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Abstract

Flash memory-based SSDs are popular across a wide range
of data storage markets, while the underlying storage
medium—flash memory—is becoming increasingly unreli-
able. As a result, modern SSDs employ a number of in-
device reliability enhancement techniques, but none of them
offers a one size fits all solution when considering the multi-
dimensional requirements for SSDs: performance, reliabil-
ity, and lifetime.

In this paper, we examine the design tradeoffs of exist-
ing reliability enhancement techniques such as data re-read,
intra-SSD redundancy, and data scrubbing. We observe that
an uncoordinated use of these techniques adversely affects
the performance of the SSD, and careful management of the
techniques is necessary for a graceful performance degrada-
tion while maintaining a high reliability standard. To that
end, we propose a holistic reliability management scheme
that selectively employs redundancy, conditionally re-reads,
judiciously selects data to scrub. We demonstrate the effec-
tiveness of our scheme by evaluating it across a set of I/O
workloads and SSDs wear states.

1 Introduction

From small mobile devices to large-scale storage servers,
flash memory-based SSDs have become a mainstream stor-
age device thanks to flash memory’s small size, energy ef-
ficiency, low latency, and collectively massive parallelism.
The popularity of SSDs is fueled by the continued drop in
cost per GB, which in turn is achieved by storing multiple
bits in a memory cell [7, 42] and vertically stacking memory
layers [41, 48].

However, the drive for high storage density has caused
the flash memory to become less reliable and more error-
prone [9, 20]. Raw bit error rate measurement of a single-
level cell flash memory in 2009 was in the order of 10−8 [19],
but this increased to 10−7–10−4 in 2011 for a 3x-nm multi-
level cell [52] and to 10−3–10−2 in 2017 for a 1x-nm mem-
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Figure 1: SSD reliability enhancement techniques.

ory [10]. The high error rates in today’s flash memory are
caused by various reasons, from wear-and-tear [11,19,27], to
gradual charge leakage [11,14,51] and data disturbance [13,
19].

In order to mask out the error-prone nature of flash mem-
ory, the state-of-the-art SSDs employ a number of in-device
reliability enhancement techniques, as shown in Figure 1.
These techniques originate from a wide range of domains,
from device physics that tunes threshold voltage levels for
sensing memory states [12, 14, 38], coding theory that cor-
rects errors using computed parity information [18, 35], to
system-level approaches such as scrubbing that preventively
relocates data [22, 37]. This variety is caused by the fact
that there is no one size fits all solution for data protection
and recovery: each technique has a multi-dimensional design
tradeoff that makes it necessary to compositionally combine
complementary solutions. This is much easier said than done
as reliability is only one of the many design goals for SSDs: a
study spanning across multiple institutions reveals that these
reliability enhancements, in fact, cause performance degra-
dation in SSDs [21].

In this paper, we examine the design tradeoffs of existing
techniques across multiple dimensions such as average and
tail performance, write amplification, and reliability. Our in-
vestigation is inspired by studies in the HDD domain that
evaluate the effectiveness of different reliability enhance-
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ments [24, 40, 49], but our findings deviate from those work
due to the difference in the underlying technology and the
SSD’s internal management. We make the following three
observations from our experiments. First, the use of data
re-read mechanisms should be managed, as the repeated re-
reads further induce errors, especially for read disturbance-
vulnerable cells. Second, in the absence of random and
sporadic errors, the overheads of intra-SSD redundancy out-
weigh its benefits in terms of performance, write amplifica-
tion, and reliability. Lastly, SSD-internal scrubbing reduces
the error-induced long-tail latencies, but it increases the in-
ternal traffic that negates its benefits.

Based on our observation, we propose a holistic reliabil-
ity management scheme that selectively employs intra-SSD
redundancy depending on access characteristics of the data,
conditionally uses data re-read mechanism to reduce the ef-
fects of read disturbance, and judiciously selects data to
scrub so that the internal relocation traffic is managed. Re-
dundancy is applied only to infrequently accessed cold data
to reduce write amplification, and frequently read read-hot
data are selected for scrubbing based on a cost-benefit analy-
sis (overhead of internal traffic vs. reduction in re-reads). In
this paper, we present the following:

• We construct and describe an SSD architecture that
holistically incorporates complementary reliability en-
hancement techniques used in modern SSDs. (§ 3)

• We evaluate the state-of-the-art solutions across a wide
range of SSD states based on a number of flash mem-
ory error models, and discuss their tradeoffs in terms of
performance, reliability, and lifetime. (§ 4)

• We propose a holistic reliability management scheme
that self-manages the use of multiple error-handling
techniques, and we demonstrate its effectiveness across
a set of real I/O workloads. (§ 5)

2 Background

In this section, we describe the causes of flash memory errors
and their modeling, and the existing reliability enhancement
techniques that correct and prevent errors. For more detailed
and in-depth explanations, please refer to Mielke et al. [43]
for error mechanisms and modeling, and Cai et al. [9] for
error correction and prevention techniques.

2.1 Errors in Flash Memory
We focus on three major sources of flash memory errors:
wear, retention loss, and disturbance.

Wear. Repeated programs and erases (also known as P/E
cycling) wear out the flash memory cells that store electrons
(data), and cause irreversible damage to them [9, 11, 19].
Flash memory manufacturers thus specify an endurance

limit, a number of P/E cycles a flash memory block can with-
stand, and this limit has been steadily decreasing for every
new generation of flash memory. However, the endurance
limit is not a hard limit: not all blocks are created equally
due to process variations, and a number of studies dynami-
cally measure the lifetime of a block to extend its usage [27].

Retention loss. Electrons stored in flash memory cells
gradually leak over time, making it difficult to correctly read
the data stored, and errors caused by retention loss increase
as cells wear [9, 14, 43]. While a number of studies indicate
that retention loss is a dominant source of errors [11, 14],
retention errors are fortunately transient: they reset once the
block is erased [43].

