
Open access to the Proceedings of the
17th USENIX Conference on File and

Storage Technologies (FAST ’19)
is sponsored by

Pay Migration Tax to Homeland:
Anchor-based Scalable Reference Counting

for Multicores
Seokyong Jung, Jongbin Kim, Minsoo Ryu, Sooyong Kang, and Hyungsoo Jung,

Hanyang University

https://www.usenix.org/conference/fast19/presentation/jung

This paper is included in the Proceedings of the
17th USENIX Conference on File and Storage Technologies (FAST ’19).

February 25–28, 2019 • Boston, MA, USA

978-1-939133-09-0

Pay Migration Tax to Homeland:
Anchor-based Scalable Reference Counting for Multicores

Seokyong Jung, Jongbin Kim, Minsoo Ryu, Sooyong Kang, Hyungsoo Jung∗

Hanyang University
{syjung, jongbinkim, msryu, sykang, hyungsoo.jung}@hanyang.ac.kr

Abstract
The operating system community has been combating scal-
ability bottlenecks for the past decade with victories for all
the then-new multicore hardware. File systems, however, are
in the midst of turmoil yet. One of the culprits behind per-
formance degradation is reference counting widely used for
managing data and metadata, and scalability is badly im-
pacted under load with little or no logical contention, where
the capability is desperately needed. To address this, we pro-
pose PAYGO, a reference counting technique that combines
per-core hash of local reference counters with an anchor
counter. PAYGO imposes the restriction that decrement must
be performed on the original local counter where the act of
increment has occurred so that reclaiming zero-valued local
counters can be done immediately. To this end, we enforce
migrated processes running on different cores to update the
anchor counter associated with the original local counter. We
implemented PAYGO in the Linux page cache, and so our
implementation is transparent to the file system. Experimen-
tal evaluation with underlying file systems (i.e., ext4, F2FS,
btrfs, and XFS) demonstrated that PAYGO scales file sys-
tems better than other state-of-the-art techniques.

1 Introduction

Reference counting is a general technique, originally intro-
duced by Collins [8] almost six decades ago, to determine
the liveness of an object for automatic storage reclamation.
Since the early version of UNIX kernel used reference count-
ing to manage data (e.g., page cache) and metadata (e.g.,
inode), reference counting has gained widespread accep-
tance in the systems community thereafter, e.g., file systems,
HBase [21], RocksDB [22] and MariaDB [23].

However, a recent study by Min et al. [17] found that ref-
erence counters, among many other factors, in modern file
systems are not scalable, thus leading file systems to suffer
performance degradation on multicore hardware, even with
∗Contact author and principal investigator

applications with little or no logical contention. For exam-
ple, the traditional way of referencing (let us call it ‘tradi-
tional reference counter’), which is currently being used in
the Linux operating system for page cache, uses a single
shared atomic counter. By using atomic operations, an object
can be safely referenced even when multiple threads update
at the same time. The traditional reference counters, how-
ever, degrade the performance of applications on multicores
due to excessive atomic operations on a shared counter.

In order to be a good reference counter for concurrent ap-
plications, there are important properties to consider; 1) up-
dates on reference counters must be scalable, 2) reading an
accurate (zero or positive) counter value should be cheap, 3)
reference counters should be space-efficient and 4) all these
should be guaranteed without incurring extra delay to man-
age reference counters. We denote overheads required for
achieving the four properties as counting overhead, query
overhead, space overhead, and time overhead, respectively.

Counting overhead. The counting overhead, which is the
most important property for scalable counting, indicates the
cost of updating (REF/UNREF) a reference counter itself
when there is a heavy load on referencing an object. Since
the counting overhead is a crucial hurdle for achieving scal-
ability, all reference counting techniques strive hard to elim-
inate it first. The traditional reference counter which uses a
single shared counter has the highest counting overhead due
to the hardware-based synchronization bottleneck [13].

Query overhead. The query overhead measures the cost
of query operation which checks if the reference counter of
an object is zero and so we can safely reclaim the object
from memory. The traditional technique can detect zero by
reading a single atomic counter.

Space overhead. The space overhead indicates how much
space they use for reference counting. In terms of space over-
head, the traditional reference counter is a (de facto) optimal
technique since it does not require any other data structure
than one atomic counter per object.

Time overhead. The time overhead represents any other
delay than the counting overhead introduced by a reference

USENIX Association 17th USENIX Conference on File and Storage Technologies 79

counting technique to manage all data structures it maintains.
The traditional reference counter has minimal time overhead
since it maintains only per-object atomic counters. However,
some reference counting techniques that exploit distributed
local reference caches have the synchronization overhead be-
tween local counters and a global counter. This synchroniza-
tion plays two roles: 1) the global counter becomes ready
(i.e., up-to-date) for zero detection and 2) the local counter,
if it resides in hash, can be reclaimed. We generally denote
this type of overhead as the time overhead.

Our analysis of prior proposals (§2.1) suggests that it is
challenging to achieve all four properties, possibly due to
tradeoffs between different properties. In this work, we pro-
pose pay-as-you-go (PAYGO1) reference counting that en-
sures scalable counting and space efficiency with negligi-
ble time overhead. Although based on a well-known per-core
hash technique, PAYGO introduces a novel concept of an an-
chor counter that enables the immediate reclamation of lo-
cal zero-valued counter entries, which is pivotal to reducing
the forceful eviction of the conflicting hash entries when the
number of objects accessed in a core becomes large. The in-
stant reclamation is indeed a critical feature for escaping per-
formance degradation that may otherwise occur due in large
part to the heavy cost of operations for resolving collisions,
including forceful evictions.

We implemented PAYGO and applied it to page cache in
Linux, leaving existing file systems almost intact. To see the
applicability of PAYGO to user applications, we also imple-
mented new PAYGO system calls that can be used for ref-
erence counting user-level objects. Evaluation results with
various underlying file systems (i.e., ext4, F2FS, btrfs and
XFS) demonstrated that PAYGO shows substantial improve-
ments against state-of-the-art reference counting techniques.

2 Related Work and Motivation

2.1 Related Work
There have been many proposals attempting to address some
of the properties introduced in §1, and the techniques avail-
able so far utilize at least one of the following features:

Contention distribution. One of the major factors imped-
ing the scalability of a reference counter is cache line con-
tention: updating the same reference counter atomically by
many threads results in high contention. SNZI [14] mitigates
the contention by dispersing the reference counters at com-
pile time. It manages distributed counters using a binary tree
with a fixed-sized depth. While it shows better scalability
than the traditional reference counter, it is still slower than
other techniques due to the possible contention on a partic-
ular counter that changes frequently. However, it can per-
form zero detection in constant time by checking the indi-
cator of the root node in the binary tree, although determin-
ing the global count value is impossible. Other techniques

[1, 18] alleviate the contention problem by distributing ref-
erence counters according to the degree of contention at run-
time, but they empirically judge the degree of contention
and distribute reference counters so they cannot relieve the
contention for a reference counter under general workloads
where we can hardly predict the degree of contention. Car-
refour [12] also distributes contention dynamically, but hard-
ware profiling is required to verify memory traffic. Proposals
in this category still rely on atomic instructions for updating
reference counters, so they seldom achieve linear scalability.

