
Open access to the Proceedings of the
17th USENIX Conference on File and

Storage Technologies (FAST ’19)
is sponsored by

Write-Optimized Dynamic Hashing for
Persistent Memory

Moohyeon Nam, UNIST (Ulsan National Institute of Science and Technology); Hokeun Cha,
Sungkyunkwan University; Young-ri Choi and Sam H. Noh, UNIST (Ulsan National Institute of

Science and Technology); Beomseok Nam, Sungkyunkwan University

https://www.usenix.org/conference/fast19/presentation/nam

This paper is included in the Proceedings of the
17th USENIX Conference on File and Storage Technologies (FAST ’19).

February 25–28, 2019 • Boston, MA, USA

978-1-939133-09-0

Write-Optimized Dynamic Hashing for Persistent Memory

Moohyeon Nam†, Hokeun Cha‡, Young-ri Choi†, Sam H. Noh†, Beomseok Nam‡

UNIST (Ulsan National Institute of Science and Technology)†

Sungkyunkwan University‡

Abstract

Low latency storage media such as byte-addressable per-
sistent memory (PM) requires rethinking of various data
structures in terms of optimization. One of the main chal-
lenges in implementing hash-based indexing structures on
PM is how to achieve efficiency by making effective use
of cachelines while guaranteeing failure-atomicity for dy-
namic hash expansion and shrinkage. In this paper, we
present Cacheline-Conscious Extendible Hashing (CCEH)
that reduces the overhead of dynamic memory block man-
agement while guaranteeing constant hash table lookup time.
CCEH guarantees failure-atomicity without making use of
explicit logging. Our experiments show that CCEH effec-
tively adapts its size as the demand increases under the fine-
grained failure-atomicity constraint and its maximum query
latency is an order of magnitude lower compared to the state-
of-the-art hashing techniques.

1 Introduction

In the past few years, there have been numerous efforts to
leverage the byte-addressability, durability, and high perfor-
mance of persistent memory (PM) [7, 13, 18, 32, 34, 39, 40,
45, 47]. In particular, latency critical transactions on storage
systems can benefit from storing a small number of bytes to
persistent memory. The fine-grained unit of data I/O in per-
sistent memory has generated interest in redesigning block-
based data structures such as B+-trees [2, 11, 20, 28, 46].
Although a large number of previous studies have improved
tree-based indexing structures for byte-addressable persis-
tent memory, only a few have attempted to adapt hash-
based indexing structures to persistent memory [48, 49].
One of the main challenges in hash-based indexing for PM
is in achieving efficient dynamic rehashing under the fine-
grained failure-atomicity constraint. In this paper, we present
Cacheline-Conscious Extendible Hashing (CCEH), which is
a variant of extendible hashing [6] optimized for PM to mini-
mize cacheline accesses and satisfy failure-atomicity without
explicit logging.

Due to the static flat structure of hash-based indexes, they
can achieve constant lookup time. However, static hashing
does not come without limitations. Such traditional hashing
schemes must typically estimate the size of hash tables and
allocate sufficient buckets in advance. For certain applica-
tions, this is a feasible task. For example, in-memory hash
tables in key-value stores play a role of fixed-sized buffer
cache, i.e., recent key-value records replace old records.
Hence, we can set the hash table size a priori based on the
available memory space.

However, not all applications can estimate the hash table
size in advance, with database systems and file systems be-
ing typical examples. If data elements are dynamically in-
serted and deleted, static fixed-sized hashing schemes suffer
from hash collisions, overflows, or under-utilization. To re-
solve these problems, dynamic resizing must be employed
to adjust the hash table size proportional to the number of
records. In a typical situation where the load factor (bucket
utilization) becomes high, a larger hash table must be cre-
ated, and a rehash that moves existing records to new bucket
locations must be performed.

Unfortunately, rehashing is not desirable as it degrades
system throughput as the index is prevented from being ac-
cessed during rehashing, which significantly increases the
tail latency of queries. To mitigate the rehashing overhead,
various optimization techniques, such as linear probing, sep-
arate chaining, and cuckoo hashing, have been developed to
handle hash collisions [4, 14, 25, 29, 31]. However, these
optimizations do not address the root cause of hash colli-
sions but defer the rehashing problem. As such, static hash-
ing schemes have no choice but to perform expensive full-
table (or 1/3-table [49]) rehash operations later if the allo-
cated hash table size is not sufficient.

In light of PM, rehashing requires a large number of
writes to persistent memory. As writes are expected to in-
duce higher latency and higher energy consumption in PM,
this further aggravates performance. Furthermore, with life-
time of PM expected to be shorter than DRAM, such extra
writes can be detrimental to systems employing PM.

USENIX Association 17th USENIX Conference on File and Storage Technologies 31

Unlike these static hashing schemes, extendible hash-
ing [6] dynamically allocates and deallocates memory space
on demand as in tree-structured indexes. In file systems,
extendible hash tables and tree-structured indexes such as
B-trees are used because of their dynamic expansion and
shrinkage capabilities. For example, extendible hashing is
used in Oracle ZFS [26], IBM GPFS [30, 33], Redhat GFS,
and GFS2 file systems [38, 44], while tree structured indexes
are used for SGI XFS, ReiserFS, and Linux EXT file sys-
tems. However, it is noteworthy that static hashing schemes
are not as popular as dynamic indexes because they fall short
of the dynamic requirements of file systems.

In this work, we show the effectiveness of extendible hash-
ing in the context of PM. Byte-addressable PM places new
challenges on dynamic data structures because the issue of
failure-atomicity and recovery must be considered with care
so that when recovered from failure, the data structure re-
turns to a consistent state. Unfortunately, extendible hash-
ing cannot be used as-is, but requires a couple of sophisti-
cated changes to accommodate failure-atomicity of dynamic
memory allocations on PM. As in other dynamic indexes,
extendible hashing manages discontiguous memory spaces
for hash buckets and the addresses of buckets are stored in
a separate directory structure. When a bucket overflows or
is underutilized, extendible hashing performs split or merge
operations as in a tree-structured index, which must be per-
formed in a failure-atomic way to guarantee consistency.

Cacheline-Conscious Extendible Hashing (CCEH) is a
variant of extendible hashing with engineering decisions for
low latency byte-addressable storage such as PM. For low la-
tency PM, making effective use of cachelines becomes very
important [11, 16, 35, 43]. Therefore, CCEH sets the size
of buckets to a cacheline in order to minimize the num-
ber of cacheline accesses. Although CCEH manages a fine-
grained bucket size, CCEH reduces the overhead of directory
management by grouping a large number of buckets into an
intermediate-sized segment. That is, CCEH works in three
levels, namely, the global directory, segments pointed by the
directory, and cache-line sized buckets in the segment. We
also present how CCEH guarantees the failure-atomicity and
recoverability of extendible hash tables by carefully enforc-
ing the ordering of store instructions.

The main contributions of this work are as follows:
• First, we propose to use cacheline-sized buckets but re-

duce the size of the directory by introducing intermedi-
ate level segments to extendible hashing. The three-level
structure of our cacheline-conscious extendible hashing
(CCEH) guarantees that a record can be found within two
cacheline accesses.

• Second, we present a failure-atomic rehashing (split and
merge) algorithm for CCEH and a recovery algorithm
based on MSB (most significant bit) keys that does not use
explicit logging. We also show that MSB rather than LSB
(least significant bit) is a more effective key for extendible

hashing on PM, which is contrary to popular belief.
• Third, our extensive performance study shows that CCEH

effectively adapts its size as needed while guaranteeing
failure-atomicity and that the tail latency of CCEH is up
to 3.4× and 8× shorter than that of the state-of-the-art
Level Hashing [49] and Path Hashing [48], respectively.
The rest of this paper is organized as follows. In Sec-

tion 2, we present the background and the challenges of ex-
tendible hashing on PM. In Section 3, we present Cacheline-
Conscious Extendible Hashing and show how it provides
failure-atomicity while reducing the amount of writes to PM.
In Section 4, we present the recovery algorithm of CCEH. In
Section 5, we discuss concurrency and consistency issues of
CCEH. In Section 6, we evaluate the performance of PM-
based hash tables. Finally, we conclude the paper in Sec-
tion 7.