Disturbance. Reading a wordline in a block weakly pro-
grams other wordlines in the block, unintentionally inserting
more electrons into their memory cells [9, 19, 43]. Distur-
bance and retention errors are opposing error mechanisms,
but they do not necessarily cancel each other out: distur-
bance mainly affects cells with fewer electrons (erased state),
but charge leakage affects those with more (programmed
state) [9,43]. Similar to retention loss, errors caused by read
disturbances increase as cells wear and reset once the block
is erased [43].

These three sources of errors are used to model the raw
bit error rate (RBER) of flash memory with the following
additive power-law variant [36, 43]:

RBER(cycles, time,reads) (1)

= ε +α · cyclesk (wear)
+β · cyclesm · timen (retention)
+ γ · cyclesp · readsq (disturbance)

where ε , α , β , and γ are coefficients and k, m, n, p, and q are
exponents particular to a flash memory. These nine parame-
ters define the RBER of a flash memory chip, and Mielke et
al. [43] and Liu et al. [36] further explain the validity for the
additive power-law model in detail.

2.2 SSD Reliability Enhancement Techniques

Table 1 outlines the tradeoffs for the commonly used relia-
bility enhancement techniques.

Error correction code (hard-decision). Hard-decision
ECC such as BCH (code developed by Bose, Ray-
Chaudhuri, and Hocquenghem) [35] is the first line of de-
fense against flash memory errors. When writing, the ECC
encoder computes additional parity information based on
the data, which is typically stored together in the same
page. Flash memory manufacturers conveniently provide ad-
ditional spare bytes within a page for this purpose. When
reading, the hard-decision ECC decoder returns the error-
corrected data or reports a failure after a fixed number of
cycles. With the continued decline in flash reliability, it is
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Table 1: Comparison of SSD reliability enhancement techniques.

Techniques
Impact on average
performance

Impact on tail
performance

Write
amplification

Management
overhead

Related work

ECC
(hard-decision)

Negligible None Negligible None BCH, LDPC [35]

ECC
(soft-decision)

None High Negligible Negligible LDPC [18, 35]

Threshold voltage
tuning

None High None Voltage levels
Read retry [12]
Voltage prediction [14, 38]

Intra-SSD
redundancy

High for small stripes;
low for large stripes

Low for small stripes;
high for large stripes

High
Stripe group
information

Dynamic striping [31, 33]
Intra-block striping [46]
Parity reduction [25, 34]

Background data
scrubbing

Depends Depends Depends
Block metadata
such as erase count
or read count

Read reclaim [22]
Read refresh [37]

becoming increasingly inefficient to rely solely on stronger
ECC engines [15].

Error correction code (soft-decision). Soft-decision
ECC such as LDPC (low-density parity-check) [18, 35] also
encodes additional parity, but uses soft-information—the
probability of each bit being 1 or 0—for decoding. This re-
quires the data in flash memory to be read multiple times.
The error correction strength of soft-decision decoding is or-
ders of magnitude greater than its hard-decision counterpart,
but this is achieved at an expense of multiple flash memory
reads.

Threshold voltage tuning. The electrons stored in flash
memory cells gradually shift over time due to charge leak-
age [11, 14] and disturbance [13, 19]. To counteract this
drift, threshold voltages for detecting the charge levels are
adjustable through special flash memory commands [12]. In
SSD designs without soft-decision ECC, data are re-read af-
ter tuning the threshold voltages if the hard-decision ECC
fails [9]. Although the underlying mechanisms are different,
both soft-decision ECC and threshold voltage tuning share
the same high-level design tradeoff: the greater the probabil-
ity of correcting errors with repeated reads.

Intra-SSD redundancy. SSDs can internally add redun-
dancy across multiple flash memory chips [31, 33, 46], sim-
ilar to how RAID [47] protects data by adding redundancy
across multiple physical storage devices. While both ECC
and RAID-like redundancy enhance the SSD’s reliability by
adding extra parity information, striping data across multi-
ple chips protects the SSD against chip and wordline failures
that effectively renders the traditional ECC useless. In gen-
eral, increasing the stripe size trades the overhead of parity
writes for the penalty of reconstructing data. In the context of
SSDs, employing redundancy amplifies the write traffic not
only because of parity writes, but also because the effective
over-provisioning factor is decreased.

Data scrubbing. We use this as an umbrella term in
this paper for the variety of SSD’s housekeeping tasks
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Figure 2: The overall error-handling architecture of an SSD, and its
associated configuration parameters.

that enhance reliability. This includes read reclaim [22]
that addresses read disturbance-induced errors, and read re-
fresh [37] that handles retention errors. While ECC and volt-
age tuning correct errors, these tasks prevent errors: by mon-
itoring SSD-internal information, data are preventively relo-
cated before errors accumulate to a level beyond error cor-
rection capabilities. In effect, background data scrubbing re-
duces the overhead of error correction by creating additional
internal traffic, but this traffic also affects the QoS perfor-
mance and accelerates wear.

3 Design Tradeoffs for SSD Reliability

To understand how data protection and recovery schemes
in modern SSDs ensure data integrity in the midst of flash
memory errors, we construct an SSD model that holistically
considers the existing reliability enhancement techniques.
Figure 2 illustrates this SSD model with particular emphasis
on error-related components and their configurable parame-
ters.
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Table 2: RBER model parameters. Parameters ε , α , β , γ , k, m, n, p, and q describe the RBER model in Equation 1. R2 represents the
goodness of fit and is computed using the log values of the data and model, and N is the sample size.

