
Open access to the Proceedings of the
17th USENIX Conference on File and

Storage Technologies (FAST ’19)
is sponsored by

Storage Gardening: Using a Virtualization Layer for
Efficient Defragmentation in the WAFL File System

Ram Kesavan, Matthew Curtis-Maury, Vinay Devadas, and Kesari Mishra, NetApp

https://www.usenix.org/conference/fast19/presentation/kesavan

This paper is included in the Proceedings of the
17th USENIX Conference on File and Storage Technologies (FAST ’19).

February 25–28, 2019 • Boston, MA, USA

978-1-939133-09-0

Storage Gardening: Using a Virtualization Layer for
Efficient Defragmentation in the WAFL File System

Ram Kesavan, Matthew Curtis-Maury, Vinay Devadas, and Kesari Mishra

NetApp, Inc

As a file system ages, it can experience multiple forms of
fragmentation. Fragmentation of the free space in the file
system can lower write performance and subsequent read
performance. Client operations as well as internal opera-
tions, such as deduplication, can fragment the layout of an in-
dividual file, which also impacts file read performance. File
systems that allow sub-block granular addressing can gather
intra-block fragmentation, which leads to wasted free space.
This paper describes how the NetApp® WAFL® file system
leverages a storage virtualization layer for defragmentation
techniques that physically relocate blocks efficiently, includ-
ing those in read-only snapshots. The paper analyzes the
effectiveness of these techniques at reducing fragmentation
and improving overall performance across various storage
media.

1 Introduction

File systems typically allocate physically contiguous blocks
in storage devices to write out logically sequential data and
metadata. This strategy maximally uses the write bandwidth
available from each storage device since more blocks can be
written to it using fewer write I/Os, and it allows for op-
timal performance when that data or metadata is later read
sequentially. Common operations such as file creations, re-
sizes, and deletions age a file system, resulting in free space
fragmentation and file layout fragmentation. Free space frag-
mentation results in reduced contiguous physical allocations,
which in turn lowers file system write throughput [32]. Fur-
thermore, it limits the system’s ability to optimally lay out
logically sequential data and metadata, thereby contributing
to file layout fragmentation [33, 35]. Fragmentation impacts
the I/O performance of both hard drives (HDDs) and solid
state drives (SSDs), although in different ways.

File sizes rarely align with the file system block size, thus
there is potential for intra-block wastage of storage space.
Some file systems provide the ability to address sub-block
chunks to avoid such wastage and improve storage effi-
ciency [25, 31, 37]. However, such sub-block indexing in-
troduces the potential for intra-block fragmentation, which

occurs as chunks within a block are freed at different times.
A copy-on-write (COW) file system never overwrites a

block containing active data or metadata in place, which
makes it more susceptible to fragmentation [12]. WAFL [14]
is an enterprise-grade COW file system that is subject to free
space, file layout, and intra-block fragmentation. In this pa-
per, we present techniques that efficiently address each form
of fragmentation in the WAFL file system, which we refer
to collectively as storage gardening. These techniques are
novel because they leverage WAFL’s implementation of vir-
tualized file system instances (FlexVol® volumes) [9] to ef-
ficiently relocate data physically while updating a minimal
amount of metadata, unlike other file systems and defrag-
mentation tools. This virtualization layer provides two ad-
vantages: (1) The relocation of blocks needs to be recorded
only in the virtual-to-physical virtualization layer rather than
requiring updates to all metadata referencing the block. (2) It
even allows relocation of blocks that belong to read-only
snapshots of the file system, which would be ordinarily be
prohibited.

Most previous studies of fragmentation predate modern
storage media (i.e., SSD drives) [32, 33, 34]. Other studies
were performed on commodity-grade systems (with single
drives) [5, 16]; these studies draw conclusions that do not
apply to enterprise-grade systems. The WAFL file system
can be persisted on a variety of storage media, which makes
it well-suited for this study on fragmentation. We analyze
each form of fragmentation and evaluate our defragmenta-
tion techniques with various storage media permutations.

To summarize our findings, we see significant improve-
ments in data layout metrics on HDD- and SSD-based sys-
tems using our approaches. These improvements trans-
late into significant performance gains on HDD-based sys-
tems, which are typically I/O-bound, as well as mixed-media
(HDD and SSD) systems. In contrast, the same approaches
generally show negative overall performance impact on all-
SSD systems, which are more sensitive to the CPU overhead
incurred by defragmentation. We conclude that for SSD-
based systems, it is preferable (and advantageous) to per-
form defragmentation only during periods of low load. Our

USENIX Association 17th USENIX Conference on File and Storage Technologies 65

lessons are applicable to other file systems as well, especially
ones that are COW, such as ZFS [27] and Btrfs [31].

2 An Overview of WAFL

This section presents background on WAFL—an enterprise-
grade UNIX-style file system—and the trade-offs inherent in
defragmentation.

2.1 File System Layout and Transaction
A Data ONTAP® storage system uses the proprietary
WAFL [14] file system, which is persisted as a tree of 4KiB
blocks, and all data structures of the file system, including its
metadata, are stored in files. Leaf nodes (L0s) of an inode’s
block tree hold the file’s data. The next higher level of the
tree is composed of indirect blocks (L1s) that point with a
fixed span to children L0s; L2s point to children L1s, and so
on. The number of levels in the block tree is determined by
the size of the file. Each inode object uses a fixed number
of bytes to store file attributes and the root of its block tree,
unless the file size is tiny, in which case the file data is stored
directly within the inode. All inodes for data and metadata
are arranged in the L0s of a special file whose block tree is
rooted at the superblock. WAFL is a copy-on-write (COW)
file system that never overwrites a persistent block in place.
Instead, all mutations are written to free blocks and the pre-
viously allocated blocks become free.

Client operations that modify the file system make
changes to in-memory data structures and are acknowledged
once they have also been logged to nonvolatile memory.
WAFL collects and flushes the results of thousands of op-
erations from main memory to persistent storage as a sin-
gle atomic transaction called a consistency point (CP) [9, 14,
19]. This delayed flushing of “dirty” blocks allows better
layout decisions and amortizes the associated metadata over-
head. During each CP, all updates since the previous CP
are written to disk to create a self-consistent, point-in-time
image of the file system. A snapshot of the file system is
trivially accomplished by preserving one such image. The
WAFL write allocator assigns available free blocks of stor-
age to the dirty blocks during a CP. The goals of the write
allocator are to maximize file system write throughput and
subsequent sequential read performance.

We have previously presented the data structures and al-
gorithms used to steer the write allocator toward the empti-
est regions of storage, with built-in awareness of RAID ge-
ometry and media properties [17]. Prior work has also de-
scribed how CPs manage free space in order to maximize
various performance objectives [8]. In this paper, we extend
these concepts further, showing how storage gardening can
increase the availability of high-quality regions for writing
and recreate the desired layout after file system aging has
undone the initial write allocation.

Figure 1: The relationship of a FlexVol volume with its container
file and the aggregate. A real-world aggregate has many more
drives.

2.2 FlexVol Volumes and Aggregates

WAFL defines collections of physical storage as aggregates,
which are typically several dozen TiB in size. A WAFL ag-
gregate can consist of different permutations of storage me-
dia: HDDs (hard drives) only, SSDs (solid state drives) only,
HDDs and SSDs, SSDs and S3-compliant object stores, and
LUNs exported from third-party storage. Storage devices
with no native redundancy, such as HDDs and SSDs, are or-
ganized into RAID [6, 10, 29] groups for resiliency. Multiple
aggregates are connected to each of two ONTAP® nodes that
are deployed as a high-availability pair. Within each aggre-
gate’s physical storage, WAFL houses and exports hundreds
of virtualized WAFL file system instances called FlexVol vol-
umes [9].