Cache affinity. Another factor that hinders scalability of
reference counters is cache misses. To reduce the cache
misses, a local reference counter is used in a way that an ob-
ject has per-core local counters and updates are made to the
local counters nonatomically. The downside of this approach
is the overhead needed for summing all local counter values
to obtain the global count. To alleviate this side effect, there
is a way to obtain the global count in advance and store it in
the central counter [9, 5, 10], which incurs extra time over-
head. Sloppy counter [9, 5] updates only the local counter
if the updated value is less than a certain threshold. If the
value exceeds the threshold, the local counter value is trans-
ferred to the central counter. The central counter is therefore
an approximation of the global count. Before transferring the
local counter value, it acquires the global lock for the central
counter, which incurs extra time overhead. percpu ref [10],
a variant of the sloppy counter, implemented in Linux for
managing memory objects in several device drivers, also pri-
marily changes the local counter. The techniques exploiting
cache affinity have the counting-query tradeoff : nonatomic
updates on local reference counters earn good scalability in
exchange for longer query time to read a global count by col-
lecting the sum of local counters. They also have bad space
efficiency due to the per-object, per-core local counters.

Per-core hash. To improve the space overhead of cache
affinity-based techniques, recent years have seen attempts
to use per-core hash of reference caches that would fulfill
the main duty of reference counting with much less space
overhead [7, 4, 3]. They can substantially reduce the space
overhead by using per-core hash which keeps the local refer-
ence counters for only those objects in use. Techniques based
on per-core hash inevitably face the problem of reclaiming a
hash table entry whose local counter is zero (i.e., the corre-
sponding object is not in use). Existing techniques address
this using quiescent period-based synchronization which is
widely used in Linux to reclaim objects, such as read-copy-
update (RCU) [16]. The reference counting algorithm ex-
ploiting per-core hash with quiescent period-based synchro-
nization cannot avoid the space-time tradeoff : they achieve
better space efficiency in exchange for time overheads not
only in synchronization between local and global counters
but also in hash entry reclamation. RefCache [7], which is
one of quiescent period-based techniques, manages its local
counters in per-core hash, and the counter values are flushed

80 17th USENIX Conference on File and Storage Technologies USENIX Association

Counting
overhead

Query
overhead

Space
overhead

Time
overhead

Ideal
PAYGO

RefCache [7]
Sloppy counter [5]
SNZI [14]
Traditional

Counting-Query
Tradeoff

Space-Time
Tradeoff

Tr
ad

iti
on

al
∗

SN
ZI

Sl
op

py
co

un
ter

RefC
ac

he

PAYGO

Counting atomic atomic global − −
overhead ops. ops.‡ lock

Space overhead† O(N) O(M ·N) O(M ·N) O(M ·C+N) O(M ·C+N)

Query overhead§ O(1) O(1) O(M) O(1)+2 · epoch O(M)§§

Time − − every every epoch −
overhead threshold and collision

∗ A single atomic reference counter
† N: # of objects, M: # of local counters per object, C: # of hash entries
‡ SNZI recursively updates the counter of the parent node whenever the counter of the child node

changes from 0 to 1 and vice versa.
§ Time to determine if the reference counter of a single object is zero or not
§§ PAYGO has practically less query overhead than Sloppy counter (§3.4).

Figure 1: A comparison of reference counting techniques under workloads accessing a shared counter.

into a central counter every epoch. OpLog [4] generalized
RefCache’s idea by using operation logs for the shared data
structure with a local timestamp. In descending order of the
timestamp, per-core logs are applied to the data structure.

2.2 Motivation

The design of PAYGO is motivated by two observations:
Observation 1. Our analysis of existing algorithms in §2.1

is summarized in Figure 1. Noticeable is the observation that
attaining the counting scalability (i.e., low counting over-
head) demands a sacrifice of two other properties due to the
counting-query and space-time tradeoffs. By escaping those
tradeoffs we can attain more good properties; for example,
escaping the space-time tradeoff enables us to make both
space and time overheads low while achieving scalability.

Observation 2. Another and more important observation
is that the excessive time overhead may eventually incur se-
vere performance degradation. As described in §2.1, tech-
niques based on per-core hash sacrifice time overhead to re-
duce space overhead. The time overhead under consideration
in such techniques is the overhead of reclaiming hash entries,
when the number of objects accessed in a core becomes large
so that frequent hash collisions occur and therefore forceful
evictions for the conflicting hash entries need to be exercised
to make room for newly accessed objects. The eviction of
a hash entry needs to flush the local counter value to the
global counter and therefore causes additional synchroniza-
tion overhead between local and central counters.

For example, RefCache [7], designed for a new virtual
memory system, is perfectly scalable when n threads are re-
peatedly performing mmap/munmap on a single shared phys-
ical page (see Figure 8 in [7]), since the forceful eviction of
hash entries due to collisions seldom occurs and so may not
be a serious design consideration in virtual memory systems.
However, if we use RefCache in page caches under file sys-

 50

 100

 150

 200

 250

 300

 350

1 MiB 2 MiB 4 MiB 8 MiB 16 MiB 32 MiB 64 MiB

T
h
ro

u
g
h
p
u
t
(M

o
p
s
/s

e
c
)

Shared File Size

Read unit = 64 B
Read unit = 4 KiB

Figure 2: Performance of RefCache: hash table size = 4,096
entries (default size), ext4 file system.

tem benchmarks that may access far more objects, frequent
evictions that internally acquire/release object locks to pro-
tect the flush of local counter values to the central counters,
may result in serious time overhead, leading to performance
degradation. To confirm it, we conducted a preliminary ex-
periment that measures the throughput of RefCache for page
caches. The experimental environment is shown in §6.1, and
we ran the FXMARK microbenchmark so that 96 threads
read 64 bytes (or 4 KiB) on a shared file, with a sequen-
tial access pattern and varying the file size. Figure 2 shows
the result that confirms our conjecture. The throughput de-
creases as the file size (i.e., the number of objects) gets big-
ger, due to increased hash collisions triggering more force-
ful evictions. We found that the hash collisions start slightly
occurring from the point when the file size is 1 MiB (i.e.,
256 objects) and become excessive as the file size increases.
Hence, reclaiming garbage hash entries in a timely manner is
critical for avoiding the performance degradation of per-core
hash-based reference counting techniques.