2 Background and Related Work

The focus of this paper is on dynamic hashing, that is,
hashing that allows the structure to grow and shrink ac-
cording to need. While various methods have been pro-
posed [17, 19, 22], our discussion concentrates on extendible
hashing as this has been adopted in numerous real sys-
tems [26, 30, 33, 38, 44] and as our study extends it for PM.

Extendible Hashing: Extendible hashing was developed
for time-sensitive applications that need to be less affected
by full-table rehashing [6]. In extendible hashing, re-hashing
is an incremental operation, i.e., rehashing takes place per
bucket as hash collisions make a bucket overflow. Since ex-
tendible hashing allocates a bucket as needed, pointers to
dynamically allocated buckets need to be managed in a hi-
erarchical manner as in B-trees in such a way that the split
history can be kept track of. This is necessary in order to
identify the correct bucket for a given hash key.

Figure 1 shows the legacy design of extendible hashing. In
extendible hashing, a hash bucket is pointed to by an entry of
a directory. The directory, which is simply a bucket address
table, is indexed by either the leading (most significant) or
the trailing (least significant) bits of the key. In the example
shown in Figure 1, we assume the trailing bits are used as in
common practice and each bucket can store a maximum of
five key-value records. The global depth G stores the number
of bits used to determine a directory entry. Hence, it deter-
mines the maximum number of buckets, that is, there are 2G

directory entries. When more hash buckets are needed, ex-
tendible hashing doubles the size of the directory by incre-
menting G. From the example, G is 2, so we use the low end
2 bits of the key to designate the directory entry in the direc-
tory of size 4 (22). Eventually, when the buckets fill up and
split, needing more directory entries, G can be incremented
to 3, resulting in a directory of size 8.

While every directory entry points to a bucket, a single
bucket may be pointed to by multiple directory entries. Thus,

32 17th USENIX Conference on File and Storage Technologies USENIX Association

Figure 1: Extendible Hash Table Structure

each bucket is associated with a local depth (L), which indi-
cates the length of the common hash key in the bucket. If a
hash bucket is pointed by k directory entries, the local depth
of the bucket is L = G− log2k. For example in Figure 1, B2
is pointed to by 2 directory entries. For this bucket, as the
global depth (G) is 2 and the bucket is pointed to by two
directory entries, the local depth of the bucket (L) is 1.

When a hash bucket overflows, extendible hashing com-
pares its local depth against the global depth. If the local
depth is smaller, this means that there are multiple directory
entries pointing to the bucket, as for bucket B2 in Figure 1.
Thus, if B2 overflows, it can be split without increasing the
size of the directory by dividing the directory entries to point
to two split buckets. Thus, G will remain the same, but the
Ls for the two resulting buckets will both be incremented to
2. In the case where the bucket whose local depth is equal
to the global depth overflows, i.e., B1 or B3 in Figure 1, the
directory needs to be doubled. In so doing, both the global
depth and the local depth of the two buckets that result from
splitting the overflowing bucket also need to be incremented.
Note, however, that in so doing, overhead is small as rehash-
ing of the keys or moving of data only occur for keys within
the bucket. With the larger global and local depths, the only
change is that now, one more bit of the hash key is used to
address the new buckets.

The main advantage of extendible hashing compared to
other hashing schemes is that the rehashing overhead is in-
dependent of the index size. Also, unlike other static hash ta-
bles, no extra buckets need to be reserved for future growth
that results in extendible hashing having higher space utiliza-
tion than other hashing schemes [37]. The disadvantage of
extendible hashing is that each hash table reference requires
an extra access to the directory. Other static hashing schemes
do not have this extra level of indirection, at the cost of full-
table rehashing. However, it is known that the directory ac-
cess incurs only minor performance overhead [23, 37].

PM-based Hashing: Recently a few hashing schemes,
such as Level Hashing [49], Path Hashing [48], and

PCM(Phase-Change Memory)-friendly hash table
(PFHT) [3] have been proposed for persistent memory
as the legacy in-memory hashing schemes fail to work on
persistent memory due to the lack of consistency guarantees.
Furthermore, persistent memory is expected to have limited
endurance and asymmetric read-write latencies. We now
review these previous studies.

PFHT is a variant of bucketized cuckoo hashing designed
to reduce write accesses to PCM as it allows only one cuckoo
displacement to avoid cascading writes. The insertion per-
formance of cuckoo hashing is known to be about 20∼ 30%
slower than the simplest linear probing [29]. Furthermore, in
cuckoo hashing, if the load factor is above 50%, the expected
insertion time is no longer constant. To improve the inser-
tion performance of cuckoo hashing, PFHT uses a stash to
defer full-table rehashing and improve the load factor. How-
ever, the stash is not a cache friendly structure as it linearly
searches a long overflow chain when failing to find a key in
a bucket. As a result, PFHT fails to guarantee the constant
lookup cost, i.e., its lookup cost is not O(1) but O(S) where
S is the stash size.

Path hashing is similar to PFHT in that it uses a stash al-
though the stash is organized as an inverted binary tree struc-
ture. With the binary tree structure, path hashing reduces the
lookup cost. However, its lookup time is still not constant but
in log scale, i.e., O(logB), where B is the number of buckets.

Level hashing consists of two hash tables organized in two
levels. The top level and bottom level hash tables take turns
playing the role of the stash. When the bottom level over-
flows, the records stored in the bottom level are rehashed to
a 4× larger hash table and the new hash table becomes the
new top level, while the previous top level hash table be-
comes the new bottom level stash. Unlike path hashing and
PFHT, level hashing guarantees constant lookup time.

While level hashing is an improvement over previous
work, our analysis shows that the rehashing overhead is no
smaller than legacy static hashing schemes. As the bottom
level hash table is always almost full in level hashing, it
fails to accommodate a collided record resulting in another
rehash. The end result is that level hashing is simply per-
forming a full-table rehash in two separate steps. Consider
the following scenario. Say, we have a top level hash table
that holds 100 records and the bottom level stash holds 50
records. Hence, we can insert 150 records without rehashing
if a hash collision does not occur. When the next 151st inser-
tion incurs a hash collision in the bottom level, the 50 records
in the bottom level stash will be rehashed to a new top level
hash table of size 200 such that we have 150 free slots. Af-
ter the rehash, subsequent 150 insertions will make the top
level hash table overflow. However, since the bottom level
hash table does not have free space either, the 100 records in
the bottom level hash table have to be rehashed. To expand a
hash table size to hold 600 records, level hashing rehashes a
total of 150 records, that is, 50 records for the first rehashing

USENIX Association 17th USENIX Conference on File and Storage Technologies 33

and another 100 records for the second rehashing.
On the other hand, suppose the same workload is pro-

cessed by a legacy hash table that can store 150 records as
the initial level hash table does. Since the 151st insertion re-
quires more space in the hash table, we increase the hash ta-
ble size by four times instead of two as the level hashing does
for the bottom level stash. Since the table now has 600 free
spaces, we do not need to perform rehashing until the 601th
insertion. Up to this point, we performed rehashing only once
and only 150 records have been rehashed. Interestingly, the
number of rehashed records are no different. We note that
the rehashing overhead is determined by the hash table size,
not by the number of levels. As we will show in Section 6,
the overhead of rehashing in level hashing is no smaller than
other legacy static hashing schemes.

To mitigate the shortage of space in bottom-level stash,
level hashing proposes to use the bottom-to-top cuckoo dis-
placement that evicts records from the bottom level stash to
the top level hash table. However, in our experiments, when
we insert 160 million records into a level hash table we ob-
serve the bottom-to-top cuckoo displacement occurs with a
probability of 0.001% (only 1882 times) while rehashing oc-
curs 14 times. As such, we find that in our experiments,
bottom-to-top eviction rarely helps in improving the load
factor or postponing rehashing.

One of the challenges in cuckoo displacement is that two
cachelines need to be updated in a failure-atomic manner as
we move a record into another bucket. If a system crashes
during migration, there can be duplicate records after the
system recovers. Suppose one of the duplicate records ex-
ists in the top level and the other record is in the bottom level.
When a subsequent transaction updates the record, the one in
the top level will be updated. Later, the top level hash table
becomes the bottom level stash and another transaction will
access the new top level hash table and find the stale record,
which is not acceptable. Level hashing proposes to delete one
of the two items when a subsequent transaction updates the
item. Since every update transaction has to detect if there is a
duplicate record, update transactions in level hashing needs
to access other cachelines that have the possibility of having
a duplicate record. In the worst case, each update transaction
has to access every cacheline in each bucket referenced by
two cuckoo hash functions in both levels. We note that such
a worst case happens when there are no duplicate records,
which would be the most common case in practice. To fix
the problem in a more efficient way, we need to scan the en-
tire hash table every time the system recovers from failure.