Each aggregate and each FlexVol is a WAFL file system.
A block in any WAFL file system instance is addressed by a
volume block number, or VBN. WAFL uses a Physical VBN
to refer to a block in the aggregate; the Physical VBN maps
to a location on persistent storage. A block in a FlexVol
is referenced by a Virtual VBN. FlexVols are stored within
files that reside in the aggregate—the blocks of a FlexVol
are stored as the L0 blocks of a corresponding container file.
The block number in the FlexVol (Virtual VBN) corresponds
to the offset in the container file. Thus, the L1 blocks of
the container file are effectively an array that is indexed by
the Virtual VBN to find the corresponding Physical VBN. In
other words, container file L1 blocks form a map of Physical
VBNs indexed by the Virtual VBNs, which we call the con-
tainer map. Data structures in the FlexVol store a cached
copy of the Physical VBN along with the Virtual VBN point-
ers. In most cases, the cached Physical VBN helps avoid the
extra CPU cycles and storage I/O for consulting the container
map. It is possible for the cached Physical VBN in a FlexVol
structure to become stale, in which case the container map is
consulted for the authoritative version. Fig. 1 illustrates the

66 17th USENIX Conference on File and Storage Technologies USENIX Association

relationship between the Physical VBNs in an aggregate and
the blocks of a File A in a FlexVol.

This virtualization of storage for blocks in a FlexVol and
the corresponding indirection between Virtual VBNs and
Physical VBNs through the container map provide the ba-
sis for the storage gardening techniques presented in this pa-
per, as well as a wide range of technologies, such as FlexVol
cloning, replication, thin provisioning, and more [9].

2.3 Performance and Defragmentation
Modifications to data and metadata in a COW file system,
such as WAFL, fragment both the layout of files and the ag-
gregate’s free space. WAFL also supports sub-block address-
ing, and uses that to compact sub-4KiB chunks into a single
block. These compacted blocks become fragmented as their
constituent chunks are freed. Subsequent sections detail the
impact of each form of fragmentation. Defragmentation is
typically accomplished by relocating in-use blocks or chunks
from badly fragmented regions of a file or file system. Re-
locating a block is trivial in many cases; the pointer stored
in a parent indirect can be fixed up to point to a relocated
child’s new physical location. Although most file systems
prevent relocation of blocks that belong to read-only snap-
shots, WAFL provides this functionality. Two requirements
exist to support block relocation below the file system in the
storage layer: (1) the ability to virtualize the address space,
which WAFL provides in the form of FlexVol layering, and
(2) the ability to detect stale pointers. Each of these abilities
is detailed in Sec. 3.3. Although the CP amortizes the over-
head associated with re-writing these blocks, defragmenta-
tion comes at a cost (CPU cycles and I/Os). An enterprise
storage system must consider this cost in the context of the
storage media type before it chooses to defragment. This pa-
per explains the defragmentation techniques used by WAFL,
and how these trade-offs play out in various Data ONTAP
configurations.

3 Free Space Fragmentation

This section discusses the effect of free space fragmentation
and the technique used to counter it.

3.1 Background on Space Fragmentation
WAFL groups HDDs and SSDs of an aggregate into RAID
groups to protect against device errors and failures. As
Fig. 2(A) shows, a stripe is a set of blocks, one per de-
vice, that share the same parity block. A full stripe write
is one in which all data blocks in the stripe are written out
together such that RAID can compute the parity without ad-
ditional reads. Fragmentation of free space leads to partial
stripe writes, shown in Fig. 2(B), which require RAID to
read data blocks to compute parity [29]. Writing logically

Figure 2: (A) A sample RAID-4 group with 3 data and 1 parity
storage device (for simplicity). (B) A sample aged RAID group
with free space fragmentation.

sequential blocks of the file system to consecutive blocks of
a storage device reduces the total number of write I/Os to the
device and improves sequential read performance, because
the blocks can be read with a single I/O [2]. Contiguous free
space on devices, such as on D1 in Fig. 2(B), is required to
meet this objective, by facilitating long write chains. Frag-
mented free space decreases the availability of contiguous
free blocks on each device, as shown on drives D2 and D3.

The latency of a write operation is not directly affected
by free space fragmentation because WAFL acknowledges a
write operation immediately after it is logged to nonvolatile
memory. Fragmentation makes each CP more expensive,
which indirectly impacts client operations. First, more CPU
cycles are required to find free blocks to allocate [19] and
compute RAID parity, which causes the WAFL scheduler to
divert more CPU away from client operations so the CP can
complete in time. Second, more I/Os of shorter write chains
are required to flush out all the dirty blocks of the CP, which
takes storage I/O bandwidth away from client operations.

Fragmentation can also impact performance by making
free space reclamation more expensive in terms of CPU cy-
cles and metadata updates. Over time, several improvements
to free space reclamation have ensured that WAFL now per-
forms efficiently even in the presence of fragmentation [19].
However, this concern still applies in most other file systems.

3.2 Segment Cleaning in WAFL
The goal of free space defragmentation is to make emptier
regions of free space available to the write allocator. In-use
blocks need to be efficiently relocated to create large areas of
free space without violating invariants associated with blocks
in FlexVol snapshots. Prior work [17] describes how the
WAFL write allocator segments each RAID group into al-
location areas (AAs) when choosing free Physical VBNs for
the CP. As Fig. 2(A) shows, an AA is a set of consecutive
RAID stripes; the AA size depends on storage media prop-

USENIX Association 17th USENIX Conference on File and Storage Technologies 67

erties [17]. Defragmentation operates by segment cleaning
at the AA granularity. The cleaning of an AA entails con-
sulting free space metadata in WAFL [18] to pick stripes in
the AA that are worth cleaning, reading all in-use blocks of
such stripes into the buffer cache, and tagging them dirty.
WAFL stores a context together with each written block [36],
which identifies its file and file block offset1. Cleaning uses
this context to determine the file and offset of the in-use
block and marks the buffer dirty in the corresponding file.
The subsequent CP processes these dirty buffers (together
with all others) and writes them out to new Physical VBNs,
thereby freeing the previously used blocks and creating an
emptier AA. The parent indirect block of such a rewritten
block (much like that of any dirty block) is updated by the
CP to reflect its new Physical VBN.

3.3 Blocks in the FlexVol Volume
The vast majority of the blocks in an aggregate belong to its
FlexVols, because they contain user data. WAFL leverages
the indirection provided by the FlexVol virtualization layer to
efficiently relocate FlexVol blocks. In particular, such blocks
are relocated by loading and dirtying them as L0 blocks of
the corresponding container file, rather than as blocks in the
block tree within the volume. Thus, a relocated block gets a
new Physical VBN, but its Virtual VBN remains unchanged
and no changes are made within the volume. Fig. 3 shows
an example in which blocks are moved from within alloca-
tion areas AAx and AAy. The cleaner determines all in-use
blocks (i.e., p1–p5) in these AAs and reads each of these
blocks into memory, along with its associated context. The
context for a block in a FlexVol refers to its container file and
Virtual VBN. Thus, p1–p3 of File A are marked as dirty L0s
of FlexVol 1’s container file, and p4–p5 are marked as dirty
L0s of File B (a metadata file in the aggregate). In the subse-
quent CP, the write-allocator rewrites these blocks together
with other dirty buffers to a new AAz, thereby emptying AAx
and AAy. Note that File A’s indirect blocks continue to point
to stale Physical VBNs p1–p3 (as discussed in detail later
in this section), whereas File B and the container file of the
FlexVol are up to date.

Leveraging the virtualization layer provided by the con-
tainer file yields two key benefits. First, it facilitates relo-
cation of blocks in a snapshot because file system invariants
associated with snapshots are preserved within the FlexVol
layer. Blocks in a snapshot image of the FlexVol are im-
mutable and therefore forbidden from being dirtied and pro-
cessed by the CP. Such rules are typical across file system
implementations. In theory, it is possible to physically relo-
cate blocks within snapshots without virtualization, but this
requires the ability to update metadata within a snapshot to

1This context was introduced originally to protect against lost or misdi-
rected writes [3], so that a subsequent read can detect a mismatch from the
expected context.