The above observations guide us to conclude that escap-
ing the space-time tradeoff is crucial for scalable reference
counting techniques. By escaping the space-time tradeoff,
we can achieve true scalable counting keeping both space
and time overheads low, which is our design goal of PAYGO
whose comparative properties are depicted in Figure 1.

USENIX Association 17th USENIX Conference on File and Storage Technologies 81

3 PAYGO

Of counting-query and space-time tradeoffs, we aim at es-
caping the space-time tradeoff while embracing the other.
PAYGO achieves this by using a per-core hash-based refer-
ence cache with a new technique called anchoring. PAYGO
is designed on the following assumptions; (i) objects are ref-
erenced and unreferenced by the same process and (ii) the
lifetime of references is reasonably short not to put the static
size of per core hash in jeopardy (see §3.5).

3.1 Design Overview

Design rationale. To escape the space-time tradeoff, per-
core hash-based techniques must ensure the safety condi-
tion such that a local reference cache entry can be reclaimed
immediately upon releasing all references to an object, all
done without sacrificing other properties. In this respect, Re-
fCache earned the counting scalability in exchange for the
increased time overhead required for reclaiming obsolete
cache entries. For addressing this issue, our main design ra-
tionale behind PAYGO lies in a simple goal; we make a local
reference cache zero (i.e., ready to be reclaimed) right after
all references are released. To this end, we enforce the re-
striction that a process, once referencing an object, must be
anchored to the original reference cache to inform of any un-
referencing to the object irrespective of which core the pro-
cess runs on. For this purpose, PAYGO’s per-core hash entry
consists of a local counter and an anchor counter fields, and
the sum of two represents a local count for an object initially
accessed in that core.

Access rules. First, we establish ground rules in accessing
a pair of local and anchor counters to preserve the correct-
ness, that is ‘never miscount’. Access rules for (UN)REF are
described as follows. For the REF operation, a process al-
ways accesses a local reference cache and updates the local
counter field nonatomically. At this time, the process is log-
ically anchored to this core (homeland) and anchor core ID
is recorded in a task struct. For the UNREF operation, act-
ing on local or anchor counters depends on whether migrated
or not in between REF and UNREF; if the process remains at
the same core (homeland), UNREF is done on the same lo-
cal counter nonatomically. Otherwise, the migrated process
atomically updates the anchor counter of the original refer-
ence cache in the homeland core. The use of an atomic op-
eration on an anchor counter is indeed for correct counting
even with multiple processes in concurrent environments.

We summarize the access rules in Table 1, and we ensure
that a local reference cache becomes zero upon the comple-
tion of REF/UNREF operations. This allows PAYGO to reclaim
zero-valued local reference caches immediately from hash,
thus retaining the hash space efficiency without time over-
head. The common rule governing both REF and UNREF is,
we disable preemption while performing two operations in

Table 1: Access rules for REF and UNREF from homeland and
foreign land. (X: nonatomic, X©: atomic, ×: no-op)

Type
PAYGO Entry

local counter anchor counter
REF UNREF REF UNREF

Homeland X X × ×
Foreign land × × × X©

REF at core 0

1 0 0
LC AC ID

core corePAYGO

object
pointer

local
counter

PAYGO entry

cache line size (byte)

task struct
anchor info

StateStructure

(per-process)

(per-core)

63 56 55 52 51 48 47 0

(ⅰ) UNREF at the same core

0 0 0
LC AC ID

(ⅱ) UNREF at different core

1 −1 0
LC AC ID

core

()
core

core

LC : local counter
AC : anchor counter
ID : anchor core ID

anchor
counter

anchor core IDs

Figure 3: An overall structure of PAYGO and state of the
structure when referencing and unreferencing an object.

order to prevent malicious data races on a local counter. Of
course, there are other ways of doing this, such as kernel spin
locks (i.e., spinlock t), but disabling/enabling preemption
is by far the fastest method we found it suitable for our pur-
pose and has been used in prior work [7, 10]. An in-depth
performance analysis will be presented in §6.2.5.

Overall structure of PAYGO. Next, we describe the over-
all structure of PAYGO. Figure 3 shows the structure of
PAYGO and the state of the data when an object is refer-
enced and unreferenced. For each core, there is per core hash
of reference caches, each entry of which consists of an ob-
ject pointer and two counters, a local and an anchor coun-
ters. The space overhead for this hash table is much smaller
than the Linux sloppy counter and larger than the traditional
one, but it is similar to RefCache. Given hash of reference
caches, the UNREF operation atomically decreases the anchor
counter of the anchored core only when process migration
occurs, by the access rules in Table 1. To do this, each pro-
cess stores anchor information that bookkeeps the core IDs in
which an object is referenced. The anchor information inter-
nally maintains multiple anchor core IDs to deal with a case
where a process references an object multiple times on differ-
ent cores without unreferencing it. Matching anchor core ID
is removed after UNREF is done on the corresponding core.
Unlike hash, PAYGO requires extra memory space for stor-
ing anchor information in a task structure, and this is surely
regarded as additional memory overhead.

On the right side of Figure 3 shows the state of the data
when a process references and unreferences an object. When
a process references an object at core 0, it raises the local
counter of core 0 and keeps core 0 in the process’s anchor

82 17th USENIX Conference on File and Storage Technologies USENIX Association

information. When the process unreferences the object, it
first searches the current core ID in its anchor information. If
found, the process decreases the local counter of the current
core; otherwise, it decreases the anchor counter of any core
in the anchor information atomically.

3.2 PAYGO Operations

PAYGO has three operations: REF/UNREF operations to in-
crease/decrease a reference counter and READ-ALL operation
to read the global value of the reference counter which is
equivalent to the query operation.
REF operation. When a REF operation of an object is in-

voked, it finds the PAYGO entry for the object in the hash
of the current core. If the PAYGO entry is found, its local
counter is increased. If the PAYGO entry is not found, a new
PAYGO entry is created in the hash and the local counter
is increased, and then the current core ID is stored in the
process’ anchor information. The REF operation is executed
while preemption is disabled to prevent multiple processes
from updating the same hash entry concurrently.
UNREF operation. When an UNREF operation of an object

is invoked, it first checks the anchor information of the pro-
cess. If the core ID stored in the anchor information is the
same as the current core, the process finds the PAYGO entry
for the object in the hash of the current core and decreases
the local counter. If the process has migrated to another core,
it finds the PAYGO entry for the object in the hash of the
anchored core and atomically decreases the anchor counter.
The UNREF operation is also performed with preemption be-
ing disabled for the same reason as the REF operation.
READ-ALL operation. When a READ-ALL operation is in-

voked, it finds all the PAYGO entries for the object in all per-
core hash tables and computes the sum of the local and the
anchor counters of all valid PAYGO entries. The READ-ALL

operation is performed while the preemption is disabled in
order to prevent any scheduling delays that may slow down
the process. Nevertheless, this does not guarantee to read the
correct sum since the REF and the UNREF operations may
modify the counters during the READ-ALL operation. Object
reclamation therefore needs a delicate design (§3.3).