Flash memory Year ε α β γ k m n p q R2 N

3x-nm MLC [52] 2011 5.06E-08 1.05E-14 9.31E-14 4.17E-15 2.16 1.80 0.80 1.07 1.45 0.984 98
2y-nm MLC [13, 14] 2015 8.34E-05 3.30E-11 5.56E-19 6.26E-13 1.71 2.49 3.33 1.76 0.47 0.988 173
72-layer TLC 2018 1.48E-03 3.90E-10 6.28E-05 3.73E-09 2.05 0.14 0.54 0.33 1.71 0.969 54
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Figure 3: Projected RBER graphs based on model parameters in Table 2. Each graph shows the error rate caused by the three mechanisms:
wear, retention loss, and disturbance. In the first half of the x-axis, RBER increases due to repeated programs and erases (up to 10K cycles).
In the second half, the cells are kept at 10K P/E cycle, but the data are repeatedly read (up to 10K reads) to induce disturbance errors or are
left unaccessed (up to 1 year) for retention errors.

3.1 Error-Prone Flash Memory

Flash memory is becoming increasingly unreliable in favor
of high-density [20], and we observe this trend across er-
ror datasets we analyzed. Table 2 shows the nine RBER

parameters (see Equation 1 in § 2.1) for three different
flash memory chips: 3x-nm MLC, 2y-nm MLC, and 72-
layer TLC. We curve-fit the parameters of the three chips
through simulated annealing. The datasets for the 3x-nm
MLC [52] and 2y-nm MLC [13, 14]1 are extracted from the
figures in the publications using plot digitization [3], while
the dataset for the 72-layer TLC is provided by a flash mem-
ory manufacturer.

Figure 3 illustrates the contributing factors of errors for
these chips. The graphs are generated based on the RBER
model parameters in Table 2, and show that the overall er-
ror rate increases with the newer and denser flash memories.
The most interesting observation, however, is the dominance
of disturbance errors in the 72-layer TLC. This is in stark
contrast with the 2y-nm MLC whose dominant error is due
to retention loss.

In this work, we neither argue the importance of one error
type over the other, nor claim a shifting trend in dominant
errors. In fact, the sample space and sample size of the three
datasets for the flash memory chips are different, making it
difficult to compare equally. For example, we do not claim
that the 2y-nm MLC in Figure 3b will have a 100% error rate
after 1 year: the projected retention loss error is computed
based on a limited number of RBER data samples that cover
a smaller subset of the sample space. Rather, the graphical

representation of Figure 3 is only used to illustrate the wide
variation in error characteristics, and that an error-handling
technique tailored for one particular memory chip may fail
to meet the reliability requirements in others.

3.2 Mechanism in Flash Memory Controller
The flash memory controller not only abstracts the opera-
tional details of flash memory, but also handles common-
case error correction. In addition to hard-decision ECC, soft-
decision ECC and threshold voltage tuning are implemented
in the controller as their mechanisms simply iterate through
a pre-defined set of threshold voltage levels for successive
reads (although setting appropriate voltage levels may in-
volve the firmware).

The hard-decision ECC tolerates up to n-bit errors, de-
fined by the correction strength. Increasing the ECC
correction strength not only increases the logic complexity
and power consumption, but also inflates the amount of par-
ity data that needs to be stored in flash. The fixed number of
bytes per page (including the spare) is thus the limiting fac-
tor for the ECC’s capability. Errors beyond the hard-decision
ECC’s correction strength are subsequently handled by the
flash memory controller with data re-reads. In these cases,
the same data are accessed again, repeatedly if needed. If
the data cannot be recovered after max retry count, the
firmware is notified of a read error. We model threshold
voltage tuning and soft-decision decoding in a way that each
successive reads effectively reduces the RBER of the data
by retry scale factor. This model is general enough to
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cover both mechanisms, and they will be referred to as data
re-reads henceforth.

3.3 Role of Flash Translation Layer
The flash translation layer (FTL) consists of a number of
SSD-internal housekeeping tasks that collectively hide the
quirks of flash memory and provide an illusion of a tradi-
tional block device. Mapping table management and garbage
collection are the widely known FTL tasks, but these will not
be discussed in detail. In the context of reliability, we focus
on intra-SSD redundancy and data scrubbing.

Intra-SSD redundancy is used to reconstruct data when
ECC (both hard-decision and data re-read) fails. In this
work, we focus on constructing redundancy based on the
physical addresses. Upon writes, one parity is added for
every s data writes, defined by the stripe size. The s
data and one parity create a stripe group, and the parity is
distributed among the stripe group, akin to the workings
of RAID 5. If the flash memory controller reports an un-
correctable error, the firmware handles the recovery mecha-
nism by identifying the stripe group that dynamically formed
when the data were written [31, 32]. If any of the other data
in the same stripe group also fails in the ECC layer, the SSD
reports an uncorrectable error to the host system. If the data
are not protected by redundancy (stripe size of ∞), any
ECC failure causes an uncorrectable error.

While the techniques discussed so far correct errors, data
scrubbing prevent errors from accumulating by relocating
them in the background. The scrubber activates and
deactivates under certain conditions, which depends on
the implementation: it can trigger periodically and scan the
entire address space [6, 45], it can activate once the number
of reads per block exceeds a threshold [22, 30], or it can re-
locate data based on the expected retention expiration [37].

These firmware-oriented reliability enhancements pay a
cost in the present to reduce the penalty in the future. For
intra-SSD redundancy, the increased frequency of writing
parity data reduces the number of reads to reconstruct the
data. For data scrubbing, proactive relocation of data pre-
vents the ECC in the controller from failing. At the same
time, both techniques increase the write amplification and
accelerate wear, not only reducing the lifetime of the SSD,
but also effectively increasing the chance of future errors.
This cyclical dependence makes it difficult to quantify the
exact benefits and overheads of these techniques.

4 Evaluation of SSD Reliability

We implement the flash memory error model and the reliabil-
ity enhancements on top of the DiskSim environment [1] by
extending its SSD extension [5]. We construct three SSDs,
each with three different initial wear states: The 3x-nm MLC
blocks are initialized with 10K, 30K, and 50K P/E cycles on

Table 3: System configuration.

