thoroughly.
Cost Efficiency. As of September 2020, DDR4 DRAM on
the host CPU costs about $3.6/GB on average and NAND
flash SSD about $0.102/GB [29, 43, 56]. Assuming the same
capacity, FlashNeuron (SSD) achieves 35.3× higher cost-
efficiency. HBM2 DRAM has much higher $/GB than DDR4,
and thus scaling its capacity will be much more costly.

4.3 Case Studies
Our premise is that the common practice of leaving CPU

(mostly) idle while running DNN training on GPU is subop-
timal. Thus, we envision co-locating CPU jobs with DNN
training to improve resource utilization substantially. To not
degrade DNN training throughput running at large batch size,
it is crucial to provide performance isolation between the co-
located CPU and GPU processes. FlashNeuron is a unified
framework that flexibly supports both SSD and memory of-
floading to minimize resource contention for a wide range of
co-located CPU workloads. Superior performance isolation
of FlashNeuron can enable consolidation of CPU applications
and DNN training jobs. The two case studies in this section
are presented not to claim that they are common use cases
today, but to demonstrate that even memory-intensive CPU
workloads can be effectively co-located with DNN training
using FlashNeuron (SSD). For I/O-intensive workloads, one
can opt to use FlashNeuron (Memory) to avoid I/O contention.

USENIX Association 19th USENIX Conference on File and Storage Technologies 395

0
0.5

1
1.5

50% 70% 90% 50% 70% 90% 50% 70% 90% 50% 70% 90%

ResNet-1922 DenseNet-1001 BERT-XLarge HBMPN
or

m
. t

hr
ou

gh
pu

t

FlashNeuron (Memory)FlashNeuron (SSD)

Figure 12: Normalized throughput of FlashNeuron (SSD)
and FlashNeuron (Memory) when the host CPU is running a
memory-intensive image transformation workload [23].

No offloading FlashNeuron (SSD) FlashNeuron (Mem)

4 thds 6 thds 8 thds 10 thds 12 thds

0
2
4
6
8

In
c.

 e
xe

c.
 ti

m
e

(%
)

Im
ag

es
 /

se
c

Throughput

0%
10%
20%
30%
40%

Figure 13: Increase in execution time of data augmentation
tasks processing 256 2K (2048×1080) resolution images on
CPU and training throughput of ResNet-1922 on GPU.

4.3.1 Co-locating Bandwidth-Intensive Tasks on CPU

The first use case is data augmentation tasks [5, 41, 57, 61]
running on CPU while executing DNN training on GPU. Em-
ploying a data augmentation for DNN training is a common
practice to prevent the model from overfitting to the data set,
hence providing more robustness. Our example data aug-
mentation transforms 2K (2048×1080) resolution images
with a sequence of geometric operators such as rotation and
transposition, as well as re-coloring operators such as color
conversion. These operators are commonly used in data aug-
mentation [10,34,37]. Note that the actual DNN model works
with smaller images, but the data augmentation often works
with the original image, and then the augmented image is
resized to the model’s input image size (e.g., 224×224).
Throughput of DNN Training on GPU. Buffering-on-
memory can potentially achieve higher throughput than
buffering-on-SSD for the higher write bandwidth of the CPU
DRAM than the SSDs. However, the DNN training through-
put with buffering-on-memory can be heavily affected by
CPU processes’ characteristics due to the memory bandwidth
contention between CPU and GPU processes. Figure 12
shows the impact of CPU workload on the DNN training
throughput on GPU for both FlashNeuron (SSD) and Flash-
Neuron (Memory). By controlling the number of data aug-
mentation threads, we make the CPU process consume a
certain portion of the CPU memory bandwidth. In particular,
we use three configurations according to the portion of the
CPU DRAM bandwidth consumed by the data augmentation
task: 50% (21GB/s), 70% (29GB/s), 90% (36GB/s).