Figure 3: (A) 4 drives with 5 blocks randomly allocated in AAx and
AAy and the same 5 blocks relocated to AAz to create empty AAs.
(B) Impact of block relocation due to segment cleaning within the
L1s of File A in FlexVol 1 and a File B in that aggregate, and the
relevant changes to the container file.

reflect those relocations. In a COW file system, such updates
cascade up the file system tree, resulting in further updates.
Physical-only relocation via the container preserves the Vir-
tual VBN, and that leaves the FlexVol snapshot image intact,
including all file system metadata for block allocation. Given
the popularity of FlexVol snapshots, such block relocation is
critical to efficient defragmentation2.

The second benefit is that the requisite metadata updates
are minimized. Relocating a block is expensive in a COW
file system like WAFL because every ancestor block in the
file system tree needs to be rewritten to point to the new lo-
cation of its child. By leveraging the container map for the
FlexVol, blocks within the FlexVol are not rewritten. Further,
as described in Sec. 2.1, the file system tree of blocks rooted
at the superblock of a FlexVol can be quite tall, whereas the
height of the container file is a function only of the size of
its Virtual VBN space. Thus, the tree of blocks comprising
the container file is significantly shorter, and higher-level in-
directs of a container file are likely to be already dirty due to
the batching effect of the CP.

A file system operation that accesses a relocated block of
File A uses the stale pointer in that indirect, such as p1, to
read a block from storage. If WAFL has not yet assigned the
previously freed p1 for a new write, the context check suc-
ceeds and the I/O is accomplished. Otherwise, the context
check fails and the operation pays a redirection penalty to
consult the container map, using v1 to read p′1. The pointer
in File A’s parent indirect block can optionally be fixed to
p′1 either via a background scan or opportunistically after the
redirected read to avoid the penalty on subsequent accesses.
The use of a virtualization layer in this case provides both

2Snapshots of an aggregate are rare and short-lived, so their interaction
with segment cleaning is limited, and is not discussed here.

68 17th USENIX Conference on File and Storage Technologies USENIX Association

the ability to defer fix-up work and the option to leave stale
pointers in indirects in cases where the update would not be
expected to improve performance. Without this virtualiza-
tion, all references to the physical block would have to be
corrected immediately. Although Fig. 3 depicts only L0s of
File A being relocated, any block in the block tree of any file
in the FlexVol can be relocated.

3.4 Continuous Segment Cleaning
Segment cleaning was first introduced for all-HDD aggre-
gates as a background scan that walked all AAs in each
RAID group. It was expensive and had to be initiated by
the administrator during periods of low load. A later release
introduced continuous segment cleaning (CSC), which runs
autonomously and is more efficient. It cleans AAs just in
time as they get selected for use by the write allocator. Prior
work [17] shows how the WAFL write allocator uses a max-
heap to pick the emptiest AA from each RAID group. Clean-
ing the emptiest AAs minimizes the number of in-use blocks
that are required to be relocated, which in turn minimizes
the total number of I/Os and CPU cycles required for this ac-
tivity. This greedy approach also minimizes the subsequent
redirection penalty and fix-up work for the file system.

4 File Layout Fragmentation

This section discusses how files become fragmented in
WAFL and the approach used to counteract that fragmen-
tation.

4.1 Background on File Fragmentation
The WAFL write allocator attempts to allocate consecutive
L0s of a file sequentially on a single storage device to op-
timize subsequent sequential read performance. Given that
WAFL is a COW file system, this layout may fragment over
time. That is, even if sequential file L0s are initially stored
contiguously, continued random overwrites of the L0s can
cause them to be rewritten elsewhere. It should be noted that
neighboring offsets in a file need to be overwritten several
seconds apart to fragment the file because the CP collects
and processes a few seconds’ worth of dirty buffers. An ex-
ample of suboptimal file layout is shown in Fig. 4, in which
sequential L0s of File A are scattered across the aggregate,
with Physical VBNs p1–p5.

Sequential reads of a fragmented file require an increased
number of drive I/Os [2]. Like most file systems, WAFL de-
tects sequential patterns in the accesses to a file, and specula-
tively prefetches L0s based on heuristics. (Prefetch heuristics
used by WAFL are outside the scope of this paper.) Although
prefetching helps sequential read performance, the associ-
ated overhead (CPU cycles and storage I/Os) increases with
fragmentation of the file layout [2, 34].

Figure 4: (A) 4 devices with 5 blocks located sequentially within a
file but randomly on the storage media due to file layout fragmen-
tation, and the same 5 blocks relocated sequentially on device D1.
(B) Impact of this block movement within the L1s of a File A in a
FlexVol volume and the changes to that volume’s container file.

4.2 File Defragmentation in WAFL

In theory, file layout defragmentation can be trivially accom-
plished in any COW file system by dirtying sequential file
blocks that are not sequentially stored. These blocks will be
written out sequentially during the subsequent write alloca-
tion process. File systems have two choices for how to deal
with blocks shared with snapshots: (1) Update all indirect
blocks pointing to the relocated block, which is not feasible
because it requires modifying blocks in a snapshot. (2) Up-
date references to the block in the “active” file system only
and leave the block in place in the snapshot, which results
in divergence from the snapshot and wasted storage for du-
plicate copies of these blocks. In WAFL, when a block in
a FlexVol is dirtied, it is assigned not just a new Physical
VBN but also a new Virtual VBN. The allocation of a new
Virtual VBN is reflected in the FlexVol metadata, which re-
sults in divergence from the most recent snapshot of the vol-
ume. Efficient replication technologies minimize the amount
of data transferred in each periodic incremental update [30],
which is accomplished by diff’ing per-snapshot metadata to
efficiently compute changes to the file system.

The need to keep FlexVol metadata intact motivates an-
other physical-only block relocation strategy by leveraging
container file indirection. In particular, WAFL tags file-
defragmented blocks as fake dirty, which conveys that the
content of the data block is unchanged and should not di-
verge from any snapshot to which it belongs. In the next CP,
a fake dirty buffer is assigned a new Physical VBN without
changing its Virtual VBN. Fig. 4 shows the result of this pro-
cess on File A; the L0s retain their Virtual VBNs while get-
ting reallocated sequentially from p′1 to p′5. Thus, these re-
located blocks do not create false positives during the afore-
mentioned snapshot diff process, and WAFL replication tech-

USENIX Association 17th USENIX Conference on File and Storage Technologies 69

nologies remain efficient. Although Physical VBNs cached
in snapshot copies of indirect blocks become stale, a failed
read is redirected through the container map to the new loca-
tion of the block.

File layout defragmentation in WAFL is similar to free
space defragmentation, in that a relocated block only ac-
quires a new Physical VBN. However, file defragmentation
is different in two ways that make fake dirties more effec-
tive for this use case. First, the file blocks being dirtied
are by definition contiguous in the file block space, so the
COW-related overhead for the block tree in the FlexVol is
amortized across multiple fake dirty blocks. Second, file de-
fragmentation is triggered in cases where future sequential
file accesses are anticipated (as discussed in Sec. 4.3), so it
is desirable to “fix up” the block tree indirects right away
rather than deferring the effort.

Relocating L0 blocks that are shared with other files as a
result of deduplication or file cloning does not create incon-
sistencies. For example, if some File B shares the first L0
of File A, the parent L1 in File B is not changed by the de-
fragmentation of File A and therefore points to v1 and p1
even after the L0 of File A is relocated to p′1. As described in
Sec. 3.3, once the now-free p1 is reused, any subsequent read
via that stale pointer in File B fails the context match, and is
redirected to p′1 via the container map. It should be noted
that relocating blocks p1–p5 in File A could potentially frag-
ment File B if it shares some of these blocks but at different
offsets. However, fragmentation resulting from deduplica-
tion is unlikely in real-world datasets and as far as we know
has not been encountered in our customer deployments. We
find that multiple L0s are shared in the same order between
files, so defragmentation of one helps all such files3.