3 Cacheline-Conscious Extendible Hashing
In this section, we present Cacheline-Conscious Extendible
Hashing (CCEH), a variant of extendible hashing that over-
comes the shortcomings of traditional extendible hashing by
guaranteeing failure-atomicity and reducing the number of
cacheline accesses for the benefit of byte-addressable PM.

Figure 2: Cacheline-Conscious Extendible Hashing

3.1 Three Level Structure of CCEH

In byte-addressable PM, the unit of an atomic write is a word
but the unit of data transfer between the CPU and memory
corresponds to a cacheline. Therefore, the write-optimal size
of a hash bucket is a cacheline. However, a cacheline, which
is typically 64 bytes, can hold no more than four key-value
pairs if the keys and values are word types. Considering that
each cacheline-sized bucket needs an 8-byte pointer in the
directory, the directory can be the tail wagging the dog, i.e.,
if each 64-byte bucket is pointed by a single 8-byte direc-
tory entry, the directory can be as large as 1/8 of the total
bucket size. If multiple directory entries point to the same
bucket, the directory size can be even larger. To keep the di-
rectory size under control, we can increase the bucket size.
However, there is a trade-off between bucket size and lookup
performance as increasing the bucket size will make lookup
performance suffer from the large number of cacheline ac-
cesses and failure to exploit cache locality.

In order to strike a balance between the directory size and
lookup performance, we propose to use an intermediate layer
between the directory and buckets, which we refer to as a
segment. That is, a segment in CCEH is simply a group of
buckets pointed to by the directory. The structure of CCEH
is illustrated in Figure 2. To address a bucket in the three
level structure, we use the G bits (which represents the global
depth) as a segment index and an additional B bits (which de-
termines the number of cachelines in a segment) as a bucket
index to locate a bucket in a segment.

In the example shown in Figure 2, we assume each bucket
can store two records (delimited by the solid lines within the
segments in the figure). If we use B bits as the bucket index,
we can decrease the directory size by a factor of 1/2B (1/256
in the example) compared to when the directory addresses
each bucket directly. Note that although the three level struc-
ture decreases the directory size, it allows access to a specific

34 17th USENIX Conference on File and Storage Technologies USENIX Association

(a) Step 1: Create Sibling

(b) Step 2: Split and Lazy Deletion

Figure 3: Failure-Atomic Segment Split Example

bucket (cacheline) without accessing the irrelevant cache-
lines in the segment.

Continuing the example in Figure 2, suppose the given
hash key is 10101010...11111110(2) and we use the least
significant byte as the bucket index and the first two lead-
ing bits as the segment index since the global depth is 2.
We will discuss why we use the leading bits instead of trail-
ing bits as the segment index later in Section 3.4. Using
the segment index, we can lookup the address of the cor-
responding segment (Segment 3). With the address of Seg-
ment 3 and the bucket index (11111110(2)), we can directly
locate the address of the bucket containing the search key,
i.e., (&Segment3+64× 11111110(2)). Even with large seg-
ments, the requested record can be found by accessing only
two cachelines — one for the directory entry and the other
for the corresponding bucket (cacheline) in the segment.

3.2 Failure-Atomic Segment Split
A split performs a large number of memory operations. As
such, a segment split in CCEH cannot be performed by a
single atomic instruction. Unlike full-table rehashing that
requires a single failure-atomic update of the hash table
pointer, extendible hashing is designed to reuse most of the
segments and directory entries. Therefore, the segment split
algorithm of extendible hashing performs several in-place
updates in the directory and copy-on-writes.

In the following, we use the example depicted in Fig-
ure 3 to walk through the detailed workings of our proposed
failure-atomic segment split algorithm. Suppose we are to
insert key 1010...11111110(2). Segment 3 is chosen as the
leftmost bit is 1, but the 255th (11111111(2)th) bucket in the
segment has no free space, i.e., a hash collision occurs. To
resolve the hash collision, CCEH allocates a new Segment
and copies key-value records not only in the collided bucket
of the segment but also in the other buckets of the same seg-
ment according to their hash keys. In the example, we allo-
cate a new Segment 4 and copy the records, whose key pre-
fix starts with 11, from Segment 3 to Segment 4. We use the
two leading bits because the local depth of Segment 3 will
be increased to 2. If the prefix is 10, the record remains in
Segment 3, as illustrated in Figure 3(a).

In the next step, we update the directory entry for the new
Segment 4 as shown in Figure 3(b). First, (1) the pointer and
the local depth for the new bucket are updated. Then, (2)
we update the local depth of the segment that we split, Seg-
ment 3. I.e., we update the directory entries from right to left.
The ordering of these updates must be enforced by inserting
an mfence instruction in between each instruction. Also, we
must call clflush when it crosses the boundary of cache-
lines, as was done in FAST and FAIR B-tree [11]. Enforcing
the order of these updates is particularly important to guaran-
tee recovery. Note that these three operations cannot be done
in an atomic manner. That is, if a system crashes during the
segment split, the directory can find itself in a partially up-
dated inconsistent state. For example, the updated pointer to
a new segment is flushed to PM but two local depths are not
updated in PM. However, we note that this inconsistency can
be easily detected and fixed by a recovery process without
explicit logging. We detail our recovery algorithm later in
Section 4.

A potential drawback of our split algorithm for three level
CCEH is that a hash collision may split a large segment
even if other buckets in the same segment have free space.
To improve space utilization and avoid frequent memory al-
location, we can employ ad hoc optimizations such as lin-
ear probing or cuckoo displacement. Although these ad hoc
optimizations help defer expensive split operations, they in-
crease the number of cacheline accesses and degrade the in-
dex lookup performance. Thus, they must be used with care.
In modern processors, serial memory accesses to adjacent
cachelines benefit from hardware prefetching and memory
level parallelism [11]. Therefore, we employ simple linear
probing that bounds the number of buckets to probe to four
cachelines to leverage memory level parallelism.

Similar to the segment split, a segment merge performs
the same operations, but in reverse order. That is, (1) we mi-
grate the records from the right segment to the left segment.
Next, (2) we decrease the local depths and update pointers
of the two segments in the directory. Note that we must up-
date these directory entries from left to right, which is the

USENIX Association 17th USENIX Conference on File and Storage Technologies 35

opposite direction to that used for segment splits. This order-
ing is particularly important for recovery. Details about the
ordering and recovery will be discussed in Section 4.

3.3 Lazy Deletion

In legacy extendible hashing, a bucket is atomically cleaned
up via a page write after a split such that the bucket does not
have migrated records. For failure-atomicity, disk-based ex-
tendible hashing updates the local depth and deletes migrated
records with a single page write.

Unlike legacy extendible hashing, CCEH does not delete
migrated records from the split segment. As shown in Fig-
ure 3(b), even if Segments 3 and 4 have duplicate key-value
records, this does no harm. Once the directory entry is up-
dated, queries that search for migrated records will visit
the new segment and queries that search for non-migrated
records will visit the old segment but they always succeed in
finding the search key since the split Segment 3 contains all
the key-value records, with some unneeded duplicates.

Instead of deleting the migrated records immediately, we
propose lazy deletion, which helps avoid the expensive copy-
on-write and reduce the split overhead. Once we increase the
local depth of the split segment in the directory entry, the
migrated keys (those crossed-out keys in Figure 3(b)) will
be considered invalid by subsequent transactions. Therefore,
there is no need to eagerly overwrite migrated records be-
cause they will be ignored by read transactions and they can
be overwritten by subsequent insert transactions in a lazy
manner. For example, if we insert a record whose hash key
is 1010...11111110(2), we access the second to last bucket of
Segment 3 (in Figure 3(b)) and find the first record’s hash key
is 1000...11111110(2), which is valid, but the second record’s
hash key is 1101...11111110(2), which is invalid. Then, the
insert transaction replaces the second record with the new
record. Since the validity of each record is determined by the
local depth, the ordering of updating directory entries must
be preserved for consistency and failure-atomicity.