3.3 Object Reclamation

Objects are a target of reference counting, and operating sys-
tems often reclaim objects that are not referenced by any pro-
cess in order to keep memory pressure under control. Once
an object is chosen to be reclaimed, the reclaiming process
should prevent any additional reference to the object and
check again the zero value of the reference counter. In tra-
ditional reference counting, this can be done atomically by
comparing the shared atomic counter with zero and swap-
ping it to a negative value. The synchronization used in the

rcu_read_lock();
while (rcu_pagep = radix_tree_lookup_slot()) {

if (!(page = radix_tree_deref_slot(rcu_pagep))
break;

preempt_disable();
this_cpu->hash[H(page)]->local_counter++;
add_anchor_info(current_task, page, this_cpu);
preempt_enable();
if (get_flag(page) || is_object_removed(page)) {

UNREF(page);
continue;

}
}
rcu_read_unlock();

local
counter

0

1

(a) REF operation

(migrated to other core)
preempt_disable();
anchor = find_last_anchor(current_task, page);
if (anchor.cpu == this_cpu)
this_cpu->hash[H(page)]->local_counter--;

else
atomic_dec(&anchor.cpu->

hash[H(page)]->anchor_counter);
delete_anchor_info(current_task, anchor);
preempt_enable();

anchor
counter

0

-1

(b) UNREF operation

flag
......
set_flagag(pagagege);
if (
t_fla
((READ

ag
ADAD-

aagge)pag(p
DD--ALL(page)) {if (REAADD LLALA

clear_flag
page)) {LL(p

agag(page);
return fail;

}}
delete_objectct(page);delete_objec
clear_flag

bjec
agag(

tcctjec
gg((pag

t(p
agage

ge)agpa(p
ggeee);

...

anchor
counter

local
counter

(c) READ-ALL operation (reclaimer)

Figure 4: Code snippets of how PAYGO’s REF, UNREF and
READ-ALL are implemented and used in the Linux page
cache, where H() is a hash function.

traditional method is based on atomic read-modify-write op-
eration (e.g., CMPXCHG).

In PAYGO, it needs more steps to correctly handle the case.
Since the READ-ALL operation cannot acquire the sum in one
snapshot, it uses a flag to indicate its commencement, which
helps prevent the additional reference to the object. The syn-
chronization method we use here is based on the read-after-
write (RAW) pattern [2]. Important to notice is the invariant
that at least one of a reclaiming process and referencing pro-
cesses, if they run concurrently, must detect both events and
then retreat itself for safety, thus never allowing malicious
data race. We enforce these checking conditions to be veri-
fied at the end of REF and READ-ALL routines.

Figure 4 shows the code snippets of how REF, UNREF and
READ-ALL operations are implemented in the Linux page
cache with a special flag indicating that the current page
is accessed for reclamation. Accessing the special flag may

USENIX Association 17th USENIX Conference on File and Storage Technologies 83

cause contention only if the same page is repeatedly re-
claimed (or flushed in the Linux page cache) while many pro-
cesses read it, which we seldom, if ever, witnessed in Linux.
In Figure 4a, the code executed while preemption is disabled
denotes the REF operation. In Figure 4b, the whole code is
the UNREF operation. READ-ALL operation which iterates all
core’s hash, finds the PAYGO entry and collects the sum of
all entries again with the preemption being disabled, is only
shown as a function call in Figure 4c. Notice that there is ad-
ditional code around the REF and READ-ALL operations for
the correct implementation of reclaiming page caches.

As shown in Figure 4a, the entire routine for ref-
erencing a page is protected by rcu read lock() and
rcu read unlock(). The REF operation starts by obtain-
ing an rcu reference to the page. Once it obtains the rcu

reference, it retrieves the page object and then performs the
REF operation. After that, a flag is checked to see if a re-
claiming process is being tried. If the flag is clear, then the
page is checked whether or not it is removed. This makes
sure that the page is not already reclaimed before the flag
is checked. Only if both conditions are passed, the page is
safely referenced. Otherwise the flag is set, then the process
retries until the reclaiming process clears the flag. If the page
was already removed, the reference process fails. For the re-
claiming process, the READ-ALL operation is performed after
setting a flag. If the page is not referenced by any thread, the
page object is safely removed and the flag is cleared. If the
page is already referenced by other thread, it is not removed
and the flag is cleared, thus failing to reclaim the page object.

3.4 Anchoring in Action

Reference counting techniques exploiting per-core hash,
such as RefCache [7], allow processes to update nonatomic
local counters of the running core. This means that when a
process at core 0 increases the local counter of core 0, mi-
grates to core 1, and decreases the local counter of core 1,
then we have two local counters with values of 1 and -1, re-
spectively. The spread-out local counters are problematic if
per-core hash is used to reduce space overhead. As an ex-
ample, RefCache uses background threads to flush the local
counters every epoch, which inevitably delays the reclama-
tion of zero-valued reference cache entries.

The anchoring technique in PAYGO enforces the REF and
UNREF operations to act on the same PAYGO entry, thus guar-
anteeing the sum of its local and anchor counters to eventu-
ally become zero. Any zero-valued PAYGO entry can be re-
cycled immediately when another REF operation accesses the
same hash bucket. Figure 5 shows an example of an object
accessed by multiple threads in a system with four cores. At
core 0, a red thread references and unreferences the object by
increasing and decreasing the local counter of core 0. At core
1, a blue thread followed by a green thread reference the ob-
ject. Then, a yellow thread also references the object at core

core 0

core 1

core 2
read-all

1

0 0

migrate

migrate

: lock;subl (atomic op.)
: addl/subl

: anchor counter
: local counter /

0 0

core 3

Figure 5: Usages of an anchor counter.

1. Since the yellow thread is using core 1, the blue thread and
the green thread have to migrate to other cores (namely, core
2 and core 3, respectively), and unreference the object using
the same anchor counter of core 1. As shown in this example,
an anchor counter has the risk of being modified by multiple
threads in parallel, so we use an atomic operation.

The anchoring technique gives us another opportunity of
reducing the query overhead. Since the sum of local and an-
chor counters in a core can never be negative, during the zero
detection (i.e., query), upon seeing a positive value of the
sum in a core, we can immediately stop zero detection safely
concluding that the object is currently being used by at least
one process.