When the CPU consumes 50% of the available memory
bandwidth, the training throughput is still at least 35% higher

Latency (seconds)

C
D

F

0
0.2
0.4
0.6
0.8

1

0.7 0.75 0.8 0.85 0.9 0.95 1

Serving only Baseline
FlashNeuron (SSD) FlashNeuron (Memory)

No offloading

Figure 14: Query latency CDF of CPU inference across the
various training scenario.

than the baseline for both FlashNeuron (SSD) and FlashNeu-
ron (Memory). However, when the CPU workload is more
memory bandwidth-intensive (75%), FlashNeuron (Memory)
yields only 14.0% throughput gains. This performance loss
becomes even worse when the CPU workload utilizes nearly
all of the available memory bandwidth (90%), where the train-
ing throughput degrades by 40.2% on average compared to
baseline. On the other hand, FlashNeuron (SSD) still achieves
22.6% and 20.2% throughput gains over the baseline even
if the CPU consumes 75% and 90% of the available mem-
ory bandwidth, respectively. Even in the worst case, the
throughput loss of FlashNeuron (SSD) falls just within 8% of
standalone execution, whereas that of FlashNeuron (Memory)
can be as high as 67.8% (i.e., having lower than one-third of
the original training throughput).
Execution Time of Data Augmentation Task on CPU. Fig-
ure 13 shows both the increase in execution time of the data
augmentation task on CPU (bar graph) and DNN training
throughput of ResNet-1922 using FlashNeuron on GPU (line
graph). All bars are normalized to the baseline, which is stan-
dalone execution of the data augmentation pipeline with no
co-located GPU processes. No offloading represents the case
when GPU is running DNN training with no tensor offloading
to either host memory or SSDs. FlashNeuron (SSD) only
utilizes a minimal amount of the host memory bandwidth
(mostly for PyTorch application code) to incur a compara-
ble degree of the slowdown with No offloading. In contrast,
FlashNeuron (Memory) consumes a large amount of the host
CPU memory bandwidth (roughly equal to the maximum
bandwidth of a 16-lane PCIe interface) to incur a substantial
performance slowdown. The figures show that this memory
bandwidth contention can break performance isolation be-
tween the CPU and GPU processes to make it much more
challenging to deploy them in a consolidated environment.

4.3.2 Co-locating Latency-Critical Tasks on CPU

For the second case study, we select a DNN inference task,
which is latency-critical; according to Facebook, inference
tasks are mostly running on CPUs while requiring a large
memory space for users and contents data [18]. We run a
BERT-as-service [64] on CPU, which takes user-provided

396 19th USENIX Conference on File and Storage Technologies USENIX Association

Table 4: 50%, 95%, and 99% percentile of query latency and
delay time ratio compared to Serving only.

No offloading FlashNeuron
(Memory)

FlashNeuron
(SSD)

Latency Latency Delay Latency Delay
50% 0.736s 0.933s 30.3% 0.746s 4.11%
95% 0.740s 0.944s 30.7% 0.754s 4.35%
99% 0.743s 0.950s 30.9% 0.758s 4.45%

sentences as input and invokes BERT to return their embed-
ding, while concurrently running a BERT training on GPU.

Figure 14 shows the cumulative distribution function (CDF)
of the CPU inference. Serving only is a case when there is
no process running on GPU, whereas No offloading is when
BERT is training but using GPU memory only. As shown
in this figure and Table 4, FlashNeuron (SSD) incurs less
than 5% and 2% slowdown compared to Serving only and No
offloading. In contrast, over 30% latency increase is observed
for FlashNeuron (Memory) compared to Serving only due
to memory bandwidth contention. As for training through-
put, FlashNeuron (SSD) experiences only a 1.8% slowdown,
whereas FlashNeuron (Memory) as much as 27.5%. This
slowdown is not sensitive to the model or dataset and is largely
attributed to the bandwidth consumption to offload tensors.

5 Related Work

Augmented GPU Memory for DNN Training. Many
proposals build on NVIDIA Unified Virtual Memory
(UVM) [42], which enables transparent data sharing over both
GPU and CPU memory. However, its performance is often
limited due to its excessive page fault handling overhead [39].
To address this problem, several specialized schemes that do
not rely on demand-fetching have been proposed to acceler-
ate DNN training [8, 9, 24, 55, 62]. Similar to vDNN [55],
moDNN [9] offloads and prefetches tensors in convolution
layers in addition to accumulating gradients.