Parameter Value Parameter Value

# of channels 8 Read latency 50µs
# of chips/channel 4 Program latency 500µs
# of planes/chip 2 Erase latency 5ms
# of blocks/plane 1024 Data transfer rate 667MB/s
# of pages/block 256 Physical capacity 256GiB
Page size 16KiB Logical capacity 200GiB

average, the 2y-nm MLC blocks to 2K, 5K, and 10K P/E cy-
cles, and the 72-layer TLC to 1K, 3K, and 5K. These nine
SSD states have different error rates, but are otherwise iden-
tical in configuration. Realistically, these SSDs should have
different capacities (page size, number of pages per block,
number of blocks, etc.) and even operation latencies, but we
use the same internal organization to isolate the effects of re-
liability enhancement techniques on the overall performance.
Table 3 summarizes the SSD’s internal configuration.

We extend our prior work [30] that includes all essen-
tial FTL functionalities such as host request handling and
garbage collection (GC) and implement the discussed relia-
bility enhancement schemes. Host requests are handled in
a non-blocking manner to fully utilize the underlying par-
allelism, and all FTL tasks run independently and concur-
rently. Flash memory requests from these tasks are gener-
ated with some delay to model the think time, and up to eight
tasks can be active concurrently to model the limited num-
ber of embedded processors in SSDs. Host addresses are
translated in 4KiB mapping granularity, and the entire map
is resident in DRAM. Host data, GC data, and data from the
scrubber are written to different sets of blocks to separate hot
and cold data, and they are arbitrated by a prioritized sched-
uler: host requests have the highest priority, then garbage
collection, and lastly scrubbing.

For evaluation, we use synthetic workloads of 4KiB
read/write with a 70:30 mixture, and the access pattern has
a skewed distribution to mimic the SSD endurance workload
specification [2]. I/O requests arrive at the SSD every 0.5ms
on average (2K IOPS): the I/O intensity is intentionally set
so that the garbage collector’s impact on the overall perfor-
mance is properly reflected. The workload runs for an hour,
executing 7.2 million I/Os in total. Prior to each experiment,
data are randomly written to the entire physical space to em-
ulate a pre-conditioned state.

4.1 Error Correction Code
We first investigate how the SSDs perform when relying
solely on the flash memory controller. In this scenario, back-
ground scrubbing is disabled, and no intra-SSD redundancy
is used. We test a number of correction strength, in-
cluding ∞ that corrects all errors. Realistically, stronger ECC
engines require larger ECC parity, but we assume that the
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Figure 4: Average read response time for the three SSDs at various wear states. For each graph, the x-axis shows the correction strength for
the ECC, and the performance is normalized to that with ∞ error correction strength. The response time increases not only when the SSD is
more worn out, but also when weaker ECC is used.
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ECC, only 51% of data are. With more data being re-read, read
disturbance increases the bit error rate.

flash memory page always has sufficient spare bytes. When
ECC fails, data is re-read after adjusting the threshold volt-
age. Each data re-read reduces the RBER by 50% (retry
scale factor of 2), repeating until the error is corrected
(max retry count of ∞).

Figure 4 shows the average response time for read requests
for the three types of SSDs at various wear states. We chose
the ECC correction strengths based on the relative RBER of
the three flash memories. We observe that the performance
degrades not only when the SSD is more worn out but also
with weaker ECC correction strength. In the higher SSD
wear states, errors are more frequent, and weaker ECC in-
duces more data re-reads.

Compared to the 3x-nm (Figure 4a) and 2y-nm MLC (Fig-
ure 4b), the 72-layer TLC in Figure 4c shows a greater per-
formance degradation. This is not only because of the higher
overall RBER, but also because of relatively higher vulnera-
bility to read disturbances (cf. Figure 3c). Figure 5 illustrates
this case: it shows the cumulative distribution of measured
raw bit errors with different ECC strengths for the 72-layer
TLC at 5K P/E cycle wear state. When no data re-reads occur
(∞-bit ECC), 85% of the ECC checks have less than 75-bit
errors. With weaker ECC, however, the subsequent data re-

reads induce additional read disturbance, lowering the CDF
curve. Only 74% of the data have less than 75-bit errors
when using a 75-bit ECC, but this further drops to 51% with
a 25-bit ECC correction strength.

Thus, for read disturbance-sensitive memories, avoiding
frequent data re-reads is critical for improving the perfor-
mance. However, as illustrated in the upper portion of Fig-
ure 5, increasing the ECC strength has diminishing returns.
This necessitates the use of ECC-complementary schemes
that read pages in other blocks to reconstruct data (intra-
SSD redundancy) or reduce the probability of data re-reads
through preventive data relocations (data scrubbing).

4.2 Intra-SSD Redundancy
If data cannot be corrected after a given number of data re-
read attempts, the data are reconstructed using other data
within the stripe group. In this experiment, we examine
the performance, reliability, and write amplification aspect
of intra-SSD redundancy. We present the results from the
72-layer TLC using 75-bit ECC.

Figure 6 shows the results when max retry count is
one: the flash memory controller attempts a data re-read
scheme once before notifying the firmware. As shown in
Figure 6a and Figure 6b, attempting frequent data recon-
struction degrades performance especially in terms of long-
tail latency because of increased internal traffic. The degra-
dation is more severe for higher wear states (more errors),
and greater stripe size (more pages accessed). This perfor-
mance penalty is in addition to the increase in write am-
plification illustrated in Figure 6c. Even though host data
programs are amplified due to parity writes, GC data pro-
grams are amplified at a greater rate because of the reduced
effective capacity: without redundancy, the effective over-
provisioning factor is 28%, but this drops to 20% when
s=15, and to 12% when s=7. Furthermore, using intra-SSD
redundancy does not guarantee full data recovery: accessing
other pages in the stripe group can be uncorrectable through
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Figure 6: Performance, write amplification, and reliability for the 72-layer TLC SSD when max retry count is one. The performances in
Figure 6a and Figure 6b are normalized to a system with ∞ correction strength. Using intra-SSD redundancy increases write amplification
(Figure 6c), but moreover does not warrant full data recovery (Figure 6d).
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(d) Recovery failure.