3.4 Segment Split and Directory Doubling

Although storing a large number of buckets in each seg-
ment can significantly reduce the directory size, directory
doubling is potentially the most expensive operation in large
CCEH tables. Suppose the segment pointed to by the first
directory entry splits, as shown in Figure 4(a). To accommo-
date the additional segment, we need to double the size of
the directory and make each existing segment referenced by
two entries in the new directory. Except for the two new seg-
ments, the local depths of existing segments are unmodified
and they are all smaller than the new global depth.

For disk-based extendible hashing, it is well known that
using the least significant bits (LSB) allows us to reuse the
directory file and to reduce the I/O overhead of directory

(a) Directory with Global Depth=2

(b) Directory Doubling with LSB

(c) Directory Doubling with MSB

Figure 4: MSB segment index makes adjacent directory en-
tries be modified together when a segment splits

doubling because we can just copy the directory entries as
one contiguous block and append it to the end of the file
as shown in Figure 4(b). If we use the most significant bits
(MSB) for the directory, new directory entries have to be
sandwiched in between existing entries, which makes all
pages in the directory file dirty.

Based on this description, it would seem that making use
of the LSB bits would be the natural choice for PM as well.
In contrary, however, it turns out when we store the directory
in PM, using the most significant bits (MSB) performs better
than using the LSB bits. This is because the existing direc-
tory entries cannot be reused even if we use LSB since all
the directory entries need to be stored in contiguous memory
space. That is, when using LSB, we must allocate twice as
much memory as the old directory uses, copy the old direc-
tory to the first half as well as to the second half.

The directory doubling is particularly expensive because
of cacheline flushes that are required for failure atomicity.
In fact, the overhead of doubling the directory with two
memcpy() function calls and iterating through a loop to
duplicate each directory entry is minimal compared to the

36 17th USENIX Conference on File and Storage Technologies USENIX Association

overhead of clflush. Note that when we index 16 million
records using 16 KByte segments, it takes 555 usec and 631
usec to double the directory when we use LSB and MSB re-
spectively. However, clflush() takes about 2 msec (3∼4×
higher). In conclusion, LSB does not help reduce the over-
head of enlarging the directory size unlike the directory file
on disks.

The main advantage of using MSB over LSB comes from
reducing the overhead of segment splits, not from reducing
the overhead of directory doubling. If we use MSB for the
directory, as shown in Figure 4(c), the directory entries for
the same segment will be adjacent to each other such that
they benefit from spatial locality. That is, if a segment splits
later, multiple directory entries that need to be updated will
be adjacent. Therefore, using MSB as segment index reduces
the number of cacheline flushes no matter what local depth
a split segment has. We note, however, that even though this
has a positive effect of reducing the overhead for directory
doubling, in terms of performance, it is more important to re-
duce the overhead of segment splits as segment splits occur
much more frequently. Even though preserving the spatial
locality has little performance effect on reducing the over-
head of directory doubling because both MSB and LSB seg-
ment index call the same number of clflush instructions
in batches when doubling the directory, MSB segment in-
dex has a positive effect of reducing the overhead of segment
splits, which occur much more frequently than directory dou-
bling. As we will see next, using MSB has another benefit of
allowing for easier recovery.

4 Recovery

Various system failures such as power loss can occur while
hash tables are being modified. Here, we present how CCEH
achieves failure-atomicity by discussing system failures at
each step of the hash table modification process.

Suppose a system crashes when we store a new record into
a bucket. First, we store the value and its key next. If the key
is of 8 bytes, the key can be atomically stored using the key
itself as a commit mark. Even if the key is larger than 8 bytes,
we can make use of the leading 8 bytes of the key as a com-
mit mark. For example, suppose the key type is a 32 byte
string and we use the MSB bits as the segment index and
the least significant byte as the bucket index. We can write
the 24 byte suffix first, call mfence, store the leading 8 bytes
as a commit mark, and call clflush. This ordering guaran-
tees that the leading 8 bytes are written after all the other
parts of the record have been written. Even if the cacheline
is evicted from the CPU cache, partially written records will
be ignored because the key is not valid for the segment, i.e.,
the MSB bits are not a valid segment index. This is the same
situation as when our lazy deletion considers a slot with any
invalid MSB segment index as free space. Therefore, the par-
tially written records without the correct leading 8 bytes will

(a) Tree Representation of Segment Split History

(b) Split: Update Pointer and Level for new Segment from Right to Left

(c) Split: Increase Level of Split Segment from Right to Left

Figure 5: Buddy Tree Traversal for Recovery

be ignored by subsequent transactions. Since all hash tables
including CCEH initialize new hash tables or segments when
they are first allocated, there is no chance for an invalid key
to have a valid MSB segment index by pure luck. To delete
a record, we change the leading 8 bytes to make the key in-
valid for the segment. Therefore, the insertion and deletion
operations that do not incur bucket splits are failure-atomic
in CCEH.

Making use of the MSB bits as a segment index not only
helps reduce the number of cacheline flushes but also makes
the recovery process easy. As shown in Figure 5, with the
MSB bits, the directory entries allow us to keep track of the
segment split history as a binary buddy tree where each node
in the tree represents a segment. When a system crashes, we
visit directory entries as in binary tree traversal and check
their consistency, which can be checked by making use of G
and L. That is, we use the fact that, as we see in Figure 3,
if G is larger than L then the directory buddies must point to
the same segment, while if G and L are equal, then each must
point to different segments.

USENIX Association 17th USENIX Conference on File and Storage Technologies 37

Algorithm 1 Directory Recovery
1: while i < Directory.Capacity do
2: DepthCur← Directory[i].Depthlocal
3: Stride← 2(Depthglobal−DepthCur)

4: j← i+Stride . Buddy Index
5: DepthBuddy← Directory[j].Depthlocal
6: if DepthCur < DepthBuddy then . Left half
7: for k← j−1; i < k;k← k−1 do
8: Directory[k].Depthlocal ← DepthCur

9: else
10: if DepthCur = DepthBuddy then . Right half
11: for k← j+1;k < j+Stride;k← k+1 do
12: Directory[k]← Directory[j]
13: else . DepthCur > DepthBuddy; Shrink
14: for k← j+Stride−1; j <= k;k← k−1 do
15: Directory[k]←Directory[j+Stride−1]
16: i← i+2(Depthglobal−(DepthCur−1))

Let us now see how we traverse the directories. Note that
the local depth of each segment and the global depth deter-
mine the segment’s stride in the directory, i.e., how many
times the segment appears contiguously in the directory.
Since the leftmost directory entry is always mapped to the
root node of the buddy tree because of the in-place split al-
gorithm, we first visit the leftmost directory entry and check
its buddy entry. In the walking example, the buddy of S1 (di-
rectory[0]) is S5 (directory[2]) since its stride is 2G−L = 2.
After checking the local depth and pointer of its right buddy,
we visit the parent node by decreasing the local depth by one.
I.e., S1 in level 2. Now, the stride of S1 in level 2 is 2G−L = 4.
Hence, we visit S3 (directory[4]) and check its local depth.
Since the local depth S3 is higher (4 in the example), we can
figure out that S3 has split twice and its stride is 1. Hence,
we visit directory[5] and check its consistency, continuing
this check until we find any inconsistency. The pseudo code
of this algorithm is shown in Algorithm 1.

Suppose a system crashes while splitting segment S2 in
the example. According to the split algorithm we described
in Section 3.2, we update the directory entries for the split
segment from right to left. Say, a system crashes after mak-
ing directory[11], colored red in the Figure 5(b), point to
a new segment S11. The recovery process will traverse the
buddy tree and visit directory[8]. Since the stride of S2 is
4, the recovery process will make sure directory[9], direc-
tory[10], and directory[11] have the same local depth and
point to the same segment. Since directory[11] points to a
different segment, we can detect the inconsistency and fix it
by restoring its pointer. If a system crashes after we update
directory[10] and directory[11] as shown in Figure 5(c), we
can either restore the two buddies or increase the local depth
of directory[8] and directory[9].

5 Concurrency and Consistency Model

Rehashing is particularly challenging when a large number
of transactions are concurrently running because rehashing
requires all concurrent write threads to wait until rehashing
is complete. To manage concurrent accesses in a thread-safe
way in CCEH, we adapt and make minor modifications to
the two level locking scheme proposed by Ellis [5], which is
known to show reasonable performance for extendible hash-
ing [24]. For buckets, we protect them using a reader/writer
lock. For segments, we have two options. One option is that
we protect each segment using a reader/writer lock as with
buckets. The other option is the lock-free access to segments.