4.3 Write After Read

File defragmentation was originally introduced as an
administrator-initiated command to kick off defragmentation
of a specific file or all user files in a FlexVol. When in-
voked, the Physical VBN pointers in the L1s of the file are
inspected to determine whether defragmentation could result
in improved read performance. If so, the L0 blocks are read
into the buffer cache and tagged fake dirty. Autonomous file
defragmentation—write after read (WAR)—was introduced
in a later release. When enabled, it uses heuristics to defrag-
ment files that get accessed sequentially by client operations,
but only when the system has sufficient availability of CPU
cycles and I/O bandwidth. These techniques can also be ap-
plied to metadata such as directories4.

3WAFL deduplication code paths track how many consecutive file
blocks are detected as duplicates and replaced. Statistics from customer
deployments show this number to be mostly in the 4 to 8 range.

4WAFL uses several techniques to optimize metadata access, some of
which are described in prior work [19]. Such optimizations have made it
unnecessary to employ WAR on metadata.

Figure 5: (A) Files A and B with sub-block chunks that share a
physical block and the corresponding container file. (B) Format of
the physical block containing the three chunks. (C) The refcount
file with an “initial” and “current” value of 3 for physical block p1.

5 Intra-Block Fragmentation

This section describes intra-block fragmentation in WAFL
and its mitigation by using the virtualization layer. There are
two sources of intra-block wastage in WAFL. First, when the
size of a file is not an exact multiple of 4KiB (the block size
used by WAFL), the unused portion of the last L0 of that file
is wasted. This may result in significant wastage of storage
space, but only if the dataset contains a very large number of
small files. Second, data compression in WAFL can result in
intra-block wastage even for large files. WAFL uses various
algorithms to compress the data stored in two or more con-
secutive L0s of a file, and writes the compressed result to the
file. Thus, a user file L1 points to fewer L0s and some “holes”
to indicate blocks saved by that compression. Each set of
such L0s is called a compression group. The compressed
data rarely aligns to the 4 KiB block boundary; therefore
space is almost always wasted in the tail L0 of every com-
pression group. For example, 8KiB of data may compress
down to 5KiB. This would consume two 4KiB blocks of stor-
age where 3KiB of the second block is wasted. Compres-
sion has become ubiquitous in Data ONTAP deployments,
with significant savings reported for large-file datasets. Sub-
block compaction enables WAFL to pack multiple sub-block
chunks from tails of one or more compression groups and/or
files into a single physical block.

5.1 Sub-Block Compaction

Sub-block chunk addressability leverages FlexVol virtualiza-
tion to remain transparent to the FlexVol layer. Blocks within

70 17th USENIX Conference on File and Storage Technologies USENIX Association

a FlexVol retain their Virtual VBNs, but now multiple Vir-
tual VBNs can share one Physical VBN. The corresponding
physical block contains the sub-block chunk associated with
each Virtual VBN. Similarly, a container file can contain
multiple references to the Physical VBN of a single com-
pacted block. Fig. 5(A) shows how a compacted block p1
is pointed to by three Virtual VBNs from a container file.
These chunks are from two different files, A and B, and can
be either tails of compression groups or uncompressed but
partially filled blocks. As Fig. 5(B) shows, compacted block
p1 starts with a vector of tuples, which allows for chunks of
different lengths to be compacted together. When a block is
read, the tuples are parsed to locate the desired data. Each
WAFL instance has a refcount metadata file that tracks ref-
erences to a block [19]. The refcount file of an aggregate
tracks in-use chunks in a compacted Physical VBN5.

This design offers several clear benefits. First, com-
paction through the container file keeps it independent of the
FlexVol. Thus, although blocks in a snapshot are immutable,
they can be compacted or recompacted via the container file.
Second, without compaction, compression is beneficial only
if the compression group yields at least one block in savings,
whereas compaction can exploit savings of less than 4KiB.
Third, there is no fixed chunk size, which means that sub-
blocks can be compacted together based on workload-aware
criteria rather than on their sizes. For example, client-access
heuristics can be used to compact together “hot” blocks that
might get overwritten soon versus “cold” blocks.

5.2 Recompaction
Over time, one or more chunks within a compacted phys-
ical block may get freed due to overwrites or file trunca-
tions, which results in intra-block fragmentation within pre-
viously compacted blocks, providing an opportunity to re-
claim wasted space via recompaction.

Recompaction in WAFL is performed by a recompaction
scanner that walks the container map in Virtual VBN order
and chooses blocks to defragment. The per-Physical VBN
entry in the refcount file contains two sub-counts: ri, the
initial number of chunks in the Physical VBN when it was
first written out, and rc, the current number of chunks ref-
erenced by the container map. As shown in Fig. 5(C), both
sub-counts are initialized to the number of chunks when a
compacted block is written out. As chunks are freed, rc is
decremented. The recompaction scanner uses the two sub-
counts to predict whether a block is worth recompacting. If
rc
ri

is below some threshold (specified by the administrator
based on desired aggressiveness), the block is read in from
storage and its contents are examined to determine the ac-
tual free space in the block. If the block is truly worth re-

5The refcount file supports deduplication; blocks from different files and
FlexVols may refer to the same Physical VBN. Prior work [19] studies the
performance implications of maintaining a refcount file.

compacting, each chunk is marked dirty as a standalone con-
tainer L0 block. The subsequent CP applies compaction to all
such blocks and writes them out in newly compacted blocks.
In this way, Physical VBNs are changed transparently under
the FlexVol virtualization layer, leaving stale Physical VBNs
cached in FlexVol data structures.

A fourth type of fragmentation occurs in Data ONTAP that
is similar to intra-block fragmentation. Recently introduced
all-SSD FabricPool aggregates collect and tier cold blocks
as 4MiB objects to an object store, for example to a remote
hyperscaler such as AWS. As with compacted blocks, ob-
jects may become fragmented due to block frees, and objects
can be freed only once all used blocks are freed. Object de-
fragmentation consists of marking all blocks within sparsely
populated objects dirty and rewriting them into new objects.
It leverages the container file indirection to avoid changes
within the FlexVol when the block is moved. Defragmenta-
tion is triggered by comparing the monetary cost of wasted
storage versus the cost of GETs and PUTs to rewrite the de-
fragmented data. Thresholds of allowed free blocks in an
object are defined per-hyperscaler such that the cost of GETs
and PUTs to defragment objects breaks even within a month
when compared to savings from the reduced storage.

6 Interactions between Techniques

CSC, WAR, and recompaction can run concurrently and with
very little adverse interaction. Segment cleaning generates
empty AAs for use by the write allocator, which naturally
facilitates efficient file block reallocation. No additional re-
quirement is placed on CSC because of WAR. CSC and re-
compaction both operate by generating dirty L0s of container
files. A block being relocated by CSC may be a compacted
block, in which case it may be unnecessarily recompacted in
order to reclaim the old Physical VBN.

In theory, defragmentation techniques could invalidate a
large number of cached Physical VBNs, which may affect
performance because of more fix-up work and/or read redi-
rection penalty. As described in this paper, defragmentation
is used with care and only when the associated overhead is
justified; as far as we know, no customer systems have been
impacted by any pathological scenarios of defragmentation6.

7 Evaluation

It is not practical to formulate an apples-to-apples compar-
ison of the defragmentation techniques in WAFL with that
in other file systems, due to the configurations, sizes, and its
large feature set. Instead, this section provides some histor-
ical context and explores the trade-offs inherent to each of

6Specific features unrelated to defragmentation, such as Volume
Move [1], may create scenarios leading to severe redirections, but purpose-
built scanners have been designed to handle them.