Alternatively, Chen et al. [8] propose to mark the outputs of
convolution layers and free unmarked tensors. The freed data
is recomputed during a backward pass. Merging the two ideas,
SuperNeurons [62] offloads the marked tensors to host mem-
ory and saves device memory space. Ooc_cuDNN [24] di-
vides the data in a single layer and performs for a piece of data
at a time. The unused data is prefetched from the host memory
concurrently with computation. Such mechanisms, however,
experience substantial performance degradation when the
host CPU is running memory-intensive workloads. To com-
plement this, FlashNeuron offloads tensors directly to SSDs,
and thus do not suffer performance degradation even under
the presence of memory-intensive processes on the CPU.
Data Transfer Methods between GPU and Storage De-
vices. Several proposals introduce effective data transfer meth-
ods between GPU and storage devices [4,39,71]. Dragon [39]
leverages the page-faulting mechanism of CPU and read-

ahead operation of OS. Upon page fault, page cache in host
memory is used as a bridge between GPU memory and NVM
storage. SPIN [4] and NVMMU [71] take a step further, re-
moving the usage of the host side buffer, thus allowing direct
access from GPU to SSD. However, they are more general-
purpose solutions, which perform sub-optimally for DNN
training as they do not sequentially read/write.
Reducing Memory Footprint of DNN Models. Another
way to relieve the capacity limitations of GPU memory is
to optimize the DNN model without compromising the ac-
curacy [25, 35, 72]. Echo [72] reduces the memory footprint
by stashing small input values of the attention layers and
recomputing the feature maps during the backward passes.
Gist [25] applies various footprint reduction techniques by
compressing feature maps, especially for ReLU-convolution
and ReLU-pooling layers, as well as lower-precision represen-
tations (FP8/10/16). Likewise, FlashNeuron exploits sparse
matrix representations such as CSR and FP16 representation
on offloaded tensors to reduce the traffic to SSD devices.

6 Conclusion
With a relentless pursuit of higher accuracy, DNNs are contin-
uously getting deeper and wider. One significant constraint
in scaling trainable DNNs is the limited capacity of the GPU
memory. This problem is exacerbated by emerging DNN
applications required to handle large inputs. There have been
previous attempts to overcome this GPU memory capacity
wall through the use of host memory as a buffer for intermedi-
ate data generated during the forward pass of DNN training for
reuse during the backward pass. However, these approaches
experience substantial performance degradation as the host
CPU contends for the limited host memory bandwidth. Thus,
we propose FlashNeuron, the first buffering-on-SSD approach
to offload intermediate data to high-performance NVMe SSDs
instead of the host DRAM. FlashNeuron enables large-batch
training of very deep and wide neural networks of today and
the future to achieve high training throughput. Furthermore, it
flexibly supports both SSD and memory offloading to provide
excellent performance isolation between GPU training jobs
and a wide range of co-located CPU workloads, including
memory- and I/O-intensive ones.

Acknowledgments
We extend our thanks to Randal Burns for shepherding this
paper. We also thank Jin-Soo Kim and Jaehoon Sim for
valuable discussions and their help with P2P-DSA in an early
phase of this work. This work was supported by the National
Research Foundation of Korea (NRF) grant funded by the
Korea Government (MSIT) (NRF-2020R1A2C3010663) and
Samsung Electronics. The source code is available at https:
//github.com/SNU-ARC/flashneuron.git. Jae W. Lee is
the corresponding author.

USENIX Association 19th USENIX Conference on File and Storage Technologies 397

https://github.com/SNU-ARC/flashneuron.git
https://github.com/SNU-ARC/flashneuron.git

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation, pages 265–283. USENIX Association,
2016.