Let us first describe the default reader/writer lock option.
Although making use of a reader/writer lock for each seg-
ment access is expensive, this is necessary because of the
in-place lazy deletion algorithm that we described in Sec-
tion 3.2. Suppose a read transaction T1 visits a segment but
goes to sleep before reading a record in the segment. If we do
not protect the segment using a reader/writer lock, another
write transaction T2 can split the segment and migrate the
record to a new segment. Then, another transaction accesses
the split segment and overwrites the record that the sleeping
transaction is to read. Later, transaction T1 will not find the
record although the record exists in the new buddy segment.

The other option is lock-free access. Although lock-free
search cannot enforce the ordering of transactions, which
makes queries vulnerable to phantom and dirty reads prob-
lems [37], it is useful for certain types of queries, such
as OLAP queries, that do not require a strong consistency
model because lock-free search helps reduce query latency.

To enable lock-free search in CCEH, we cannot use the
lazy deletion and in-place updates. Instead, we can copy-on-
write (CoW) split segments. With CoW split, we do not over-
write any existing record in the split segment. Therefore, a
lock-free query accesses the old split segment until we re-
place the pointer in the directory with a new segment. Un-
less we immediately deallocate the split segment, the read
query can find the correct key-value records even after the
split segment is replaced by two new segments. To deallo-
cate the split segment in a thread-safe way, we keep count
of how many read transactions are referencing the split seg-
ment. If the reference count becomes zero, we ask the per-
sistent heap memory manager to deallocate the segment. As
such, a write transaction can split a segment even while it is
being accessed by read transactions.

We note that the default CCEH with lazy deletion has a
much smaller overhead for segment split than the CCEH
with CoW split, which we denote as CCEH(C), because it
reuses the original segment so that it can allocate and copy
only half the amount required for CCEH(C). If a system fail-
ure occurs during a segment split, the recovery cost for lazy
deletion is also only half of that of CCEH(C). On the other
hand, CCEH(C) that enables lock-free search at the cost of

38 17th USENIX Conference on File and Storage Technologies USENIX Association

weak consistency guarantee and higher split overhead shows
faster and more scalable search performance, as we will
show in Section 6. Another benefit of CCEH(C) is that its
probing cost for search operations is smaller than that of
CCEH with lazy deletion because all the invalid keys are
overwritten as NULL.

For more scalable systems, lock-free extendible hashing
has been studied by Shalev et al. [36]. However, such lock-
free extendible hashing manages each key-value record as a
split-ordered list, which fails to leverage memory level paral-
lelism and suffers from a large number of cacheline accesses.

To minimize the impact of rehashing and reduce the tail la-
tency, numerous hash table implementations including Java
Concurrent Package and Intel Thread Building Block parti-
tion the hash table into small regions and use an exclusive
lock for each region [8, 12, 21, 27], hence avoiding full-table
rehashing. Such region-based rehashing is similar to our
CCEH in the sense that CCEH rehashes only one segment
at a time. However, we note that the existing region-based
concurrent hash table implementations are not designed to
guarantee failure-atomicity for PM. Furthermore, their con-
current hash tables use separate chaining hash tables, not dy-
namic hash tables [8, 12, 21, 27].

6 Experiments

We run experiments on a workstation that has four Intel
Xeon Haswell-EX E7-4809 v3 processors (8 cores, 2.0GHz,
8×32KB instruction cache, 8×32KB data cache, 8×256KB
L2 cache, and 20MB L3 cache) and 64GB of DDR3 DRAM.
Since byte-addressable persistent main memory is not com-
mercially available yet, we emulate persistent memory using
Quartz, a DRAM-based PM latency emulator [9, 41]. To em-
ulate write latency, we inject stall cycles after each clflush

instructions, as was done in previous studies [10, 20, 15, 35,
42].

A major reason to use dynamic hashing over static hashing
is to dynamically expand or shrink hash table sizes. There-
fore, we set the initial hash table sizes such that they can store
only a maximum of 2048 records. For all experiments, we in-
sert 160 million random keys, whose keys and values are of
8 bytes. Although we do not show experimental results for
non-uniformly distributed keys such as skewed distributions
due to the page limit, the results are similar because well
designed hash functions convert a non-uniform distribution
into one that is close to uniform [1].

6.1 Quantification of CCEH Design
In the first set of experiments, we quantify the performance
effect of each design of CCEH. Figure 6 shows the insertion
throughput and the number of cacheline flushes when we in-
sert 160 million records into variants of the extendible hash
table, while increasing the size of the memory blocks pointed

by directory entries, i.e., the segment in CCEH and the hash
bucket in extendible hashing. We fix the size of the bucket
in CCEH to a single cacheline, but employ linear probing
and bound the probing distance to four cachelines to lever-
age memory level parallelism.
CCEH(MSB) and CCEH(LSB) show the performance of

CCEH when using MSB and LSB bits, respectively, as the
segment index and LSB and MSB bits, respectively, as the
bucket index. EXTH(LSB) shows the performance of legacy
extendible hashing that uses LSB as the bucket index, which
is the popular practice.

When the bucket size is 256 bytes, each insertion into
EXTH(LSB) calls clflush instructions about 3.5 times on
average. Considering an insertion without collision requires
only a single clflush to store a record in a bucket, 2.5
cacheline flushes are the amortized cost of bucket splits and
directory doubling. Note that CCEH(LSB) and EXTH(LSB)

are the same hash tables when a segment can hold a sin-
gle bucket. Therefore, their throughputs and number of
cacheline accesses are similar when the segment size of
CCEH(LSB) and the bucket size of EXTH(LSB) are 256 bytes.

As we increase the bucket size, EXTH(LSB) splits buckets
less frequently, decreasing the number of clflush down to
2.3. However, despite the fewer number of clflush calls,
the insertion and search throughput of EXTH(LSB) decreases
sharply as we increase the bucket size. This is because
EXTH(LSB) reads a larger number of cachelines to find free
space as the bucket size increases.

In contrast, as we increase the segment size up to 16KB,
the insertion throughput of CCEH(MSB) and CCEH(LSB) in-
crease because segment splits occur less frequently while the
number of cachelines to read, i.e., LLC (Last Level Cache)
misses, is not affected by the large segment size. However,
if the segment size is larger than 16KB, the segment split
results in a large number of cacheline flushes, which starts
degrading the insertion throughput.

Figure 6(b) shows CCEH(MSB) and CCEH(LSB) call a
larger number of clflush than EXTH(LSB) as the segment
size grows. This is because CCEH(MSB) and CCEH(LSB)

store records in a sparse manner according to the bucket
index whereas EXTH(LSB) sequentially stores rehashed
records without fragmented free spaces. Thus, the number
of updated cachelines written by EXTH(LSB) is only about
two-third of CCEH(LSB) and CCEH(MSB). From the experi-
ments, we observe the reasonable segment size is in the range
of 4KB to 16KB.

When the segment size is small, the amortized cost of seg-
ment splits in CCEH(MSB) is up to 29% smaller than that of
CCEH(LSB) because CCEH(MSB) updates adjacent directory
entries, minimizing the number of clflush instructions.
However, CCEH(LSB) accesses scattered cachelines and fails
to leverage memory level parallelism, which results in about
10% higher insertion time on average.