Discussion. Since decreasing an anchor counter uses an
atomic operation, there is a performance concern when sys-
tems have processes that are all accessing the same an-
chor counter, thus hitting the hardware-based synchroniza-
tion bottleneck. This is the worst case that can occur when
processes are migrated frequently between REF and UNREF.
But, the general design rationale for the OS scheduler usu-
ally inhibits such frequent process migration unless there are
compelling reasons, such as severe load imbalance.

Nonetheless, the chance of migrating a process can in-
crease if the interval between REF and UNREF becomes dis-
tant. Even if it occurs, atomic operations on anchor counters
would not have bad impact on performance, since the price
for process migration is much larger than the pure cost of ref-
erence counting itself. Hence, the performance degradation
caused by atomic operations can be neglected (see anchor-
ing overhead in §6.2.3). To alleviate any possible bottleneck
on the same anchor counter, the OS scheduler can give a tem-
porary CPU affinity to processes that are in between REF and
UNREF, to prevent process migration.

One may raise concern about the overhead of searching
the matching core ID in anchor information when a pro-
cess references an object multiple times or numerous objects
without unreferencing. Since PAYGO stores the same anchor
ID in anchor information even if the same object is refer-
enced again, this issue will surely impact performance due
to the search cost, but we have not discovered such cases yet
inside file systems or data management systems. If the case is
found, then augmenting an additional search structure must
be necessary.

84 17th USENIX Conference on File and Storage Technologies USENIX Association

3.5 Table Overflow

The table overflow problem of hash tables is a fundamen-
tal issue that per-core hash-based counting techniques should
address. In the context of reference counting, the table over-
flow occurs when there are a large number of live objects.
For instance, if a process opens many files, then the cor-
responding dentry objects will be alive in per-core hash
until closed. Conventional methods, such as table doubling,
are hard to use or to be efficiently designed due mainly to
high concurrency. We deal with the overflow similar to the
way Linux swap space is managed. First, an object that uses
PAYGO has a list, called an overflow counter list, protected
by an object lock. When a live object needs to be evicted
from per-core hash, we acquire the object lock, evict the en-
try from hash, add the evicted counter information to the
overflow counter list and then release the lock. Later, the
owner process of the evicted entry can reload the evicted
counter information from the overflow list while holding the
object lock. Further improvements can be made to the shared
overflow list, but we hold off until it really matters since
‘premature optimization is the root of all evil’ [15]. What re-
ally matters here is the lifetime of the referenced object, and
the concerned place (i.e., page cache) suffering bottlenecks
has short-lived objects that begin and end its lifetime inside
read/write system calls. PAYGO scales file operations well
under such conditions.

4 PAYGO Implementation

We implemented PAYGO in Linux kernel version 4.12.5 and
applied it to the page cache that can affect many concrete
file systems suffering scalability issues. For experiments, we
take the code base implementing RefCache and SNZI from
sv6 [6] and adapt it to Linux page cache. Noticeable is the
observation that other latent contention often arises after
PAYGO eliminated contention on reference counters.

The Linux page cache is implemented using a radix tree,
and its operations are made lockless for the performance ben-
efits [20]. However, read system calls using a page cache
still have scalability issues, such as the usage of atomic ref-
erence counter to synchronize between reading a page from
a page cache (REF/UNREF) and flushing the page from mem-
ory to storage (READ-ALL). Therefore, threads trying to read
the same page contend on the same reference counter and
have poor performance under such loads [17].

In the original implementation of a reference counter in
a page (refcount) has two purposes. First, it is used as a
status variable. If the value is zero, it means that the page is
unused. If the value is two, the page is active and is stored
in a page cache, but it is not referenced by any threads.
The refcount of a value above two is used as a reference
counter. For example, the refcount value of three indicates
that there is one process referencing the page. Here, we left

user	threads

sys_ref(void* obj) or sys_unref(void* obj)

user	mode

kernel	mode

object

preempt_disable() preempt_enable()

referencing / unreferencing

REF(obj, pid)
UNREF(obj, pid)

Figure 6: User-level PAYGO in Linux.

the refcount to be used as a status variable and use PAYGO
to replace the referencing part of refcount.

5 User-Level PAYGO

PAYGO, although being motivated by pressing concerns in
file systems and intended to address it, can be easily extended
to a user-level reference counting method for applications
above the kernel. The development of scalable user-level ref-
erence counting is more demanding indeed, since there are
many latent use cases where contention may arise once the
present performance matters are all cleared away. For exam-
ple, managed language runtimes (such as the JAVA runtime)
use referencing counting for collecting garbage objects, and
the same is true in the database land; popular database sys-
tems, such as HBase [21], RocksDB [22] and MariaDB [23],
also use reference counting for managing memory objects.
To the best of our knowledge, they use either hardware
based atomic operations or lock based synchronization prim-
itives to safely orchestrate concurrent accesses to the shared
counter variables, but both methods are all vulnerable to per-
formance bottlenecks in highly concurrent environments.

To make applications benefit from the better scalability
of PAYGO, we implement three system calls, sys ref(),
sys unref() and sys readall(), which enable applica-
tions to exploit core kernel-level PAYGO operations without
difficulty for user-level reference counting (Figure 6). De-
spite there being the inherent overhead required in switching
between user mode and kernel mode, reference counting on
user-level objects through PAYGO system calls enables ap-
plications to achieve far better scalability than their legacy
reference counting techniques. Furthermore, PAYGO will ex-
hibit much less overhead for managing garbage entries in
per-core hash, and this is a required feature especially when
applications hold a large number of live references.

Enabling applications to directly exploit the reference
counting technique in the kernel via system calls poses two
nontrivial issues. First, the system call overhead should be
sufficiently minimized to benefit from the original perfor-
mance of the kernel-level reference counting technique. To
this end, we make PAYGO system calls lightweight such
that they just wrap core kernel-level PAYGO routines with
preempt disable()/preempt enable() executed before-
hand/afterward. The wrapped routines here basically refer
to the code segments bounded by preempt disable() and

USENIX Association 17th USENIX Conference on File and Storage Technologies 85

 0

 50

 100

 150

 200

 250

 300

 350

 400

148 16 32 48 64 80 96

T
h
ro

u
g
h
p
u
t
(M

o
p
s
/s

e
c
)

No. of threads

ext4

Vanilla
SNZI

RefCache
PAYGO

 0

 50

 100

 150

 200

 250

 300

 350

 400

148 16 32 48 64 80 96
No. of threads

btrfs

Vanilla
SNZI

RefCache
PAYGO

 0

 50

 100

 150

 200

 250

 300

 350

 400

148 16 32 48 64 80 96
No. of threads

F2FS

Vanilla
SNZI

RefCache
PAYGO

 0

 5

 10

 15

 20

 25

148 16 32 48 64 80 96
No. of threads

XFS

Vanilla
SNZI

RefCache
PAYGO

Figure 7: Scalability comparison under strongly contending workloads: the Linux page cache.

preempt enable() in Figure 4. One subtle matter is, we
have to transform the virtual address of a user object into a
unique one inside per-core hash, by combining it with the
pid of a user process. Second, since applications are not as
reliable as kernel, the abnormal termination of applications
may leave the kernel data structures for reference count-
ing incorrect. When an application terminates after referenc-
ing an object but before unreferencing it, the correspond-
ing counter in the kernel can never become zero. To resolve
the problem, when terminating a process, the task struct

needs to be checked to detect any left-over counter values
in the corresponding PAYGO entries in per-core hash tables.
Any such left-over counters, if found, must be decreased.