[2] Dario Amodei, Sundaram Ananthanarayanan, Rishita
Anubhai, Jingliang Bai, Eric Battenberg, Carl Case,
Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang
Chen, Jie Chen, Jingdong Chen, Zhijie Chen, Mike
Chrzanowski, Adam Coates, Greg Diamos, Ke Ding,
Niandong Du, Erich Elsen, Jesse Engel, Weiwei Fang,
Linxi Fan, Christopher Fougner, Liang Gao, Caixia
Gong, Awni Hannun, Tony Han, Lappi Vaino Johannes,
Bing Jiang, Cai Ju, Billy Jun, Patrick LeGresley, Libby
Lin, Junjie Liu, Yang Liu, Weigao Li, Xiangang Li,
Dongpeng Ma, Sharan Narang, Andrew Ng, Sher-
jil Ozair, Yiping Peng, Ryan Prenger, Sheng Qian,
Zongfeng Quan, Jonathan Raiman, Vinay Rao, Sanjeev
Satheesh, David Seetapun, Shubho Sengupta, Kavya
Srinet, Anuroop Sriram, Haiyuan Tang, Liliang Tang,
Chong Wang, Jidong Wang, Kaifu Wang, Yi Wang,
Zhijian Wang, Zhiqian Wang, Shuang Wu, Likai Wei,
Bo Xiao, Wen Xie, Yan Xie, Dani Yogatama, Bin Yuan,
Jun Zhan, and Zhenyao Zhu. Deep speech 2: End-to-
end speech recognition in english and mandarin. In
Proceedings of the 33rd International Conference on
Machine Learning, pages 173–182. PMLR, 2016.

[3] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel
and distributed deep learning: An in-depth concurrency
analysis. ACM Computing Surveys, 52(4), 2019.

[4] Shai Bergman, Tanya Brokhman, Tzachi Cohen, and
Mark Silberstein. SPIN: Seamless operating system
integration of peer-to-peer DMA between SSDs and
GPUs. In Proceedings of the 2017 USENIX Annual
Technical Conference, pages 167–179. USENIX Asso-
ciation, 2017.

[5] Alexander Buslaev, Vladimir I. Iglovikov, Eugene
Khvedchenya, Alex Parinov, Mikhail Druzhinin, and
Alexandr A. Kalinin. Albumentations: Fast and flexible
image augmentations. Information, 11(2), 2020.

[6] Zydan Bybin, Mohammed Khandaker, Monika Sane,
and Graham Hill. Over-provisioning NAND-based intel
SSDs for better endurance. Intel White Paper, 2019.

[7] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich Haratsch,
Adrian Cristal, Osman Unsal, and Ken Mai. Flash
correct-and-refresh: Retention-aware error management
for increased flash memory lifetime. In Proceedings of
the 2012 IEEE 30th International Conference on Com-
puter Design, pages 94–101. IEEE, 2012.

[8] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. Training deep nets with sublinear memory
cost. arXiv preprint arXiv:1604.06174v2, 2016.

[9] Xiaoming Chen, Danny Chen, and Xiaobo S. Hu.
moDNN: Memory optimal DNN training on GPUs. In
Proceedings of the 2018 Design, Automation Test in
Europe Conference Exhibition, pages 13–18, 2018.

[10] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and
Quoc V. Le. Randaugment: Practical automated data
augmentation with a reduced search space. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, June 2020.

[11] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime
Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a
fixed-length context. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguis-
tics, pages 2978–2988. Association for Computational
Linguistics, 2019.

[12] Jia Deng, Wei Dong, Richard Socher, Li jia Li, Kai Li,
and Li Fei-fei. ImageNet: A large-scale hierarchical
image database. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. IEEE,
2009.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[14] NVIDIA GDRCopy: A low-latency GPU memory copy
library based on GPUDirect RDMA. https://github.
com/NVIDIA/gdrcopy.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. The MIT Press, 2016.

[16] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tul-
loch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch SGD: Training ImageNet in 1 hour. arXiv
preprint arXiv:1706.02677v2, 2018.

[17] NVIDIA GPUDirect. https://developer.nvidia.
com/gpudirect.

398 19th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/NVIDIA/gdrcopy
https://github.com/NVIDIA/gdrcopy
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect

[18] Kim Hazelwood, Sarah Bird, David Brooks, Soumith
Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed
Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law,
Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyan-
skiy, Liang Xiong, and Xiaodong Wang. Applied ma-
chine learning at Facebook: A datacenter infrastructure
perspective. In Proceedings of the 2018 IEEE Inter-
national Symposium on High Performance Computer
Architecture, pages 620–629. IEEE, 2018.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778. IEEE,
2016.

[20] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train
longer, generalize better: Closing the generalization gap
in large batch training of neural networks. In Proceed-
ings of the Advances in Neural Information Processing
Systems 30, pages 1731–1741. Curran Associates, Inc.,
2017.

[21] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias
Iliadis, and Roman Pletka. Write amplification analysis
in flash-based solid state drives. In Proceedings of the
International Systems and Storage Conference, pages
10:1–10:9. ACM, 2009.