USENIX Association 17th USENIX Conference on File and Storage Technologies 71

our techniques across some key configurations.
Data ONTAP is deployed by enterprises in different busi-

ness segments for a wide variety of use cases. A typ-
ical NetApp storage controller might be hosting datasets
for multiple instances of different applications that are ac-
tively accessed at the same time. In such multitenant en-
vironments, no individual customer workload represents the
range of possible outcomes. Instead, we use a set of micro-
benchmarks and an in-house benchmark that represent spe-
cific average and worst-case scenarios, but the conclusions
are applicable across the majority of benchmarks that we
track. The IOPS mix—random reads, random and semise-
quential overwrites—of the in-house benchmark is designed
to be identical to that of the industry-standard SPC-1 bench-
mark [7], and models the query and update operations of an
OLTP/DB application. We generate load by using NFS or
SCSI clients based on convenience, but the choice of pro-
tocol does not make any material difference to the results
presented. Unless otherwise specified, all experiments use
our midrange system, which has 20 Intel Xeon E5v2 2.8GHz
25MB-cache cores (10-cores x 2 sockets) with 128GiB of
DRAM and 16GiB of NVRAM.

7.1 Free Space Defragmentation
The original ONTAP deployments (20+ years ago) were
HDD-only, and WAFL had no defragmentation capability
at the time. Because those systems were typically bottle-
necked by hard-drive bandwidth, higher performance re-
quired attaching more HDDs. Segment cleaning was de-
signed into WAFL soon after the FlexVol layering was intro-
duced. However, it could be initiated only by the administra-
tor, based on observed system performance. In most cases,
background defragmentation scans were configured to run
during weekends or known times of low load. Just-in-time
segment cleaning (CSC) was introduced later, as discussed
in Sec. 3.2. Here, we evaluate the performance benefits of
CSC across different storage media configurations.

To evaluate the benefits of CSC on all-HDD aggregates,
we directed a load of 3K ops/sec of the in-house OLTP/DB
benchmark using clients connected over Fibre Channel to a
low-end 8-core system with an aggregate composed of 22
10K RPM HDDs of 136GiB each. Fig. 6 presents the results
of our test over a 60+ day window7. Without CSC, client ob-
served latency continues to increase over time due to increas-
ing fragmentation in the file system. As shown in Fig. 6(A),
CSC carries some initial overhead that results in higher client
latency for the first 35 days, but it eventually delivers layout
benefits that yield a stable and lower client latency over time.
Both write chain length and parity reads are greatly improved
by using CSC (Fig. 6(B)), as write chain length converges to-
ward a worst-case value of 1 without CSC.

7It takes a long while to fragment a real-world-sized all-HDD aggregate,
given its low IOPS capability; all-SSD aggregates can be fragmented faster.

(A)

(B)

Figure 6: (A) Client observed operation latency and (B) parity
reads/sec and write chain lengths with and without CSC on an all-
HDD aggregate over 62 days running an OLTP/DB benchmark.

Introduced in 2012, NetApp Flash Pool® aggregates mix
RAID groups of SSDs together with RAID groups of HDDs.
At that time, enterprise-quality SSDs were 100 to 200GiB
in size and relatively expensive. Therefore, based on cost-
benefit analysis for ONTAP systems, SSDs could make up
at most 10% of an aggregate’s total capacity. WAFL used
heuristics to determine where a particular block was to be
stored. For example, “hot” (based on access patterns) data
and metadata blocks were stored or even cached in the SSDs,
and “cold” blocks were stored in or tiered down to HDDs.

An interesting effect of biasing hot blocks to SSDs was
that fragmentation was mostly isolated to the SSD tier, and
infrequent deletion of cold blocks in the HDD tier was insuf-
ficient to fragment the HDD tier. This was verified by repeat-
ing the OLTP/DB experiment previously described, but at a
higher load on a Flash Pool aggregate composed of 12 SSDs
and several HDDs. Hot spots of the working set stayed in
the SSD tier, and write chains to HDDs declined very slowly,
leveled out at around 48 blocks after 22 days, and remained
stable for the remainder of the measurement interval (60+
days), without any need for CSC; the graph for this experi-
ment is not shown.

On the other hand, the SSD tier of a Flash Pool aggre-
gate fragments very quickly. We studied this by running
the OLTP/DB benchmark benchmark on the midrange sys-
tem with 12 200GiB SSDs and a large number of HDDs.

72 17th USENIX Conference on File and Storage Technologies USENIX Association

Figure 7: Parity reads per second and write chain lengths for the
SSDs in a mixed aggregate during the in-house OLTP/DB bench-
mark, with and without CSC on the SSD tier.

The SSD tier is fragmented by running a heavy load (100K
op/sec) for 2 hours, followed by another 2 hours of a more
moderate and recommended load (50K op/sec) for that con-
figuration. Fig. 7 shows write chains and parity reads per sec-
ond within the SSD tier during the latter period. Both met-
rics show a marked improvement with CSC, with write chain
lengths of about 40 instead of 2. Although CSC results in a
small increase in client latency—from 0.79ms to 0.82ms (not
shown here)—it was still beneficial for this earlier generation
of SSDs, which were more prone to wear out. SSDs have
a flash translation layer (FTL) that generates empty erase
blocks for new writes and evenly wears out the SSD by mov-
ing data around within the SSD [28]. It is well known that
shorter and more random write chains lead to higher write
amplification on SSDs, which impacts SSD lifetime. Prior
work [17] explains how the choice of the AA size in WAFL
minimizes negative log-on-log behaviour [41] in devices us-
ing translation layers such as SSDs or SMR drives.

Following architectural improvements to the WAFL I/O
path, ONTAP systems with all-SSD aggregates were intro-
duced in 2015. As the size of the enterprise-quality SSD
has increased from 100GiB to 16+ TiB in less than 5 years
(remarkably), and the promise of new interconnect technolo-
gies such as NVMe [39, 40] has become a reality, the perfor-
mance bottleneck in these storage systems has shifted from
the media to the available CPU cycles to maximally use stor-
age I/O bandwidth. In addition, emphasis has shifted away
from SSD lifetimes and avoiding burnout due to write am-
plification in favor of total cost of ownership benefits as ven-
dors manufacture SSDs with larger drive writes per day [4].
RAID-style fault tolerance also provides protection from
burnout. Thus, write amplification due to free space frag-
mentation on enterprise-class SSDs is a performance prob-
lem that manifests mostly when a storage server has an ex-
cess of free CPU cycles but insufficient SSD I/O bandwidth.
This is unlikely on systems with RAID-based redundancy,
which require a minimum number of SSDs to amortize the

Figure 8: Latency and CPU utilization with the in-house OLTP/DB
workload on an all-SSD aggregate, with and without CSC.

Figure 9: Latency and CPU utilization with a pure random over-
write workload on an all-SSD aggregate, with and without CSC.

space needed for storing RAID parity; ONTAP aggregates
contain anywhere from 12 to 20+ SSDs. Much higher perfor-
mance with consistently low operational latency is required
of all-SSD systems, and therefore these systems are sensitive
to changes in available CPU cycles.

We first evaluate CSC on all-SSD systems by running the
OLTP/DB benchmark on the midrange system with an ag-
gregate comprising 21 SSDs of 1TiB each. The aggregate
was first filled to 85% of its capacity and subjected to se-
vere load for approximately 1 day, until fragmentation met-
rics plateaued. Fig. 8 presents the achieved latency and CPU
utilization at discrete increasing levels of load on this pre-
aged dataset. The use of CSC dramatically improves write
chain length, from 10.9 to 60.6 blocks, and nearly doubles
the read chain length, from 2.2 to 3.7 blocks, by providing
emptier AAs for write allocation; this is not shown in the fig-
ure. The CPU overhead of CSC is limited to a fraction of a
core, because writes represent only a portion of the load to
the system and therefore demand for clean AAs is limited.
Despite the layout improvements with CSC, performance is
unaffected until the maximum load is requested, where CSC
reduces latency from 3.0ms to 2.6ms.