6 Evaluation

In this section, we measure the overall performance and
scalability of PAYGO, especially in page cache, and com-
pare with other reference counting techniques including Re-
fCache, SNZI and traditional reference counter under vari-
ous file systems. For analyzing the performance of user-level
PAYGO, we compare PAYGO with existing user-level refer-
ence counting techniques.

6.1 Experimental Setup
We perform all of the experiments in Linux kernel version
4.12.5 on our 96-core system equipped with four 24-core In-
tel Xeon E7-8890 v4 CPUs and 1 TiB DDR4 DRAM. We
run FXMARK microbenchmark [17] with a RAM disk and
filebench [11, 25] with a Samsung SM1725 NVMe SSD. To
show the general applicability of PAYGO, we conduct exper-
iments under four different file systems (i.e., ext4, btrfs,
F2FS and XFS). In ext4, we used the default journaling
mode and did not see any lock contention in the journaling
subsystem observed in the prior study [17]. Page structures
cached in memory are freed before every experiment, and
the Linux security module is turned off to avoid the unre-
lated performance degradation.

6.2 Scalability
This section explores the multicore scalability of concerned
file systems under file system benchmarks, with the degree of

contention being varied from strongly contending to weakly
contending. Our evaluation methodology follows similar ap-
proaches used in [17], and the important metric is the number
of REF/UNREF (i.e., file reads) with the degree of contention
on reference counters being controlled by the size of files ac-
cessed by benchmark threads. Experiments under this con-
trolled environment may reveal the weakness and strength
of tested schemes that may overlook at the time it was pro-
posed.

6.2.1 Strongly Contending Workloads

To evaluate the performance of file operations under strongly
contending scenarios, we ran the shared block read work-
load (i.e., DRBH) in FXMARK, a microbenchmark that is
intended to stress file systems. For the evaluation, a vary-
ing number of threads repeatedly read the same 4 KiB data
block, thus stressing the reference counting part enormously.
This workload is known to reveal the contention resilience
of any reference counting approach, since the stock Linux
suffers the most. Figure 7 shows the results. With this work-
load, all file systems under consideration in stock Linux
(i.e., vanilla) undergo severe scalability bottlenecks arising
from contention on the same reference counter. SNZI shows
slight improvements over the vanilla scheme that uses the
traditional reference counter. PAYGO and RefCache perfectly
scale the throughput of ext4, btrfs and F2FS. The main
reason for slightly lower performance of PAYGO than Re-
fCache is because the number of instructions executed by
PAYGO is slightly greater than RefCache. By profiling on
clock cycles, we obtain the cycle difference that matches the
performance difference we observe here.

Interesting is the performance degradation that has been
consistently observed in XFS primarily due to contention on
the semaphore inside an inode structure, which completely
renders all reference counting methods useless. Although a
further investigation is needed, it is worthwhile putting effort
to redesign this coarse-grained locking so that XFS can reap
performance benefits from better counting techniques.

6.2.2 Weakly Contending Workloads

To evaluate the performance of file systems under weakly
contending scenarios, we used filebench, a benchmark that

86 17th USENIX Conference on File and Storage Technologies USENIX Association

 0

 20

 40

 60

 80

 100

1 24 48 72 96

T
h
ro

u
g
h
p
u
t
(M

o
p
s
/s

e
c
)

No. of threads

ext4

Vanilla
SNZI

RefCache
PAYGO

 0

 20

 40

 60

 80

 100

1 24 48 72 96
No. of threads

btrfs

Vanilla
SNZI

RefCache
PAYGO

 0

 20

 40

 60

 80

 100

1 24 48 72 96
No. of threads

F2FS

Vanilla
SNZI

RefCache
PAYGO

 0

 10

 20

 30

 40

 50

1 24 48 72 96
No. of threads

XFS

Vanilla
SNZI

RefCache
PAYGO

Figure 8: Scalability comparison under weakly contending workloads: the Linux page cache.

can flexibly add and test workloads to file systems and stor-
age. Before we run the filebench, we modified the filebench
code to experiment with more flexibility on multicores. Orig-
inally, filebench is implemented with a lock for each file and
only one thread can access the file at a time. We eliminated
the file lock so that multiple threads can access the file con-
currently. For the evaluation, we ran the randomread work-
load with participating threads performing 64 bytes random
reads from one of ten 128 MiB files. Since weakly con-
tending workloads disperse contention on reference coun-
ters, it may expose any latent overhead (or downside) of
given counting techniques that has been overlooked in ex-
change for resolving high contention arising under strongly
contending scenarios.

The throughput results are shown in Figure 8. Strikingly
the vanilla scheme deployed in the stock Linux page cache
performs well after it reduces hotspot contention; it out-
classes SNZI all the time and sometimes outperforms Ref-
Cache with a slight margin. As the thread count increases,
the throughput gap between PAYGO and RefCache widens
due to a large number of garbage entries that increase hash
collisions in RefCache’s per-core hash, which were not ob-
served under strongly contending workloads.

Again, none of the tested counting techniques scale the
performance with XFS due to bottlenecks inside XFS, and this
will be discussed in detail in the following section.

6.2.3 In-Depth Analysis

In order to reveal detailed information about various system
activities, we perform an in-depth analysis with moderately
contending workloads being profiled over different metrics.

Stressing page cache. We first ran the randomread work-
load of the filebench microbenchmark, by varying the num-
ber of files whose size is set to 32 MiB. We chose the moder-
ately contending workload as a good proxy for stressing ref-
erence counting schemes with a reasonable balance of con-
tention and the count of objects referenced. Figure 9 shows
the throughput and the CPU breakdown of the benchmark.

First, the in-depth profiling gives clear explanations for
two strange observations in XFS and SNZI. The first obser-
vation is the poor scalability of XFS. The main culprit for this
problem is due to severe lock contention inside the file sys-
tem; xfs ilock() and xfs iunlock() on the inode of a

file. Lock contention mainly depends on the number of files,
not the file size. High contention on the inode lock indeed
leads to severe performance degradation regardless of refer-
ence counting schemes. This perhaps needs attention from
our community. The second observation is the poor scalabil-
ity of SNZI, and SNZI also has a similar culprit for the issue;
it scales poorly regardless of file systems at this time. Since
the only publicly available code base for SNZI can be taken
from sv6 [6], we show the results as is.