It is noteworthy that the search performance of

USENIX Association 17th USENIX Conference on File and Storage Technologies 39

 0

 200

 400

 600

 800

 1000

 1200

 1400

256B 1KB 4KB 16KB 64KB 256KB

T
h
ro

u
g

h
p
u
t

(O
p
s/

u
se

c)

Segment Size for CCEH/Bucket Size for EXTH

CCEH(MSB) CCEH(LSB) EXTH(LSB)

(a) Insertion Throughput

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

256B 1KB 4KB 16KB 64KB 256KB

A
v

g
.
N

u
m

b
er

 o
f

cl
fl

u
sh

Segment Size for CCEH/Bucket Size for EXTH

CCEH(MSB) CCEH(LSB) EXTH(LSB)

(b) Number of clflush

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

256B 1KB 4KB 16KB 64KB 256KB
 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

T
h
ro

u
g
h
p

u
t

(O
p
s/

m
se

c)

A
v

g
.
P

ro
b

in
g
 D

is
ta

n
ce

Segment Size for CCEH/Bucket Size for EXTH

CCEH(MSB)
CCEH(LSB)

EXTH(LSB)
CCEH

(c) Search Throughput

Figure 6: Throughput with Varying Segment/Bucket Size

 0

 0.5

 1

 1.5

 2

C
C
EH

C
C
EH

(C
)

C
U
C
K

LE
VL(

M
)

LI
N
P

LE
VL

PATH
(M

)

PATH

A
v
g
.
E

x
ec

.
T

im
e

(u
se

c)

Write
Rehash

Cuckoo Displacement

(a) 120/120 (DRAM)

 0

 0.5

 1

 1.5

 2

C
C
EH

C
C
EH

(C
)

C
U
C
K

LE
VL(

M
)

LI
N
P

LE
VL

PATH
(M

)

PATH

A
v
g
.
E

x
ec

.
T

im
e

(u
se

c)

Write
Rehash

Cuckoo Displacement

(b) 240/300

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

C
C
EH

C
C
EH

(C
)

C
U
C
K

LE
VL(

M
)

LI
N
P

LE
VL

PATH
(M

)

PATHA
v
g
.

E
x
e
c
.

T
i
m
e

(
u
s
e
c
)

Write
Rehash

Cuckoo Displacement

(c) 240/500

 0

 1

 2

 3

 4

 5

C
C
EH

C
C
EH

(C
)

C
U
C
K

LE
VL(

M
)

LI
N
P

LE
VL

PATH
(M

)

PATHA
v
g
.

E
x
e
c
.

T
i
m
e

(
u
s
e
c
)

Write
Rehash

Cuckoo Displacement

(d) 240/700

Figure 7: Breakdown of Time Spent for Insertion While Varying R/W latency of PM

CCEH(MSB) and CCEH(LSB) improves as the segment size
grows. This is because the larger the segment size, the more
bits CCEH uses to determine which cacheline in the seg-
ment needs to be accessed, which helps CCEH perform lin-
ear probing less frequently. Figure 6(c) shows the average
number of extra cache line accesses per query caused by lin-
ear probing. As we increases the segment size, the average
probing distance decreases from 0.221 cacheline to 0.017
cacheline.

6.2 Comparative Performance
For the rest of the experiments, we use a single byte as
the bucket index such that the segment size is 16 Kbytes,
and we do not show the performance of CCEH(LSB) since
CCEH(MSB) consistently outperforms CCEH(LSB). We com-
pare the performance of CCEH against a static hash table
with linear probing (LINP), cuckoo hashing [29] (CUCK), path
hashing [48] (PATH), and level hashing [49] (LEVL).1

For path hashing, we set the reserved level to 8, which
achieves 92% maximum load factor as suggested by the au-
thors [48]. For cuckoo hashing, we let CUCK perform full-
table rehashing when it fails to displace a collided record 16
times, which shows the fastest insertion performance on our
testbed machine. Linear probing rehashes when the load fac-
tor reaches 95%.

1Our implementations of CCEH, linear probing (LINP), and cuckoo
hashing (CUCK) are available at https://github.com/DICL/CCEH. For path
hashing (PATH) and level hashing (LEVL), we downloaded the authors’ im-
plementations from https://github.com/Pfzuo/Level-Hashing.

In the experiments shown in Figure 7, as the latency for
reads and writes of PM are changed, we insert 160 million
records in batches and breakdown the insertion time into (1)
the bucket search and write time (denoted as Write), (2) the
rehashing time (denoted as Rehash), and (3) the time to dis-
place existing records to another bucket, which is necessary
for cuckoo hashing (denoted as Cuckoo Displacement).
CCEH shows the fastest average insertion time through-

out all read/write latencies. Even if we disable lazy dele-
tion but perform copy-on-write for segment splits, denoted as
CCEH(C), CCEH(C) outperforms LEVL. Note that the Rehash
overhead of CCEH(C) is twice higher than that of CCEH that
reuses the split segment via lazy deletion. However, as the
write latency of PM increases, CCEH(C) is outperformed by
CUCK and LINP because of frequent memory allocations and
expensive copy-on-write operations.

Interestingly, the rehashing overhead of LEVL is even
higher than that of LINP, which is just a single array that
employs linear probing for hash collisions. Although LINP

suffers from a large number of cacheline accesses due to
open addressing, its rehashing overhead is smaller than all
the other hashing schemes except CCEH. We note that the
rehashing overhead of LEVL and PATH is much higher than
that of LINP because the rehashing implementation of LEVL
calls clflush to delete each record in the bottom level stash
when rehashing it to the new enlarged hash table. This extra
clflush is unnecessary for LINP and CUCK, because we can
simply deallocate the previous hash table when the new hash
table is ready. If a system crashes before the new hash table

40 17th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20 22

C
D

F

Insertion Latency (sec)

CCEH

CCEH(C)

CUCK

LEVL(M)

LINP

LEVL

PATH

(a) Insertion Latency CDF

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 8 16

T
h

ro
u

g
h

p
u

t
(O

p
s/

u
se

c)

Number of Threads

CCEH
CCEH(C)

CUCK
LINP

LEVL(M)
LEVL
PATH

(b) Insertion Throughput

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16

T
h

ro
u

g
h

p
u

t
(O

p
s/

u
se

c)

Number of Threads

CCEH(C)
CUCK
CCEH
LINP

LEVL(M)
LEVL
PATH

(c) Search Throughput

Figure 8: Performance of concurrent execution: latency CDF and insertion/search throughput

is ready, we discard the new hash table and perform rehash-
ing from the beginning. As LEVL and PATH can employ the
same rehashing strategy, we implement the improved rehash-
ing code for them, denoted as LEVL(M) and PATH(M). With
the modification, LEVL(M) shows similar rehashing over-
head with CCEH(C). However, it is outperformed by CCEH

and LINP because its two-level structure and ad hoc op-
timizations such as bucketization increases the number of
cacheline accesses. Note that the bucket search and write
time (Write) of LEVL(M) is higher than that of CCEH and
even CUCK. It is noteworthy that LEVL performs the cuckoo
displacement much less frequently than CUCK and its over-
head is almost negligible.
PATH hashing shows the worst performance throughout

all our experiments mainly because its lookup cost is not
constant, but O(log2N). As the write latency increases, the
performance gap between LEVL and PATH narrows down be-
cause the lookup cost becomes relatively inexpensive com-
pared to the Write time.

6.3 Concurrency and Latency

Full-table rehashing is particularly challenging when multi-
ple queries are concurrently accessing a hash table because
it requires exclusive access to the entire hash table, which
blocks subsequent queries and increases the response time.
Therefore, we measure the latency of concurrent insertion
queries including the waiting time, whose CDF is shown
in Figure 8(a). For the workload, we generated query inter-
arrival patterns using Poisson distribution where the λ rate is
set to the batch processing throughput of LINP.

While the average batch insertion times differ by only
up to 180%, the maximum latency of PATH is up to 56×
higher than that of CCEH (378 msec vs. 21.3 sec), as shown
in Figure 8(a). This is because full-table rehashing blocks
a large number of concurrent queries and significantly in-
creases their waiting time. The length of each flat region in
the CDF graph represents how long each full-table rehash-
ing takes. PATH takes the longest time for rehashing whereas
LEVL, LINP, and CUCK spend a similar amount of time on
rehashing. In contrast, we do not find any flat region in the
graph for CCEH. Compared to LEVL, the maximum latency of

CCEH is reduced by over 90%.
For the experimental results shown in Figures 8(b) and (c),

we evaluate the performance of the multi-threaded versions
of the hashing schemes. Each thread inserts 160/k million
records in batches where k is the number of threads. Overall,
as we run a larger number of insertion threads, the insertion
throughputs of all hashing schemes improve slightly but not
linearly due to lock contention.

Individually, CCEH shows slightly higher insertion
throughput than CCEH(C) because of smaller split overhead.
LEVL, LINP, CUCK, and PATH use a fine-grained reader/writer
lock for each sub-array that contains 256 records (4 KBytes),
which is even smaller than the segment size of CCEH

(16 KBytes), but they fail to scale because of the rehashing
overhead. We note that these static hash tables must obtain
exclusive locks for all the fine-grained sub-arrays to perform
rehashing. Otherwise, queries will access a stale hash table
and return inconsistent records.