[22] Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Weinberger. Densely connected convolutional
networks. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition, pages
2261–2269. IEEE, 2017.

[23] Yermalayeu Ihar, Antonenka Mikhail, Radchenko An-
drey, Dmitry Fedorov, Kirill Matsaberydze, Artur
Voronkov, and Facundo Galan. SIMD library. http:
//ermig1979.github.io/Simd/.

[24] Yuki Ito, Ryo Matsumiya, and Toshio Endo.
ooc_cuDNN: Accommodating convolutional neural net-
works over GPU memory capacity. In Proceedings of
the 2017 IEEE International Conference on Big Data,
pages 183–192. IEEE, 2017.

[25] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia
Tang, and Gennady Pekhimenko. Gist: Efficient data
encoding for deep neural network training. In Proceed-
ings of the 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture, pages 776–789,
2018.

[26] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee,
and Jihong Kim. Lifetime improvement of NAND
flash-based storage systems using dynamic program and
erase scaling. In Proceedings of the 12th USENIX

Conference on File and Storage Technologies, pages
61–74. USENIX Association, 2014.

[27] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond
data and model parallelism for deep neural networks. In
A. Talwalkar, V. Smith, and M. Zaharia, editors, Pro-
ceedings of Machine Learning and Systems, volume 1,
pages 1–13, 2019.

[28] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture
for accelerating distributed DNN training in heteroge-
neous GPU/CPU clusters. In Proceedings of the 14th
USENIX Symposium on Operating Systems Design and
Implementation, pages 463–479. USENIX Association,
November 2020.

[29] McCallum John C. Price and performance changes of
computer technology with time. http://www.jcmit.
net/.

[30] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge No-
cedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
On large-batch training for deep learning: Generaliza-
tion gap and sharp minima. In Proceedings of the 5th
International Conference on Learning Representations,
2017.

[31] Tushar Khot, Ashish Sabharwal, and Peter Clark. Sci-
TaiL: A textual entailment dataset from science question
answering. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, pages 5189–5197,
2018.

[32] Abhishek Vijaya Kumar and Muthian Sivathanu.
Quiver: An informed storage cache for deep learning.
In Proceedings of the 18th USENIX Conference on File
and Storage Technologies, pages 283–296. USENIX
Association, February 2020.

[33] Youngeun Kwon and Minsoo Rhu. Beyond the mem-
ory wall: A case for memory-centric HPC system for
deep learning. In Proceedings of the 2018 51st Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 148–161. IEEE, 2018.

[34] Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy
Hospedales, Neil M. Robertson, and Yongxin Yang.
DADA: Differentiable automatic data augmentation.
arXiv preprint arXiv:2003.03780, 2020.

[35] Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt
Keutzer, Dan Klein, and Joseph E Gonzalez. Train
large, then compress: Rethinking model size for efficient
training and inference of transformers. arXiv preprint
arXiv:2002.11794, 2020.

USENIX Association 19th USENIX Conference on File and Storage Technologies 399

http://ermig1979.github.io/Simd/
http://ermig1979.github.io/Simd/
http://www.jcmit.net/
http://www.jcmit.net/

[36] Xiangru Lian and Ji Liu. Revisit batch normalization:
New understanding and refinement via composition opti-
mization. In Proceedings of the 22nd International Con-
ference on Artificial Intelligence and Statistics, pages
3254–3263, 2019.

[37] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim,
and Sungwoong Kim. Fast autoaugment. In Proceed-
ings of the Advances in Neural Information Processing
Systems 32, pages 6665–6675. Curran Associates, Inc.,
2019.

[38] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,
Kaiming He, Manohar Paluri, Yixuan Li, Ashwin
Bharambe, and Laurens van der Maaten. Exploring the
limits of weakly supervised pretraining. arXiv preprint
arXiv:1805.00932, 2018.

[39] Pak Markthub, Mehmet E. Belviranli, Seyong Lee, Jef-
frey S. Vetter, and Satoshi Matsuoka. DRAGON: Break-
ing GPU memory capacity limits with direct NVM ac-
cess. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage,
and Analysis, pages 32:1–32:13. IEEE, 2018.