The vanilla scheme can scale the performance of ext4,
btrfs and F2FS quite well as the thread count increases.
Although the overhead of atomic instructions grows in pro-
portion to the thread count, the dispersed contention cancels
out the negative impact of atomic operations we have seen
in Figure 7. With 72 threads, the vanilla scheme performs
almost on a par with RefCache. An in-depth analysis of per-
formance over different contention levels will be discussed
in the next experiment.

RefCache shows worse core scalability than PAYGO, and
this is mainly because of the increased overhead of handling
hash collisions (i.e., atomic lock operations) in RefCache.
Also, noticeable is the slight performance degradation of the
vanilla, RefCache and PAYGO as the file count increases.
This is due to the increased memory access overhead for
reading files larger than cache memory, which is not ob-
served in experiments with the same number of smaller files,
although results are omitted here due to the space limitation.

Performance spectrum over degree of contention. We
further investigate the performance spectrum over differ-
ent contention levels to fully grasp the nature of the space-
time tradeoff. For this evaluation, we modified the FXMARK
benchmark in a way that 96 threads perform 64 bytes se-
quential reads per 4 KiB page on a single file whose size
is varied from 1 MiB to 64 MiB, with ext4 mounted. Fig-
ure 10 shows the performance spectrum of three concerned
schemes. The most noticeable result is the sharp throughput
decrease in RefCache as the file size grows, which clearly
shows the negative effect of a large time overhead to scala-
bility and so the necessity of the instant reclamation of hash
entries. PAYGO effectively addresses the problem and under-
goes no performance overhead for that issue. The gradual
degradation of the throughput in PAYGO is due to the file data
overflow in cache memory, resulting in the increased mem-
ory access overhead, which also occurs in other schemes.

USENIX Association 17th USENIX Conference on File and Storage Technologies 87

 0

 20

 40

 60

 80

 100

U
ti
liz

a
ti
o
n

(%
)

Atomic
Lock

Refcnt
Kernel

Misc.
Library

User

 0

 40

 80

 120

nfiles 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
nthreads 1 24 48 72 96

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/s

e
c
)

 0

 20

 40

 60

 80

 100

U
ti
liz

a
ti
o
n

(%
)

 0

 40

 80

 120

nfiles 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
nthreads 1 24 48 72 96

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/s

e
c
)

 0

 20

 40

 60

 80

 100

U
ti
liz

a
ti
o
n

(%
)

 0

 40

 80

 120

nfiles 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
nthreads 1 24 48 72 96

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/s

e
c
)

 0

 20

 40

 60

 80

 100

U
ti
liz

a
ti
o
n

(%
)

(a) ext4

 0

 40

 80

 120

nfiles 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
nthreads 1 24 48 72 96

T
h
ro

u
g
h
p
u
t

(M
o
p
s
/s

e
c
)

Atomic
Lock

Refcnt
Kernel

Misc.
Library

User

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
1 24 48 72 96

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
1 24 48 72 96

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
1 24 48 72 96

(b) btrfs

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
1 24 48 72 96

Atomic
Lock

Refcnt
Kernel

Misc.
Library

User

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
1 24 48 72 96

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
1 24 48 72 96

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
1 24 48 72 96

(c) f2fs

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
1 24 48 72 96

V
a

n
ill

a

Atomic
Lock

Refcnt
Kernel

Misc.
Library

User

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
1 24 48 72 96

S

N
Z

I

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
1 24 48 72 96

R

e
fC

a
c
h

e

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
1 24 48 72 96

P

A
Y

G
O

(d) xfs

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
1 24 48 72 96

Figure 9: The performance and the CPU breakdown of file systems (i.e., column labels (a)-(d)) with different reference counting
schemes (i.e., row labels on the right side) under moderately contending workloads: the Linux page cache.

As we analyzed earlier, the vanilla scheme is ill-suited
for the strongly contending condition (i.e., 1 MiB). But
its performance rebounds quickly as soon as the degree
of contention is alleviated, and it outperforms RefCache
once it passes a break even point (i.e., 16 MiB file in our
case). In-depth looking through profiling reveals that the ac-
quire/release of an object lock in RefCache to handle hash
collisions incur more overhead than the atomic operations in
the vanilla scheme when hash collisions occur frequently due
to a large number of objects accessed. After the break even
point, the throughput of the vanilla scheme starts to decrease
because the increased memory access overhead due to the
file data overflow in cache memory becomes larger than the
merit of dispersed contention.

Anchoring overhead. Since the anchor counter can be
contended by only migrated threads, the frequency of thread
migration determines the anchoring overhead. As described
in §3.4, the design rationale for the OS scheduler usually in-

hibits frequent process migration. To confirm it, we ran the
openfiles workload of the filebench on all cores that could
cause thread migration between REF and UNREF operations,
and counted the number of migration. For this experiment,
we created 2,000 threads running the openfiles workload
on 36 physical cores (disabling 60 cores), which hopefully
causes frequent thread migration due to the load imbalance.
However, during the 60 seconds experiment, less than 10,000
times of migration occurred.

Moreover, regardless of how the Linux scheduler is im-
plemented, the more frequent the thread migration occurs,
the less effective the CPU time is due to the long latency of
the context switch. The latency of the context switch can be
as short as 1 microsecond [24, 19] which is still relatively
larger than the overhead of the atomic operation [13]. Re-
cently, there has been an effort to reduce the latency of the
context switch to several tens of nanoseconds by emulating
a thread at the user level [24], but no such study has been

88 17th USENIX Conference on File and Storage Technologies USENIX Association

 0

 20

 40

 60

 80

 100

U
ti
liz

a
ti
o

n
(%

)

User Library Misc. Kernel Refcnt Lock Atomic

 0

 100

 200

 300

1 2 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

e
c
)

File Size (MiB)

Vanilla RefCache PAYGO

Figure 10: Performance spectrum of the vanilla, RefCache and PAYGO over varying contention levels on ext4.

 1

 10

 100

 1000

1 2 4 8 16 32 64 96

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

No. of Threads

FAA CAS PAYGO

Figure 11: Throughput under the strongly contending work-
load (user-level reference counting).

found in the kernel level. Therefore, there is practically no
reduction in system throughput due to frequent changes of
the anchor counter in PAYGO.

6.2.4 Scalability of User-level PAYGO

Next, we evaluate the performance of user-level PAYGO sys-
tem calls to see its applicability. For the evaluation, we use
a microbenchmark that has a varying number of threads
(un)referencing user-level objects repeatedly. For compari-
son, we implement two methods based on our observation.
The first one is to use atomic fetch add and fetch sub for
reference counting. We call it FAA, and this is a typical im-
plementation widely adopted in many systems. Note that this
technique does not show performance collapses, but it cannot
scale performance mainly due to hardware-based synchro-
nization bottlenecks. The second one is to implement what
is being used in the Linux page cache, which is based on the
atomic compare-and-swap instruction. We call this CAS.