Figure 7: Performance, write amplification, and reliability for the 72-layer TLC SSD when max retry count is three. The performance
degradation is not as severe as shown in Figure 6, but the write amplification (Figure 7c) remains similar. Reliability improves, but not all
data can be reconstructed fully in the 5K wear state (Figure 7d).

ECC, causing data recovery to fail. Given identical error
rates, s=15 should have a higher failure rate as only one er-
ror is tolerated within a stripe group. While this is observed
in Figure 6d in the lower 1K wear state, s=7 exhibits failure
rates as high as those for s=15 in the higher wear states due
to higher RBER.

Setting the max retry count to one reveals more weak-
ness of intra-SSD redundancy than its strength. In Figure 7,
we increase this parameter to three and observe the differ-
ences. In this setting, the average performance (Figure 7a)
show a negligible difference to the scheme relying solely on
ECC (cf. Figure 4c, 75-bit ECC), and only the 3 nines QoS
(Figure 7b) show a more pronounced difference between
s=15 and s=7. In this scenario, the performance changes are
due to the increase in traffic for writing parity data, and, as
expected, the write amplification measurements in Figure 7c
are similar to that of Figure 6c. Most data recovery attempts
succeed, but still does not warrant full data reconstruction
(Figure 7d): While data are fully recovered in the lower wear
states, recovery failures are observed in the higher 5K wear
state. Further increasing the max retry count suppresses
the use of data reconstruction through redundancy. In such
cases, the benefits of using redundancy scheme are elimi-
nated while the penalty of accelerated wear and increased
write amplification remain.

Unlike the proven-effectiveness in the HDD environment,
redundancy in SSDs falls short in our experiments. Com-
pared to the scheme that relies on data re-read mechanisms
in § 4.1, it performs no better, accelerates wear through in-
creased write amplification, and, what’s worse, may not fully
recover data due to correlated failures. We expect correlated
failures in SSDs to be more prevalent than in HDDs because
of flash memory’s history-dependence: the error rate in flash
memory is a function of its prior history of operations such
as the number of erases, number of reads, and time since its
last program, and these values are likely to be similar across
blocks within a stripe group. With that said, however, the
data re-read mechanism is modeled optimistically in our set-
ting, and in the event of a complete chip or wordline failures,
SSDs have no other way to recover data aside from device-
internal redundancy.

4.3 Background Scrubbing

We perform a set of experiments that measure the effective-
ness of data scrubbing, and for this purpose, we assume an
oracle data scrubber that knows the expected number of er-
rors2 for each data. This is possible in simulation (though
not feasible in practice) as all the error-related parameters
for each physical location in the SSD can be tracked to com-
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(c) Write amplification at the 5K wear state.

Figure 8: Performance and write amplification for the 72-layer TLC SSD using oracle scrubbing. The performances are normalized to an
SSD with ∞ ECC strength. The oracle scrubber’s (de)activation condition uses the expected number of errors per block. The ECC engine
corrects up to 75-bit errors, so the E(err)=50 represents an aggressive scrubber.

pute the RBER at any given point in time. The all-knowing
scrubber activates once the expected number of errors for
any data exceeds a threshold, relocating that data to another
location, and deactivates when the expected number for
all data drops below that threshold. We use the oracle scrub-
ber to illustrate the upper-bound benefits. Similar to § 4.2, we
show the results from the 72-layer TLC using 75-bit ECC.

Figure 8 illustrates the average response time, 3 nines
QoS, and write amplification of the oracle scrubber with
three different trigger conditions. E(err)=50 relocates data
most aggressively, while E(err)=100 does so lazily. There is
little performance loss for the lower wear states, but for the
5K wear state, the difference between the aggressive and the
lazy scrubber can be observed in the 3 nines QoS (Figure 8b).
By proactively relocating data, the scrubber avoids the long-
tail latencies caused by data re-reads. However, this comes
at an increase in write amplification in the high wear states,
as illustrated in Figure 8c. This shows the relative amount
of write amplification per source, including that caused by
the read scrubber. The aggressive scrubber in (E(err)=50)
moves more data than garbage collection, resulting in a much
higher write amplification; this increases the SSD’s internal
traffic, adding back some of the long-tail latency it reduced.
The lazy counterpart, on the other hand, minimally relocates
data.

Scrubbing is not a panacea, but it is more suitable than
intra-SSD redundancy for complementing the underlying
ECC. The scrubber’s performance overhead is less than the
redundancy scheme, and the increase in write amplification
only occurs towards the end-of-life phase. There are several
factors that contribute to our results. First, the out-of-place
update for flash amplifies the overhead of garbage collec-
tion when using intra-SSD redundancy. Second, the history-
dependent error patterns of flash memory work against re-
dundancy because of correlated failures, but they make pre-
ventive mechanisms more effective because of error pre-
dictability.

4.4 Retention Test
While the experiments so far considered a range of wear
states (erase count) and the dynamicity of internal data ac-
cesses (read count), the 1 hour experiment is too short to ex-
ercise scenarios where data are lost due to retention errors:
that is, all the pre-conditioned data are assumed to be written
just prior to starting each workload. In this subsection, we
explore the effects of data loss due to charge leakage by ini-
tializing a non-zero time-since-written value for each data.