[40] Sam McCandlish, Jared Kaplan, Dario Amodei, and
OpenAI Dota Team. An empirical model of large-batch
training. arXiv preprint arXiv:1812.06162, 2018.

[41] Jayashree Mohan, Amar Phanishayee, Ashish Rani-
wala, and Vijay Chidambaram. Analyzing and mit-
igating data stalls in DNN training. arXiv preprint
arXiv:2007.06775, 2020.

[42] Dan Negrut, Radu Serban, Ang Li, and Andrew Seidl.
Unified memory in CUDA 6.0: a brief overview of
related data access and transfer issues. Tech. Rep. TR-
2014–09, University of Wisconsin-Madison, 2014.

[43] Newegg.com. https://www.newegg.com/.

[44] NVIDIA. Training with mixed precision. https:
//docs.nvidia.com/deeplearning/sdk/mixed-
precision-training/index.html.

[45] Intel Optane SSD 905P series. https://www.
intel.com/content/www/us/en/products/memory-
storage/solid-state-drives/consumer-
ssds/optane-ssd-9-series/optane-ssd-905p-
series.html.

[46] Yongjin Park and Manolis Kellis. Deep learning for
regulatory genomics. Nature Biotechnology, 33(8):825,
2015.

[47] David A. Patterson. Lecture 20: Domain-specific
architectures and the google TPU, UC Berkeley CS152
Computer Architecture and Engineering. http://www-
inst.eecs.berkeley.edu/~cs152/sp19, 2019.

[48] PCI-SIG. PCI-SIG® member companies announce
support for the PCI express® 5.0 specification. https:
//pcisig.com.

[49] Samsung PM1725b NVMe SSD. http://image-
us.samsung.com/SamsungUS/PIM/Samsung_1725b_

Product.pdf.

[50] PyTorch. https://pytorch.org.

[51] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. OpenAI Blog, 2019.

[52] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250v3, 2016.

[53] Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V. Le. Regularized evolution for image classifier
architecture search. In Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence, volume 33,
page 4780–4789. Association for the Advancement of
Artificial Intelligence, 2019.

[54] Jerome Revaud, Minhyeok Heo, Rafael S. Rezende,
Chanmi You, and Seong-Gyun Jeong. Did it change?
Learning to detect point-of-interest changes for proac-
tive map updates. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 4081–4090. IEEE, 2019.

[55] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Ar-
slan Zulfiqar, and Stephen W. Keckler. vDNN: Vir-
tualized deep neural networks for scalable, memory-
efficient neural network design. In Proceedings of the
49th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 18:1–18:13. IEEE, 2016.

[56] Samsung Semiconductor. http://www.samsung.com/
semiconductor/.

[57] Connor Shorten and Taghi M Khoshgoftaar. A survey
on image data augmentation for deep learning. Journal
of Big Data, 6(1):60, 2019.

[58] Intel storage performance development kit. http://
www.spdk.io/.

[59] Peng Sun, Yonggang Wen, Ruobing Han, Wansen Feng,
and Shengen Yan. GradientFlow: Optimizing network
performance for large-scale distributed DNN training.
IEEE Transactions on Big Data, pages 1–1, 2019.

[60] Aarne Talman, Anssi Yli-Jyrä, and Jörg Tiedemann.
Sentence embeddings in NLI with iterative refine-
ment encoders. Natural Language Engineering,
25(4):467–482, 2019.

400 19th USENIX Conference on File and Storage Technologies USENIX Association

https://www.newegg.com/
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-905p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-905p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-905p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-905p-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series/optane-ssd-905p-series.html
http://www-inst.eecs.berkeley.edu/~cs152/sp19
http://www-inst.eecs.berkeley.edu/~cs152/sp19
https://pcisig.com
https://pcisig.com
http://image-us.samsung.com/SamsungUS/PIM/Samsung_1725b_Product.pdf
http://image-us.samsung.com/SamsungUS/PIM/Samsung_1725b_Product.pdf
http://image-us.samsung.com/SamsungUS/PIM/Samsung_1725b_Product.pdf
https://pytorch.org
http://www.samsung.com/semiconductor/
http://www.samsung.com/semiconductor/
http://www.spdk.io/
http://www.spdk.io/

[61] TensorFlow. Data augmentation. https:
//www.tensorflow.org/tutorials/images/data_

augmentation.