In terms of search throughput, CCEH(C) outperforms CCEH
as CCEH(C) enables lock-free search by disabling lazy dele-
tion and in-place updates as we described in Section 5. Since
the read transactions of CCEH(C) are non-blocking, search
throughput of CCEH(C) is 1.63×, 1.53×, and 2.74× higher
than that of CCEH, CUCK, and LEVL, respectively. Interest-
ingly, LEVL shows worse search performance than LINP.
Since level hashing uses cuckoo displacement and two-level
tables, which accesses noncontiguous cachelines multiple
times, it fails to leverage memory level parallelism and in-
creases the LLC misses. In addition, level hashing uses
small-sized buckets as in bucketized hashing and performs
linear probing for at most four buckets, which further in-
creases the number of cacheline accesses, hurting search per-
formance even more. As a result, LEVL shows poor search
throughput.

While the results in Figure 8(c) were for queries where
the lookup keys all existed in the hash table, Figure 9 shows
search performance for non-existent keys. Since CUCK ac-
cesses no more than two cachelines, it shows even higher
search performance than CCEH, which accesses up to four
cachelines due to linear probing. Although LINP shows sim-
ilar search performance with CCEH for positive queries, it
suffers from long probing distance for negative queries and

USENIX Association 17th USENIX Conference on File and Storage Technologies 41

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

10 30 50

T
h
ro

u
g
h
p
u

t
(O

p
s/

u
se

c)

Non-existent Keys (%)

Cuckoo
CCEH
Level

Linear Probing
Path

Figure 9: Negative search

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

16 32 64 128 256

T
h

ro
u

g
h

p
u

t
(O

p
s/

u
se

c)

Number of Indexed Records (Millions)

CCEH
CCEH(C)
LEVL(M)

LEVL

CUCK
LINP

PATH

Figure 10: YCSB throughput (Work-
load D: Read Latest)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000

L
o

ad
 F

ac
to

r
(%

)

Number of Records (k)

CCEH (4)
CCEH (16)
CCEH (32)
CCEH (64)

Level

Figure 11: Load factor per thousand
insertions

shows very poor search performance. We see that LEVL also
suffers as making use of long probing, cuckoo displacement,
and stash hurts search performance even more. Interestingly,
PATH shows even worse search performance than LINP be-
cause of its non-constant lookup time.

We now consider the YCSB benchmarks representing re-
alistic workloads. Figure 10 shows the throughput results
of YCSB workload D as we vary the number of indexed
records. In the workload, 50% of the queries insert records
of size 32 bytes, while the other 50% read recently inserted
records. As we increase the number of indexed records,
the size of CCEH grows from 593 MBytes to 8.65 GBytes.
Since hashing allows for constant time lookups, insertion
and search throughput of most of the hashing schemes are
insensitive to the size of hash tables. However, we ob-
serve that throughput of CCEH decreases linearly because
of the hierarchical structure. When CCEH indexes 16 mil-
lion records, the directory size is only 1 MBytes. Since the
directory is more frequently accessed than segments, it has
a higher probability of being in the CPU cache. However,
when CCEH indexes 256 million records, the directory size
becomes 16 MBytes while the total size of all segments is
8 GBytes. Considering that the LLC size of our testbed ma-
chine is 20 MBytes, the LLC miss ratio for the directory
increases as the directory size grows. As a result, search
performance of CCEH becomes similar to that of LEVL and
CUCK when we index more than 64 million records and the
throughput gap between CCEH and LEVL(M) narrows down.

6.4 Load Factor and Recovery Overhead
Figure 11 shows the memory utilization of CCEH and LEVL.
The load factor of LEVL fluctuates between 50% and 90%
because of the full-table rehashing. On each rehash, the bot-
tom level hash table is quadrupled and the load factor drops
down to 50%, which is no different from other static hash
tables as we discussed in Section 2. In contrast, CCEH shows
more smooth curves as it dynamically allocates small seg-
ments. Note that we can improve the load factor by increas-
ing the linear probing distance as CCEH allocates a new seg-
ment when linear probing fails to insert a record into adja-
cent buckets. When we set the linear probing distance to 4

and 16, the load factor of CCEH, denoted as CCEH(4) and
CCEH(16), range from 50% to 60% and from 70% to 80%,
respectively. As we increase the distance up to 64, the load
factor of CCEH increases up to 92%. However, as we increase
the linear probing distance, the overall insertion and search
performance suffers from the larger number of cacheline ac-
cesses.

While recovery is trivial in other static hash tables, CCEH
requires a recovery process. To measure the recovery latency
of CCEH, we varied the number of indexed records and delib-
erately injected faults. When we insert 32 million and 128
million records, the directory size is only 2 MBytes and
8 MBytes, respectively, and our experiments show that re-
covery takes 13.7 msec and 59.5 msec, respectively.

7 Conclusion
In this work, we presented the design and implementation of
the cacheline-conscious extendible hash (CCEH) scheme, a
failure-atomic variant of extendible hashing [6], that makes
effective use of cachelines to get the most benefit out of
byte-addressable persistent memory. By introducing an in-
termediate layer between the directory and cacheline-sized
buckets, CCEH effectively reduces the directory manage-
ment overhead and finds a record with at most two cache-
line accesses. Our experiments show that CCEH eliminates
the full-table rehashing overhead and outperforms other hash
table schemes by a large margin on PM as well as DRAM.

Acknowledgments
We would like to give our special thanks to our shepherd
Dr. Vasily Tarasov and the anonymous reviewers for their
valuable comments and suggestions. This work was sup-
ported by the R&D program of NST (grant B551179-12-
04-00) and ETRI R&D program (grant 18ZS1220), Na-
tional Research Foundation of Korea (NRF) (grant No. NRF-
2018R1A2B3006681 and NRF-2016M3C4A7952587), and
Institute for Information & Communications Technology
Promotion(IITP) (grant No. 2018-0-00549) funded by Min-
istry of Science and ICT, Korea. The corresponding author is
Beomseok Nam.

42 17th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] CARTER, J. L., AND WEGMAN, M. N. Universal classes of hash

functions (extended abstract). In Proceedings of the ACM 9th Sympo-
sium on Theory of Computing (STOC) (1977), pp. 106–112.

[2] CHEN, S., AND JIN, Q. Persistent B+-Trees in non-volatile main
memory. Proceedings of the VLDB Endowment (PVLDB) 8, 7 (2015),
786–797.

[3] DEBNATH, B., HAGHDOOST, A., KADAV, A., KHATIB, M. G., AND
UNGUREANU, C. Revisiting hash table design for phase change
memory. In Proceedings of the 3rd Workshop on Interactions of
NVM/FLASH with Operating Systems and Workloads (2015), IN-
FLOW ’15, pp. 1:1–1:9.

[4] DIETZFELBINGER, M., AND WEIDLING, C. Balanced allocation and
dictionaries with tightly packed constant size bins. Theoretical Com-
puter Science 380, 1-2 (2007), 47–68.

[5] ELLIS, C. S. Extendible hashing for concurrent operations and dis-
tributed data. In Proceedings of the 2nd ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems (New York, NY, USA,
1983), PODS ’83, ACM, pp. 106–116.

[6] FAGIN, R., NIEVERGELT, J., PIPPENGER, N., AND STRONG, H. R.
Extendible hashing - a fast access method for dynamic files. ACM
Trans. Database Syst. 4, 3 (Sept. 1979).

[7] FANG, R., HSIAO, H.-I., HE, B., MOHAN, C., AND WANG, Y. High
performance database logging using storage class memory. In Pro-
ceedings of the 27th International Conference on Data Engineering
(ICDE) (2011), pp. 1221–1231.

[8] GOETZ, B. Building a better HashMap: How ConcurrentHashMap
offers higher concurrency without compromising thread safety, 2003.
https://www.ibm.com/developerworks/java/library/j-jtp08223/.

[9] HPE. Quartz, 2018. https://github.com/HewlettPackard/quartz.

[10] HUANG, J., SCHWAN, K., AND QURESHI, M. K. Nvram-aware log-
ging in transaction systems. Proceedings of the VLDB Endowment 8,
4 (2014).