Figure 9 shows how the representative error-handling ap-
proaches (ECC+re-read of § 4.1, s=15 redundancy of § 4.2,
and aggressive scrub of § 4.3) perform when emulating non-
zero time-since-written values. SSDs are all at the end-of-
life state (50K cycles for the 3x-nm MLC, 10K cycles for
the 2y-nm MLC, and 5K cycles for the 72-layer TLC), and
they have an ECC correction strength of 4-bits for the 3x-nm,
10-bits for the 2y-nm, and 75-bits for the 72-layer (cf. Fig-
ure 4). All performances are normalized to that with an SSD
with ∞-bit ECC. We observe that the performance difference
between the background scrub approach and others becomes
more noticeable. The scrubber proactively relocates data to
fresh blocks to prevent upcoming reads from experiencing
long-tail latencies. This is particularly more effectively for
the 2y-nm MLC that exhibits vulnerability to retention er-
rors (cf. Figure 3b). Compared to the scheme that relies
on data re-reads, the aggressive scrubber reduces the perfor-
mance degradation by 23% for the [30,90] days setting.

4.5 Discussion
We briefly summarize our findings:

• In the high wear states, data re-reads (§ 4.1) severely de-
grade the performance, increasing the average response
time by up to 3.2× when a weak ECC engine is used.
Each data re-read further increases the bit error rate that,
in turn, cause subsequent accesses to perform more data
re-reads.
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(a) 3x-nm MLC at the 50K wear state.
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(b) 2y-nm MLC at the 10K wear state.
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(c) 72-layer TLC at the 5K wear state.

Figure 9: Average read response time for the three SSDs (all at end-of-life wear state) with various initial time-since-written states. For 0
days, all blocks starts with no retention loss penalty. For [0,30] days, each block starts with an initial time-since-written between 0 and 30
days. Similarly, [30,90] days initializes blocks with values between 30 and 90 days. Performance is normalized to ∞-bit ECC.

• Intra-SSD redundancy (§ 4.2) shows more disadvan-
tages than its merits, in terms of performance, write
amplification, and reliability. However, when encoun-
tering a random chip and wordline failure, it is the only
mechanism to recover data.

• Background scrubbing (§ 4.3) is not a cure-for-all, but
is more robust, reducing the performance degradation
to as low as 1.25× compared to the ideal no-error sce-
nario even at the end-of-life states. The effectiveness of
scrubbing depends on the accuracy of error prediction
and internal traffic management. The oracle scrubber
circumvents the first issue and reduces the probability
of data re-reads, but the created internal traffic degrades
performance.

Our experiments, however, are not without limitations.
First, the data re-read mechanism we modeled is too opti-
mistic, as it eventually corrects errors given enough re-reads.
Because of this, uncorrectable data errors are only observed
in the intra-SSD redundancy experiments in the form of re-
covery failures, while the other experiments are not able to
produce such scenarios. A more accurate approach requires
an analog model for each flash memory cell, integrated with
the SSD-level details such as FTL tasks and flash memory
scheduling. Second, the short 1 hour experiments are insuf-
ficient to show UBER < 10−15. I/Os in the order of petascale
are required to experimentally show this level of reliability.
Lastly, while Equation 1 models flash memory errors as a
function of history-dependent parameters, real flash memo-
ries nevertheless exhibit random and sporadic faults. These
manifest as not only as chip and wordline failures, but also
as runtime bad blocks.

5 Holistic Reliability Management

Our experiments on the effectiveness of existing reliability
enhancements across a wide range of SSD states show that

Flash memory

ECC and read retry

SSD

Flash Translation Layer

Flash Memory Controller

Intra-SSD 

redundancy

Cost-benefit

RS

Cost-benefit

GCHost

request

handling

Figure 10: The overall SSD architecture for holistic reliability
management. Data written by the garbage collector are protected
through redundancy, and read scrubber selects data based on its cost
(number of valid data) and benefit (re-read count).

there is no one size fits all solution. Data re-read mecha-
nism, even though optimistic in our model, not only causes
long-tail latencies for that data, but also increase the error
rate for other data in the same block. Intra-SSD redundancy,
while relevant against random errors, does not offer signif-
icant advantages due to its high write amplification. Back-
ground data scrubbing, though relatively more robust than
other techniques, accelerates wear, and the internal traffic
generated by it negates the benefits of error prevention.

Based on our observation, we propose that these exist-
ing techniques should be applied in a coordinated manner
as shown in Figure 10. Redundancy should be selectively
applied only to infrequently accessed cold data to reduce
write amplification while providing protection against reten-
tion errors. Frequently read read-hot data should be relo-
cated through scrubbing to reduce the data re-reads, but the
benefit of scrubbing should be compared against the cost of
data relocation. Update-frequent write-hot data require less
attention as it is likely written to a fresh block due to the out-
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Table 4: Trace workload characteristics. Access footprint is the size of the logical address space accessed, and Data accessed is the
total amount of data transferred. Hotness is the percentage of data transferred in the top 20% of the frequently accessed address.

Workload Application
description

Duration
(hrs)

Access footprint (GiB) Data accessed (GiB) Hotness (%)

Write Read Write Read Write Read

DAP-DS Advertisement caching tier 23.5 0.2 3.5 1.0 40.5 77.8 35.3
DAP-PS Advertisement payload 23.5 35.1 35.1 42.9 35.2 34.6 20.3
LM-TBE Map service backend 23.0 192.7 195.5 543.7 1760.0 34.4 45.1

MSN-BEFS Storage backend file 5.9 30.8 45.8 102.3 193.7 56.9 58.7
MSN-CFS Storage metadata 5.9 5.7 14.6 14.0 27.0 58.5 56.6
RAD-AS Remote access authentication 15.3 4.8 1.2 18.7 2.4 63.3 53.1
RAD-BE Remote access backend 17.0 14.7 8.3 53.3 97.0 49.0 32.7

of-place updates in SSDs. For data classification, we take
advantage of SSD’s existing mechanisms: data gathered by
the read scrubber (RS) is read-hot, while the leftover data se-
lected by the garbage collector (GC) is cold. Write-hot data
will be naturally invalided in GC and RS’s blocks, and will
be re-written to new blocks allocated for host data. This ap-
proach for data classification is reactive and conservative as
it relies on GC and RS’s selection algorithm after the data is
first written by the host request handler.