Given the variety of workloads and the prevalence of mul-
titenancy on deployed systems, performance cannot be fairly
evaluated by any one benchmark. Thus, we next target a

USENIX Association 17th USENIX Conference on File and Storage Technologies 73

pure random overwrite to the same pre-aged setup as just
described to increase demand for clean AAs and determine
worst-case CSC overhead, as shown in Fig. 9. These results
do not represent the expected behavior in practice, but they
can inform the decision of whether to enable the feature by
default. Without CSC, write chain lengths quickly degrade
to 3, but with CSC they never fall below 12. Parity reads/sec
without CSC are around 10 times those with CSC. However,
CSC consumes significant CPU cycles in this workload—
almost 3 out of the 20 cores—which results in higher laten-
cies, especially at higher load.

Given the ubiquity of SSDs these days, all-HDD aggre-
gates are now mostly used for backup and archival purposes.
Such systems do not experience sufficient free space frag-
mentation to benefit from CSC, so it is disabled by default.
CSC can be (and is) enabled on customer deployments that
target more traditional I/O loads to achieve the benefits we
describe. In hybrid SSD and HDD aggregates, CSC is en-
abled only on the SSD tier to provide reduced write am-
plification and extend device lifetimes. Finally, our results
show that free space fragmentation plays a smaller role in
all-SSD configurations (with sufficient SSDs) than do CPU
bottlenecks. Given the expectation of consistent low latency
at higher IOPS from all-SSD systems, and the higher en-
durance of modern enterprise-quality SSDs, CSC is disabled
by default on such systems. Free space defragmentation can
still be enabled on a case-by-case basis or performed by a
background scan as needed at known periods of low load;
Sec. 7.4 discusses this further.

7.2 File Layout Defragmentation

As discussed in Sec. 4.3, WAFL uses WAR to defragment file
layouts, and that reduces the number of drive I/Os required
to satisfy a client request. We use the read chain length—
the number of consecutive blocks read by a single request to
a drive—as a primary metric for measuring file fragmenta-
tion. In these experiments, we used an internal tool to gener-
ate pre-fragmented datasets on the 20-core midrange system.
The tool randomizes the Physical VBNs assigned to the L0s
of a set of files, which efficiently mimics file fragmentation.

First, we analyze all-HDD aggregates. Sequential reads
of 64KiB each from several clients were aimed at the sys-
tem with an all-HDD aggregate. Fig. 10 presents both the
average latency and read chain lengths at increasing levels
of that load. Without WAR, both metrics remain stable at
around 8ms and 1.8 blocks, respectively. With WAR en-
abled, the incoming read operations trigger WAR to improve
file layout, which translates into longer read chains and re-
duced latency in successive load points. Overall client read
throughput (not shown in the graph) also improves when us-
ing WAR, from 1GiB/sec without WAR to 2.6GiB/sec with
WAR at the higher load points. At the drive level, the num-
ber of read I/Os decreases from 639 to 345 per second, in

Figure 10: Read chain length and read operation latency on an
all-HDD aggregate, with and without WAR. Increasing loads of se-
quential read are run for fixed intervals to fragmented files.

Figure 11: Latency versus achieved throughput of sequential reads
to a pre-aged dataset. With WAR enabled, measurements were
taken after WAR had completed defragmenting file layout.

spite of the significantly higher read throughput. This re-
duced load translates to a reduction in I/O latency, measured
at the drive, from 3.9ms to 1.2ms. As expected, WAR writes
to the storage to relocate fake dirty blocks, but the reduction
in the number of drive-reads outweighs these writes.

We now evaluate WAR for all-SSD aggregates by replac-
ing the HDDs in the previous experiment with 21 1TiB
SSDs. We first isolate the benefits of file layout improve-
ments on the performance of sequential reads by measuring
throughput and latency after WAR has completed defrag-
menting the pre-aged dataset, as shown in Fig. 11. While the
file fragmented test sees average read chain lengths of 1.7
blocks, post-WAR the system sees read chains of 32 blocks.
Thus, file defragmentation significantly reduces SSD read
I/Os per second and lowers CPU cycles needed by the stor-
age driver code in ONTAP. As a result, with WAR, the sys-
tem is capable of much higher throughput before the system
saturates and latency climbs to unacceptable levels. This ex-
periment demonstrates that file layout can still have a major
impact on read performance on SSDs, even though random
read performance is less of a factor than on HDDs.

As mentioned earlier, all-SSD systems are CPU-bound,

74 17th USENIX Conference on File and Storage Technologies USENIX Association

and operational latencies are more sensitive to CPU con-
sumed by other activity. To evaluate the worst-case perfor-
mance impact of WAR overhead and inform the enablement
of this feature by default, we issued a mixed workload of se-
quential read and sequential write on the same fully pre-aged
dataset (graph not shown). Writes are more CPU intensive
than reads and so are a better indicator of CPU interference.
In this test, WAR overhead pushes operation latency up from
1.7ms to 2.5ms and throughput is lowered from 2GiB/sec to
1.7GiB/sec. The WAR interference particularly comes from
the increase in drive writes and 1.6 extra cores used in an
already CPU-saturated system.

All-HDD backup and archival systems typically experi-
ence sequential writes (backup transfer streams) and sequen-
tial reads (restore transfer streams), and they get fragmented
by the deletion of older snapshots and archives. Thus, WAR
is beneficial to such deployments. WAR is disabled on all-
SSD platforms due to its performance overhead, but can be
enabled as needed during periods of low activity to achieve
the demonstrated file layout benefits.

7.3 Compaction and Recompaction
Sec. 5 presented the compaction technology in WAFL to
pack multiple compressed blocks within a single block on
persistent storage. In our evaluation, we first created 2.2TiB
of data across several files in the midrange system with
21 1TiB SSDs. The data written to these files was de-
signed to be highly compressible. Once created, this data
set consumed only 511GiB of physical storage, representing
a 1.7TiB (77%) savings due to the cumulative effect of com-
pression and compaction. In particular, compaction was able
to store an average of 4.8 chunks per block. These were large
files, so the benefit of compaction was primarily due to the
tail-end of compression groups being compacted together.

The compacted dataset was then fragmented by using
random overwrites until the storage savings were reduced
to 27%, indicating sparsely compacted blocks and signifi-
cant intra-block fragmentation. Overwrites of compressed
user L0s resulted in the freeing of chunks within compacted
blocks. Then we initiated a moderate random read load
(80MB/sec) with and without a recompaction scanner to
measure the rate of intra-block defragmentation and the as-
sociated interference to the client workload. We observed
storage space being reclaimed at a rate of 3.78GiB/min, with
somewhat significant impact on client latency. In particu-
lar, we saw the average latency of the client read operations
rise from 0.63ms to 2.07ms, which comes from an additional
1.25 cores worth of CPU cycles, as well as the additional
blocks written to the SSD drives. The primary reason for
the latency increase is a background scan8 that runs after re-
compaction, but at a coarser parallelism that precludes client

8This scan is mentioned in Sec. 3.3, and is used to fix up stale Physical
VBNs in indirect blocks of the FlexVol.

operations. Until that limitation is fixed and recompaction
is made sufficiently lightweight, it should be initiated by the
administrator only at known time periods of low load. Once
recompaction is made lightweight, it can run autonomously.