[11] HWANG, D., KIM, W.-H., WON, Y., AND NAM, B. Endurable Tran-
sient Inconsistency in Byte-Addressable Persistent B+-Trees. In Pro-
ceedings of the 11th USENIX Conference on File and Storage (FAST)
(2018).

[12] INTEL. Intel Threading Building Blocks Developer Reference , 2018.
https://software.intel.com/en-us/tbb-reference-manual.

[13] IZRAELEVITZ, J., KELLY, T., AND KOLLI, A. Failure-atomic persis-
tent memory updates via JUSTDO logging. In Proceedings of the 21st
International Conference on Architectural Support for Programming
Languages (ASPLOS)) (2016).

[14] JOHNSON, L. An indirect chaining method for addressing on sec-
ondary keys. Communications of the ACM 4, 5 (1961), 218–222.

[15] KIM, W.-H., KIM, J., BAEK, W., NAM, B., AND WON, Y. NVWAL:
Exploiting NVRAM in write-ahead logging. In Proceedings of the
21st International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS) (2016).

[16] KIM, W.-H., SEO, J., KIM, J., AND NAM, B. clfB-tree: Cacheline
friendly persistent B-tree for NVRAM. ACM Transactions on Storage
(TOS), Special Issue on NVM and Storage (2018).

[17] KNOTT, G. D. Expandable open addressing hash table storage and
retrieval. In Proceedings of the 1971 ACM SIGFIDET (now SIG-
MOD) Workshop on Data Description, Access and Control (1971),
ACM, pp. 187–206.

[18] KOLLI, A., PELLEY, S., SAIDI, A., CHEN, P. M., AND WENISCH,
T. F. High-performance transactions for persistent memories. In Pro-
ceedings of the 21st International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS)
(2016), pp. 399–411.

[19] LARSON, P.-Å. Dynamic hashing. BIT Numerical Mathematics 18,
2 (1978), 184–201.

[20] LEE, S. K., LIM, K. H., SONG, H., NAM, B., AND NOH, S. H.
WORT: Write optimal radix tree for persistent memory storage sys-
tems. In Proceedings of the 15th USENIX Conference on File and
Storage Technologies (FAST) (2017).

[21] LI, X., ANDERSEN, D. G., KAMINSKY, M., AND FREEDMAN, M. J.
Algorithmic improvements for fast concurrent cuckoo hashing. In
Proceedings of the Ninth European Conference on Computer Systems
(2014), ACM, p. 27.

[22] LITWIN, W. Virtual hashing: A dynamically changing hashing. In
Proceedings of the 4th International Conference on Very Large Data
Bases-Volume 4 (1978), VLDB Endowment, pp. 517–523.

[23] MENDELSON, H. Analysis of extendible hashing. IEEE Transactions
on Software Engineering, 6 (1982), 611–619.

[24] MICHAEL, M. M. High performance dynamic lock-free hash tables
and list-based sets. In Proceedings of the 14th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA) (2002).

[25] MORRIS, R. Scatter storage techniques. Communications of the ACM
11, 1 (1968), 38–44.

[26] ORACLE. Architectural Overview of the Oracle ZFS Storage Ap-
pliance, 2018. https://www.oracle.com/technetwork/server-storage/
sun-unified-storage/documentation/o14-001-architecture-overview-
zfsa-2099942.pdf.

[27] ORACLE. Java Platform, Standard Edition 7 API Specification,
2018. https://docs.oracle.com/javase/7/docs/api/java/util/conc ur-
rent/ConcurrentHashMap.html.

[28] OUKID, I., LASPERAS, J., NICA, A., WILLHALM, T., AND
LEHNER, W. FPTree: A hybrid SCM-DRAM persistent and concur-
rent B-tree for storage class memory. In Proceedings of 2016 ACM
SIGMOD International Conference on Management of Data (SIG-
MOD) (2016).

[29] PAGH, R., AND RODLER, F. F. Cuckoo hashing. Journal of Algo-
rithms 51, 2 (2004), 122–144.

[30] PATIL, S., AND GIBSON, G. A. Scale and concurrency of giga+:
File system directories with millions of files. In Proceedings of the
USENIX Conference on File and Storage Technologies (FAST) (2011),
vol. 11, pp. 13–13.

[31] PETERSON, W. W. Addressing for random-access storage. IBM jour-
nal of Research and Development 1, 2 (1957), 130–146.

[32] RUDOFF, A. Programming models for emerging non-volatile memory
technologies. ;login 38, 3 (June 2013), 40–45.

[33] SCHMUCK, F. B., AND HASKIN, R. L. Gpfs: A shared-disk file sys-
tem for large computing clusters. In Proceedings of the USENIX Con-
ference on File and Storage Technologies (FAST) (2002), vol. 2.

[34] SEHGAL, P., BASU, S., SRINIVASAN, K., AND VORUGANTI, K. An
empirical study of file systems on nvm. In Proceedings of the 31st
International Conference on Massive Stroage Systems (MSST) (2015).

[35] SEO, J., KIM, W.-H., BAEK, W., NAM, B., AND NOH, S. H.
Failure-atomic slotted paging for persistent memory. In Proceedings
of the 22nd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS) (2017).

[36] SHALEV, O., AND SHAVIT, N. Split-ordered lists: Lock-free extensi-
ble hash tables. J. ACM 53, 3 (May 2006), 379–405.

[37] SILBERSCHATZ, A., KORTH, H., AND SUDARSHAN, S. Database
Systems Concepts. McGraw-Hill, 2005.

[38] SOLTIS, S. R., RUWART, T. M., AND OKEEFE, M. T. The global file
system. In Proceedings of the 5th NASA Goddard Conference on Mass
Storage Systems and Technologies (1996), vol. 2, pp. 319—-342.

USENIX Association 17th USENIX Conference on File and Storage Technologies 43

[39] SOULES, C. A. N., GOODSON, G. R., STRUNK, J. D., AND
GANGER, G. R. Metadata efficiency in versioning file systems. In
Proceedings of the 2nd USENIX Conference on File and Storage Tech-
nologies (FAST) (2003), pp. 43–58.

[40] VENKATARAMAN, S., TOLIA, N., RANGANATHAN, P., AND CAMP-
BELL, R. H. Consistent and durable data structures for non-volatile
byte-addressable memory. In Proceedings of the 9th USENIX Confer-
ence on File and Storage Technologies (FAST) (2011).

[41] VOLOS, H., MAGALHAES, G., CHERKASOVA, L., AND LI, J.
Quartz: A lightweight performance emulator for persistent memory
software. In Proceedings of the 15th Annual Middleware Conference
(Middleware ’15) (2015).

[42] VOLOS, H., TACK, A. J., AND SWIFT, M. M. Mnemosyne:
Lightweight persistent memory. In Proceedings of the 16th Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS) (2011).

[43] WEISS, Z., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU,
R. H. Densefs: a cache-compact filesystem. In Proceedings of the
10th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 18) (2018).

[44] WHITEHOUSE, S. The gfs2 filesystem. In Proceedings of the Linux
Symposium (2007), Citeseer, pp. 253–259.

[45] XU, J., AND SWANSON, S. NOVA: A log-structured file system for
hybrid volatile/non-volatile main memories. In Proceedings of the
14th USENIX Conference on File and Storage Technologies (FAST)
(2016).

[46] YANG, J., WEI, Q., CHEN, C., WANG, C., AND YONG, K. L. NV-
Tree: reducing consistency cost for NVM-based single level systems.
In Proceedings of the 13th USENIX Conference on File and Storage
Technologies (FAST) (2015).

[47] ZHAO, J., LI, S., YOON, D. H., XIE, Y., AND JOUPPI, N. P. Kiln:
Closing the performance gap between systems with and without per-
sistence support. In Proceedings of the 46th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO) (2013), pp. 421–
432.

[48] ZUO, P., AND HUA, Y. A write-friendly hashing scheme for non-
volatile memory systems. In Proceedings of the 33st International
Conference on Massive Storage Systems and Technology (MSST)
(2017).

[49] ZUO, P., HUA, Y., AND WU, J. Write-optimized and high-
performance hashing index scheme for persistent memory. In Pro-
ceedings of the 13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18) (Carlsbad, CA, 2018).

44 17th USENIX Conference on File and Storage Technologies USENIX Association