The background data scrubbing in § 4.3 used an oracle
scrubber that knows the expected error rate for all data. This
is impractical in implementation and was only used to illus-
trate the best-case usage of scrubbing. In the cost-benefit
analysis for selecting victims to scrub, the number of valid
data is used to represent the cost of relocation. The benefit
is the reduction in re-reads after scrubbing, and we use the
number of past re-reads for each block since its last erasure
as a proxy. That is, if the number of re-reads for a block
is large, the potential benefit of scrubbing that block is also
large.

5.1 Workload and Test Settings

We use real-world I/O traces from Microsoft production
servers [29] to evaluate the representative error-handling ap-
proaches and our proposed holistic reliability management
(HRM). The traces are modified to fit into the 200GiB range,
and all the accesses the aligned to 4KiB boundaries, the same
as the mapping granularity for the SSD. Similarly to the syn-
thetic workload evaluation, the logical address range is ran-
domly written to pre-condition the SSD. Table 4 summarizes
the trace workload characteristics with particular emphasis
on data access pattern. Access footprint is the size of
the logical address space accessed (of the total 200GiB),
and Data accessed is the total amount of data transferred.
Hotness is the percentage of data transferred in the top 20%
of the frequently accessed addresses.

We evaluate the following four schemes. Intra-SSD re-
dundancy is omitted as it performed badly due to high write
amplification.

∞-bit ECC corrects all errors, and any performance degra-
dation is caused by queueing delays and garbage collec-
tion. This represents the baseline performance.

ECC + re-read (§ 4.1) relies on the ECC engine of the flash
memory controller, and repeatedly re-reads the data un-
til the error is corrected. 4-bit ECC is used for the 3x-
nm SSD, 10-bit ECC for the 2y-nm SSD, and 75-bit for
the 72-layer.

Oracle scrub (§ 4.3) knows the expected number of errors
for all data and preventively relocates them before er-
rors accumulate. In an unfortunate event of an ECC
failure, it falls back to the ECC + re-read approach.

HRM (§ 5) selectively employs redundancy to data gathered
by the garbage collector, conditionally re-reads data de-
pending on its redundancy level, and judiciously man-
ages data scrubbing through a cost-benefit analysis.

5.2 Experimental Results
Figure 11 shows the performance of ECC+re-read, Oracle
scrub, and the proposed HRM, normalized to the perfor-
mance of ∞-bit ECC on the three SSDs, each at its end-
of-life phase. One of the most noticeable results is the per-
formance under DAP-DS, which shows that repeated data re-
reads severely degrade the performance. DAP-DS has a small
write footprint (0.2GiB accessed), a high read/write ratio
(40.5GiB read vs. 1.0GiB write), and a high write-hotness
(77.8% of write data are to 20% of the address). This means
that without preventive data relocation, only a small write-
hot region will be frequently relocated during garbage col-
lection, and a large region of read-only data suffers from read
disturbance. In some cases, HRM even performs better than
the baseline, as shown in DAP-DS of Figure 11b. This is due
to data relocation (unexpectedly) improving parallelism.

Though marginal, ECC+re-read achieves better perfor-
mance under DAP-PS in Figure 11c. The lack of read skew in
the workload (only 20.3% of reads from the top 20% of the
address) reduces the effects of read disturbance, as accesses
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Figure 11: Average read response time on three SSDs, all at their
end-of-life phase. In order to ensure data integrity, ECC+re-read
adds 18.7%, 5.0%, and 155.1% overhead on average for the 3x-
nm MLC, 2y-nm MLC, and 72-layer TLC, respectively. Preven-
tive measures reduce this overhead in general: Oracle scrub adds
12.3%, 1.7%, and 64.5% overhead, and HRM adds 10.4%, 0.9%,
and 59.0% overhead, respectively.

are not concentrated to a particular block. On the other hand,
workloads with high read skew (LM-TBE, MSN-BEFS, and
MSN-CFS) show that the performance degradation can be re-
duced by preventively relocating data when the read accesses
are concentrated. In particular, Oracle scrub outperforms
HRM under MSN-BEFS for all three SSDs. This performance
gap between Oracle scrub and HRM, however, is very small:
3% at most.

Overall, ECC+re-read adds 18.7%, 5.0%, and 155.1%
overhead on average for reliability to the 3x-nm MLC (Fig-
ure 11a), 2y-nm MLC (Figure 11b), and 72-layer TLC (Fig-
ure 11c), respectively. Oracle scrub that knows the error
rate for all data reduces this overhead to 12.3%, 1.7%, and

64.5%, respectively. By judiciously selecting data to relo-
cate, HRM further reduces the overhead to 10.4%, 0.9%,
and 59.0%, respectively. In HRM, data not relocated by the
scrubber are protected by selective redundancy. Even though
Oracle scrub represents the upper-bound benefit of scrub-
bing, HRM achieves better performance overall by reducing
the relocation traffic and delegating the responsibility of data
protection for unaccessed data to redundancy.

6 Related Work

To the best of our knowledge, our work first presents a holis-
tic study on the interactions between multiple reliability en-
hancement techniques and their overall impact on perfor-
mance in modern SSDs. Our work builds upon a number
of prior work from the reliability enhancement techniques to
QoS-conscious SSD designs for large-scale deployments.

6.1 Reliability Enhancement
LDPC is widely used in the communications domain and is
slowly gaining attention for storage due to its error correc-
tion capability. In the context of flash memory-based stor-
ages, LDPC-in-SSD [54] reduces the LDPC’s long response
time by speculatively starting the soft-decision decoding and
progressively increasing the iterative memory-sensing level.
However, its interaction with other reliability enhancement
techniques is not examined.