7.4 Customer Data and Summary

We mined data from customer deployments running a recent
Data ONTAP release on all-SSD configurations, with differ-
ent space utilization levels (aggregate fullness); Fig. 12(A)
presents the distribution of write chain length observed. It
shows that higher space utilization adds to the fragmenta-
tion effect caused by file system aging—higher utilization
shows smaller write chain lengths. About 40% of systems
that were at least 75% full have write chain lengths below 11;
such systems stand to benefit from CSC. Logs collected over
a recent 3-month period also showed that 17% of all-SSD
systems experienced the less-efficient administrator-invoked
segment cleaning (versus 7% for all-HDD systems), justify-
ing the need for CSC. A similar analysis across all-HDD sys-
tems (not shown here) reveals that write chain length distri-
bution skews to higher values. There are two reasons for this.
One, it takes much longer to fragment an all-HDD aggregate
given its lower IOPS capability, while our data was from
a recent release. Two, a sizeable fraction of these systems
are archival, hosting “secondary” FlexVols that are replicas
of FlexVols accessed by customer applications. Incremental
updates to such FlexVols [30] are slow to fragment free space
because they overwrite (and free) large ranges of blocks.

To determine available CPU headroom, we next mined
CPU utilization during a particularly busy hour of a week-
day, but specifically for all-SSD systems with write chains
less than 11. Fig. 12(B) shows that about 85% of systems had
CPU utilization of less than 50%; a similar trend was seen
across all-HDD systems as well. This indicates that enabling
CSC would not really impact client operations. Further data
mining also showed that CPU utilization of systems varies
during a day, depending on the workload and the time zone,
as well as the customer workflow. Several features in Data
ONTAP autonomically detect periods of low user activity to
selectively enable themselves; our data indicates that CSC,
WAR, and recompaction can behave similarly.

To summarize this section, CSC and WAR are consis-
tently able to deliver improved layout, and these improve-
ments successfully translate to significant performance gains
for HDD-based systems that are typically storage bound, and
where layout plays a more critical role. The CPU and I/O
overhead of data relocation on all-SSD systems occasionally
outweighs improvements in layout, motivating autonomic
defragmentation during periods of low load. Other media
such as QLC flash and SMR are being analyzed. There is in-
sufficient customer data to analyze recompaction at this time.

USENIX Association 17th USENIX Conference on File and Storage Technologies 75

(A) (B)

Figure 12: (A) Distribution of write chain lengths on customer de-
ployments at different levels of fullness, and (B) Distribution of
CPU utilization for systems with write chain length less than 11.

8 Related Work

The original LFS work [32] introduced log structuring and
evaluated several policies for performing segment cleaning
to constrain the associated overhead. Seltzer, et al. [34]
analyze the performance impacts of free space fragmenta-
tion in FFS and the overheads associated with cleaning in
LFS. It was shown that a policy based on grouping simi-
larly aged blocks into new segments is efficient. Our tech-
nique targets areas that have the least cost, and because the
emptiest segments (AAs) generally have the oldest blocks,
cold blocks become colocated when rewritten out together.
The SMaRT file system employs free space defragmentation
on SMR drives [13], using either background or on-demand
garbage collection based on a set of SMR-specific heuristics.

F2FS is a log-structured file system that is optimized for
SSD [21]. Similar to our work, F2FS has the ability to per-
form both foreground and background segment cleaning and
seeks to minimize the impact of cleaning on system perfor-
mance. Converting random overwrites into sequential write
requests in the block device driver can provide the benefits
of log-structured writes without paying the cost of segment
cleaning [20, 22, 43]. Geriatrix is an aging tool to fragment
both files and free space [16]; it reports that free space frag-
mentation significantly affects file system performance on
SSDs. These findings were not on enterprise-grade systems
with large storage arrays and do not conflict with our results.

Sequential file read performance degrades as a file’s data
becomes fragmented [2, 12, 33]. Betrfs is a file system
whose format inherently reduces fragmentation; the authors
found that performance was sustained better over time than
other file systems [5]. Aging can also be partially avoided
through preallocating space for a file, multiblock allocations,
and delayed allocation [24]. Unfortunately, some degree of
aging is inevitable in a log-structured, copy-on-write file sys-
tem [12]. The DFS file system relocates data in order to re-
duce fragmentation [2] and improve the subsequent read per-
formance. Recent work has found similar negative effects of
file fragmentation on mobile storage and tuned defragmen-

tation for such platforms [11, 15]. A study of deduplication
using Windows desktops showed that file fragmentation does
not impact performance because a large fraction of their files
are not overwritten after creation, and the background de-
fragmenter patches up the fragmented files [26].

The problem of intra-block fragmentation is most com-
monly solved by using tail packing, in which the non-block-
size aligned ends of files are persisted to a shared block
[5, 31, 37]. The most popular form of this consists of
defining some fragment size less than the block size, which
becomes the minimum unit of allocation [25, 42]. Re-
conFS [23] dynamically compacts sub-block sized updates
to metadata in order to reduce the number of drive writes on
flash. Our approach is more general, in that there is no mini-
mum or fixed chunk size. Further, we first compress data so
that blocks within large files can also benefit from this tech-
nique. Our process of recompaction is similar in concept to
garbage collection in the NOVA file system [38], in which
log entries in nonvolatile memory are written compactly to a
new log when less than 50% of log entries are active.

9 Conclusion

We investigated various forms of fragmentation in the WAFL
file system, and showed that it can have significant impli-
cations on both performance (as in the cases of free space
and file block fragmentation) and storage efficiency (as in
the case of intra-block fragmentation). We then presented
storage gardening techniques that leverage the FlexVol virtu-
alization to counteract each type of fragmentation. Although
the techniques dramatically improved data layout across a
variety of workloads, performance gains did not universally
follow. I/O-bound HDD systems showed significant benefits.
However, operational latency on all-SSD storage systems is
very sensitive to the availability of CPU cycles, and therefore
CPU and I/O overhead of defragmentation may outweigh its
benefits. Intra-block defragmentation provided significant
storage savings, but with a performance penalty.

10 Acknowledgements

We thank the many WAFL engineers who contributed to
these designs over the years; they are too many to list. We
thank Pawan Rai for helping gather field data. We thank
Keith A. Smith for his input into this work. We also thank
our reviewers and shepherd for their invaluable feedback.

References
[1] NetApp cDOT - Volume Move. https://www.storagefreak.

net/2017/07/netapp-cdot-volume-move.
[2] AHN, W. H., KIM, K., CHOI, Y., AND PARK, D. DFS: A de-

fragmented file system. In Proceedings. 10th IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunications Systems, 2002. (MASCOTS) (2002), pp. 71–80.

76 17th USENIX Conference on File and Storage Technologies USENIX Association

[3] BARTLETT, W., AND SPAINHOWER, L. Commercial fault tolerance:
A tale of two systems. IEEE Transactions on dependable and secure
computing 1, 1 (2004).

[4] BJØRLING, M., GONZÁLEZ, J., AND BONNET, P. LightNVM: The
linux open-channel SSD subsystem. In Proceedings of Conference on
File and Storage Technologies (FAST) (2017).

[5] CONWAY, A., BAKSHI, A., JIAO, Y., JANNEN, W., ZHAN, Y.,
YUAN, J., BENDER, M. A., JOHNSON, R., KUSZMAUL, B. C.,
PORTER, D. E., ET AL. File systems fated for senescence? nonsense,
says science! In Proceedings of Conference on File and Storage Tech-
nologies (FAST) (2017).

[6] CORBETT, P., ENGLISH, B., GOEL, A., KLEIMAN, T. G. S.,
LEONG, J., AND SANKAR, S. Row-diagonal parity for double disk
failure correction. In Proceedings of Conference on File and Storage
Technologies (FAST) (2004).

[7] COUNCIL, S. P. Storage performance council-1 benchmark. www.
storageperformance.org.

[8] CURTIS-MAURY, M., KESAVAN, R., AND BHATTACHARJEE, M.
Scalable write allocation in the WAFL file system. In Proceedings
of the Internal Conference on Parallel Processing (ICPP) (2017).

[9] EDWARDS, J. K., ELLARD, D., EVERHART, C., FAIR, R., HAMIL-
TON, E., KAHN, A., KANEVSKY, A., LENTINI, J., PRAKASH, A.,
SMITH, K. A., ET AL. FlexVol: flexible, efficient file volume virtu-
alization in WAFL. In Proceedings of the USENIX Annual Technical
Conference (ATC) (2008).