[62] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang
Li, Shuaiwen Leon Song, Zenglin Xu, and Tim Kraska.
SuperNeurons: Dynamic GPU memory management
for training deep neural networks. In Proceedings of
the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 41–53. ACM,
2018.

[63] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu
Chen, and Kailash Gopalakrishnan. Training deep neu-
ral networks with 8-bit floating point numbers. In Pro-
ceedings of the 32nd International Conference on Neu-
ral Information Processing Systems, page 7686–7695.
Curran Associates Inc., 2018.

[64] Han Xiao. Bert-as-service. https://github.com/
hanxiao/bert-as-service, 2018.

[65] Xiaowei Xu, Yukun Ding, Sharon Xiaobo Hu, Michael
Niemier, Jason Cong, Yu Hu, and Yiyu Shi. Scaling
for edge inference of deep neural networks. Nature
Electronics, 1(4):216–222, 2018.

[66] Chih-Chieh Yang and Guojing Cong. Accelerating data
loading in deep neural network training. In Proceedings
of the 2019 IEEE 26th International Conference on High
Performance Computing, Data, and Analytics, pages
235–245. IEEE Press, 2019.

[67] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. XLNet:
Generalized autoregressive pretraining for language un-
derstanding. arXiv preprint arXiv:1906.08237v2, 2020.

[68] Yang You, Jonathan Hseu, Chris Ying, James Demmel,
Kurt Keutzer, and Cho-Jui Hsieh. Large-batch training
for LSTM and beyond. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis. ACM, 2019.

[69] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel,
and Kurt Keutzer. ImageNet training in minutes. In
Proceedings of the 47th International Conference on
Parallel Processing. ACM, 2018.

[70] Samsung Z-SSD SZ985. https://www.samsung.com/
semiconductor/global.semi.static/Brochure_

Samsung_S-ZZD_SZ985_1804.pdf.

[71] Jie Zhang, David Donofrio, John Shalf, Mahmut T. Kan-
demir, and Myoungsoo Jung. NVMMU: A non-volatile
memory management unit for heterogeneous GPU-SSD
architectures. In Proceedings of the 2015 International
Conference on Parallel Architecture and Compilation
Techniques, pages 13–24. IEEE, 2015.

[72] Bojian Zheng, Abhishek Tiwari, Nandita Vijaykumar,
and Gennady Pekhimenko. Echo: Compiler-based GPU
memory footprint reduction for LSTM RNN training.
arXiv preprint arXiv:1805.08899v5, 2019.

[73] Jingbo Zhou, Qi Guo, H. V. Jagadish, Lubos Krcal,
Siyuan Liu, Wenhao Luan, Anthony Tung, Yueji Yang,
and Yuxin Zheng. A generic inverted index framework
for similarity search on the GPU. In Proceedings of
the 2018 IEEE 34th International Conference on Data
Engineering, pages 893–904. IEEE, 2018.

[74] Ligeng Zhu, Ruizhi Deng, Michael Maire, Zhiwei Deng,
Greg Mori, and Ping Tan. Sparsely aggregated convo-
lutional networks. In Proceedings of the European
Conference on Computer Vision, pages 186–201, 2018.

USENIX Association 19th USENIX Conference on File and Storage Technologies 401

https://www.tensorflow.org/tutorials/images/data_augmentation
https://www.tensorflow.org/tutorials/images/data_augmentation
https://www.tensorflow.org/tutorials/images/data_augmentation
https://github.com/hanxiao/bert-as-service
https://github.com/hanxiao/bert-as-service
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf
https://www.samsung.com/semiconductor/global.semi.static/Brochure_Samsung_S-ZZD_SZ985_1804.pdf

	Introduction
	Background and Motivation
	DNN Training
	Memory Capacity Wall in DNN Training
	Overcoming GPU Memory Capacity Wall

	FlashNeuron Design
	Overview
	Memory Manager
	Offloading Scheduler
	Peer-to-Peer Direct Storage Access

	Evaluation
	Methodology
	Performance Evaluation
	Case Studies
	Co-locating Bandwidth-Intensive Tasks on CPU
	Co-locating Latency-Critical Tasks on CPU

	Related Work
	Conclusion