A series of work exists on threshold voltage prediction for
flash memory reads. HeatWatch [38] predicts the change
in threshold voltage level caused by the self-recovery effect
of flash memory, RDR [13] predicts the changes caused by
read disturbance, and ROR [14], by retention error. While
these techniques reduce the raw bit error rate by 36%–93.5%,
the system-level implications (particularly for QoS perfor-
mance) are not extensively covered.

Aside from threshold voltage tuning, other tunable volt-
ages exist in flash memory, and several prior work study the
performance and reliability tradeoff for these settings. Re-
ducing the read pass-through voltage mitigates the effects
of read disturbance [13, 22], and tuning the program volt-
ages tradeoff the flash memory’s wear and SSD’s write per-
formance [26, 36, 51]. These approaches complement our
study and further diversify the system parameters in the
performance-reliability spectrum.

Prior work on intra-SSD redundancy techniques focus on
reducing the overhead of parity updates [25,34], dynamically
managing the stripe size [31,33], and intra-block incremental
redundancy [46]. While these approaches are relevant for
enhancing the SSD’s reliability, we focus on the interaction
of these techniques with error correction and error prevention
schemes.

In addition to considering multiple reliability enhance-
ment techniques, our work borrows ideas from prior work
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on judicious data placement that supplements data protec-
tion. LDPC-in-SSD [54] splits a single ECC codeword
across multiple memory chips to guard against asymmet-
ric wears; WARM [37] groups write-hot data together and
relaxes the management overhead for preventing retention-
induced errors; RedFTL [22] identifies frequently read pages
and places them in reliable blocks to reduce the overhead of
read reclaim. In our work, we holistically cover all causes of
errors and study the interactions among multiple reliability
enhancements.

Our investigation of SSD’s multiple reliability enhance-
ment schemes is inspired by HDD’s sector error studies that
evaluate intra-HDD redundancy schemes and disk scrubbing
techniques [24, 40, 49]. However, we re-assess the effec-
tiveness of these techniques in the context of SSDs for the
following three reasons. First, the out-of-place update in
SSDs makes intra-SSD redundancy techniques [31,33,46] to
be fundamentally different from intra-HDD techniques [17]
that allow in-place update of parity data. Second, the ex-
isting need for SSD-internal data relocations amortizes the
overhead of implementing read reclaim/refresh inside the
SSD, while disk scrubbing for HDDs requires external man-
agement [6, 45]. Lastly, error patterns in flash memory are
history-dependent (number of erase, time-since-written, and
number of reads), and can be monitored and controlled to
manage the error rate; this is in contrast to errors in HDD
that are mostly random events (though temporally and spa-
tially bursty) [8, 45, 49].

6.2 QoS Performance

Improving the QoS performance of SSDs is of great inter-
est in large-scale systems [16, 21, 23], and few recent work
suggest several methods in designing SSDs with short tail la-
tencies. AutoSSD [30] dynamically manages the intra-SSD
housekeeping tasks (such as garbage collection and read
scrubbing) using a control theoretic-approach for a stable
performance state, and RLGC [28] schedules garbage col-
lection by predicting the host’s idle time using reinforcement
learning. ttFlash [53] exploits the existing intra-SSD redun-
dancy scheme and reconstructs data when blocked by SSD-
internal tasks to improve QoS performance. We expect QoS-
aware scheduling to become increasingly important as more
flash memory quirks are introduced, and reliability manage-
ment in conjunction with scheduling is a central design deci-
sion for reducing tail latencies.

Despite the various efforts at the SSD device-level for QoS
performance, large-scale systems nevertheless replicate data
across devices, servers, data centers for responsiveness and
fault-tolerance [16]. Thus, fail-fast SSDs are desirable over
fail-slow ones under such circumstances so that replicated
data are instead retrieved. This has culminated in the pro-
posal of read recovery level [4] that allows a configurable
tradeoff between QoS performance and device error rate.

Such tunable service-level agreement between the system
and the device further necessitates an comprehensive relia-
bility management.

The increasingly unreliable trend of flash memory incites
large production environments to independently study the
failure patterns of SSDs [39, 44, 50]. While these stud-
ies provide valuable insight on correlating SSD failures and
monitored information (such as erase counts, number of
reads, amount of data written), they do not directly address
how SSD reliability enhancement techniques should be con-
structed internally.

7 Conclusion

In this work, we examine the design tradeoffs of the exist-
ing reliability enhancement techniques in SSDs across mul-
tiple dimensions such as performance, write amplification,
and reliability. Our findings show that existing solutions ex-
hibit both strengths and weaknesses, and based on our ob-
servations, we propose a reliability management scheme that
selectively applies appropriate techniques to different data.

There are several research directions that need further in-
vestigation. First, the limitation of our study reveals the ne-
cessity to integrate the SSD-level design framework (FTL
and flash controller) and memory cell-level models that ac-
curately describe electron distributions. Second, there exists
a need to mathematically model the effectiveness of data re-
reads and data scrubbing, so that device reliability can be
demonstrated without petascale I/O workloads.
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Notes
1 The dataset for the 2y-nm MLC comes from two different papers by

the same author. The author informed us that the two papers used different
chips of the same manufacturer. Due to lack of publically available RBER
data of similar generation, however, we assume that the two chips are simi-
lar enough to create a representative 2y-nm MLC. One paper provided error
rate as a function of wear and time-since-written, while the other, as a func-
tion of wear and read disturbance.

2 During ECC checks, errors are generated randomly using the binomial
probability distribution, but the expected number of errors for the oracle
scrubber is deterministically computed using the RBER at that moment.
This means that ECC may fail even if the expected number of errors is
below the correction strength, and vice versa.
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