[10] GOEL, A., AND CORBETT, P. RAID triple parity. In ACM SIGOPS
Operating Systems Review (2012), vol. 46, pp. 41–49.

[11] HAHN, S. S., LEE, S., JI, C., CHANG, L.-P., YEE, I., SHI, L., XUE,
C. J., AND KIM, J. Improving file system performance of mobile
storage systems using a decoupled defragmenter. In Proceedings of
the USENIX Annual Technical Conference (ATC) (2017).

[12] HE, J., KANNAN, S., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. The unwritten contract of solid state drives. In
Proceedings of the European Conference on Computer Systems (Eu-
roSys) (2017).

[13] HE, W., AND DU, D. H. SMaRT: An approach to shingled mag-
netic recording translation. In Proceedings of Conference on File and
Storage Technologies (FAST) (2017).

[14] HITZ, D., LAU, J., AND MALCOLM, M. File system design for an
NFS file server appliance. In Proceedings of USENIX Winter Techni-
cal Conference (1994).

[15] JI, C., CHANG, L.-P., SHI, L., WU, C., LI, Q., AND XUE, C. J. An
empirical study of file-system fragmentation in mobile storage sys-
tems. In Procedings of the USENIX Workshop on Hot Topics in Stor-
age and File Systems (HotStorage) (2016).

[16] KADEKODI, S., NAGARAJAN, V., GANGER, G. R., AND GIBSON,
G. A. Geriatrix: Aging what you see and what you don’t see. A file
system aging approach for modern storage systems. In Proceedings of
the USENIX Annual Technical Conference (ATC) (2018).

[17] KESAVAN, R., CURTIS-MAURY, M., AND BHATTACHARJEE, M. Ef-
ficient search for free blocks in the WAFL file system. In Proceedings
of the Internal Conference on Parallel Processing (ICPP) (2018).

[18] KESAVAN, R., SINGH, R., GRUSECKI, T., AND PATEL, Y. Al-
gorithms and data structures for efficient free space reclamation in
WAFL. In Proceedings of Conference on File and Storage Technolo-
gies (FAST) (2017).

[19] KESAVAN, R., SINGH, R., GRUSECKI, T., AND PATEL, Y. Efficient
free space reclamation in WAFL. ACM Transactions on Storage (ToS)
13 (October 2017).

[20] KIM, H., SHIN, D., JEONG, Y., AND KIM, K. H. SHRD: Improving
spatial locality in flash storage accesses by sequentializing in host and
randomizing in device. In Proceedings of Conference on File and
Storage Technologies (FAST) (2017).

[21] LEE, C., SIM, D., HWANG, J. Y., AND CHO, S. F2FS: A new file
system for flash storage. In Proceedings of Conference on File and
Storage Technologies (FAST) (2015).

[22] LEE, Y., KIM, J.-S., AND MAENG, S. ReSSD: a software layer
for resuscitating SSDs from poor small random write performance.
In Proceedings of the 2010 ACM Symposium on Applied Computing
(2010).

[23] LU, Y., SHU, J., WANG, W., ET AL. ReconFS: A reconstructable
file system on flash storage. In Proceedings of Conference on File and
Storage Technologies (FAST) (2014).

[24] MATHUR, A., CAO, M., BHATTACHARYA, S., DILGER, A.,
TOMAS, A., AND VIVIER, L. The new ext4 filesystem: current status
and future plans. In Proceedings of the Linux symposium (2007).

[25] MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J., AND FABRY, R. S.
A fast file system for unix. Transactions on Computer Systems 2, 3
(1984), 181–197.

[26] MEYER, D. T., AND BOLOSKY, W. J. A study of practical dedu-
plication. In Proceedings of the 9th USENIX conference on File and
storage (2011).

[27] MICROSYSTEMS, S. ZFS at OpenSolaris Community. http://
opensolaris.org/os/community/zfs/.

[28] MITTAL, S., AND VETTER, J. S. A survey of software techniques for
using non-volatile memories for storage and main memory systems. In
IEEE Transactions on Parallel and Distributed Systems (Jan 2015).

[29] PATTERSON, D. A., GIBSON, G., AND KATZ, R. H. A case for
redundant arrays of inexpensive disks (RAID). In Proceedings of the
International Conference on Management of Data (SIGMOD) (1988).

[30] PATTERSON, H., MANLEY, S., FEDERWISCH, M., HITZ, D.,
KLEIMAN, S., AND OWARA, S. SnapMirror: File-system-based
asynchronous mirroring for disaster recovery. In Proceedings of the
1st USENIX Conference on File and Storage Technologies (2002),
USENIX Association.

[31] RODEH, O., BACIK, J., AND MASON, C. Btrfs: The linux b-tree
filesystem. ACM Transactions on Storage (TOS) 9, 3 (2013), 9.

[32] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and im-
plementation of a log-structured file system. ACM Transactions on
Computer Systems 10 (1992), 1–15.

[33] SATO, T. ext4 online defragmentation. In Proceedings of the Linux
Symposium (2007), vol. 2, pp. 179–86.

[34] SELTZER, M., SMITH, K. A., CHANG, H. B. J., MCMAINS, S.,
AND PADMANABHAN, V. File system logging versus clustering: A
performance comparison. In Proceedings of the USENIX Annual Tech-
nical Conference (ATC) (1995).

[35] SMITH, K. A., AND SELTZER, M. I. File system aging—increasing
the relevance of file system benchmarks. In ACM SIGMETRICS Per-
formance Evaluation Review (1997), vol. 25, ACM, pp. 203–213.

[36] SUNDARAM, R. The Private Lives of Disk Drives.
https://atg.netapp.com/?p=13640, 2006.

[37] WIKIPEDIA. Reiserfs. Wikipedia, the free encyclopedia, 2017. (On-
line; accessed 18-April-2018).

[38] XU, J., AND SWANSON, S. NOVA: A log-structured file system for
hybrid volatile/non-volatile main memories. In Proceedings of Con-
ference on File and Storage Technologies (FAST) (2016).

[39] XU, Q., SIYAMWALA, H., GHOSH, M., AWASTHI, M., SURI, T.,
GUZ, Z., SHAYESTEH, A., AND BALAKRISHNAN, V. Performance
characterization of hyperscale applicationson on nvme ssds. In ACM
SIGMETRICS Performance Evaluation Review (2015), vol. 43, ACM.

[40] XU, Q., SIYAMWALA, H., GHOSH, M., SURI, T., AWASTHI, M.,
GUZ, Z., SHAYESTEH, A., AND BALAKRISHNAN, V. Performance
analysis of nvme ssds and their implication on real world databases. In
Proceedings of the 8th ACM International Systems and Storage Con-
ference (SYSTOR) (2015), ACM.

USENIX Association 17th USENIX Conference on File and Storage Technologies 77

[41] YANG, J., PLASSON, N., GILLIS, G., TALAGALA, N., AND SUN-
DARARAMAN, S. Don’t stack your log on my log. In INFLOW (2014).

[42] ZHANG, Z., AND GHOSE, K. yFS: A journaling file system design
for handling large data sets with reduced seeking. In Proceedings of
Conference on File and Storage Technologies (FAST) (2003).

[43] ZUCK, A., KISHON, O., AND TOLEDO, S. LSDM: Improving the
performance of mobile storage with a log-structured address remap-
ping device driver. In Next Generation Mobile Apps, Services and
Technologies (NGMAST), 2014 Eighth International Conference on
(2014).

NETAPP, the NETAPP logo, and the marks listed at
http://www.netapp.com/TM are trademarks of NetApp, Inc. Other
company and product names may be trademarks of their respective owners.

78 17th USENIX Conference on File and Storage Technologies USENIX Association