Figure 11 shows the throughput (i.e., the number of
fetch add/fetch sub and REF/UNREF operations per second)
of three schemes as we increase the number of threads, all of
which access a single shared user-level object. As we man-
ifested, the mode switch overhead of user-level PAYGO is
quite noticeable and expected, considering the performance
of FAA and CAS until 2 threads in our system. The perfor-
mance number FAA and CAS achieve with 1 thread, how-
ever, is the peak number obtainable for reference counting a
single shared object. After 2 threads, both FAA and CAS are

 1

 10

 100

 1000

1 4 16 32 64 128 256 512

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)
No. of Refcount Objects

FAA CAS PAYGO

Figure 12: Performance spectrum of FAA, CAS and user-level
PAYGO with a varying number of objects.

either saturated or slowly degrading. Meanwhile, our user-
level PAYGO scales the performance with no contention over-
head. Figure 12 shows the performance spectrum of three
methods as we increase the number of referenced objects
with 96 threads. As shown in the figure, FAA and CAS suf-
fer from synchronization bottlenecks initially when all of 96
threads access a small number of objects, but they slowly
gain throughput up to a certain point as contention is dis-
persed. We believe that the saturation point observed here
(i.e., 137 Mops/s) reaches the maximum capacity that our
96-core server can support. On the other hand, our user-level
PAYGO could sustain the maximum throughput regardless of
the count of objects.

Impact on application performance. As demonstrated
above, user-level PAYGO may have a profound impact on
application performance especially on multicore hardware.
We have been conducting an in-depth code-level analysis
of latent bottlenecks caused by reference counting in Mon-
goDB, MariaDB, Boost.Asio, etc. What we have learnt from
our preliminary study on such systems is that many applica-
tions using user-level reference counting mostly suffer per-
formance bottlenecks that start occurring much earlier be-
fore the reference counting is responsible for severe perfor-
mance degradation. For example, database systems we ana-
lyzed have recently undergone major changes to enhance its
multicore scalability. As the systems community is battling
pressing concerns, the contention around reference counting
will soon appear as a primary bottleneck in achieving scal-
able performance.

USENIX Association 17th USENIX Conference on File and Storage Technologies 89

 0

 5

 10

 15

 20

Vanilla SNZIRefCachePaygo

T
im

e
 (

s
e

c
o

n
d

s
)

With 95 Background Readers

 0

 0.5

 1

 1.5

 2

Vanilla SNZI RefCachePaygo

Without Background Readers

Figure 13: Query overhead comparison.

6.2.5 Comparing preempt disable() and spin lock

As we briefly mentioned in §3.1, the use of
preempt disable(), instead of kernel spin locks
or something similar, to prevent data races in
REF/UNREF needs concrete justification. Hence, we
compared the overheads of both methods by mea-
suring the average clock cycles per each function
pair (i.e., preempt disable()/preempt enable(),
spin lock()/spin unlock()) by iterating them up to a
billion times. The results show that the clock cycles for
preempt disable() and spin lock converge to 14 cycles
and 50 cycles, respectively. Throughout the experiments,
the overhead of preempt disable() remains a constant
fraction (∼30%) of that of spin lock regardless of the
number of iterations performed. The main reason for the
higher overhead of spin lock is because it internally
invokes preempt disable() and executes additional code
segments including an atomic instruction for cross-core
communication supporting mutual exclusion on a global ob-
ject. This is undoubtedly overkill for our case where we also
use an atomic operation to safely decrease an anchor count
from remote cores. In conclusion, preempt disable() is a
fast and safe method, as it has shown its usefulness in prior
work, for preventing data races on local counters in our
REF/UNREF implementations.

6.3 Query Overhead

In this section, we conduct the performance evaluation of
the READ-ALL operation. To evaluate the query overhead of
PAYGO, we measure the time to flush a 4 GiB file in the
Linux page cache with and without background readers on
ext4. The experiment first reads the entire file so that file
blocks are all loaded in page caches. Then, it measures the
time taken to drop the file from page caches. Since page
caches are all clean (i.e., unmodified), dropping page caches
is comprised of pure CPU activities. Figure 13 shows the
completion time of different reference counting techniques.
With background readers, RefCache surprisingly outpaced
all other competitors, since RefCache may read a batch of
global counters for multiple pages safely if their hash entries
were flushed two epochs ago and no referencing occurred in
between. Although PAYGO has less query overhead than Re-

fCache for a single reference counter, the benefit of syncing
the entire hash of dirty reference caches to global counters
predominates the time overhead of two epochs with a large
number of objects. Meanwhile PAYGO exhibits the overhead
of reading a large number of local counters for each page and
the vanilla scheme suffers contention due to atomic opera-
tions. Without background readers, the vanilla scheme is bet-
ter than RefCache, but PAYGO still shows the same overhead
of reading local counters. Nevertheless, the query overhead
of PAYGO does not commensurate with the number of cores
owing to its early detection of positive reference counter val-
ues (§3.4).

7 Limitations and Future Work

The limitations of PAYGO can be summarized as follows.
First and foremost, PAYGO is not completely free from the
counting-query tradeoff. We do not have a clue on whether it
is possible or not. A proposal achieving low overhead in all
directions must be a major breakthrough in systems research.
Second, the way we handle the table overflow is rather naive,
and one may find practical use cases that can stress PAYGO in
that the overflow counter list is spotted as a bottleneck point.
Our ongoing work is to apply user-level PAYGO to language
runtime systems that surely benefit from user-level PAYGO.

8 Conclusion

Reference counting in modern file systems is not scalable
on multicores, even under workloads with little or no log-
ical contention. Through in-depth survey of present refer-
ence counting techniques designed for scaling file I/O opera-
tions, we found that there are space-time tradeoff and query-
counting tradeoff in designing scalable reference counting
techniques. In this paper, we have presented a novel refer-
ence counting scheme, PAYGO, that escapes the space-time
tradeoff by using an anchor counter. PAYGO provides scal-
able counting and space efficiency with negligible time de-
lay for the reclamation of hash entries. We have implemented
PAYGO in the page cache in Linux. Our evaluation with dif-
ferent file system benchmarks demonstrated that PAYGO is
practically useful in addressing severe contention arising in
other reference counting techniques.

Acknowledgements. We would like to thank our shep-
herd, Vijay Chidambaram, and the anonymous reviewers
for helping us improve this paper. This work was sup-
ported by the National Research Foundation of Korea grant
(2017R1A2B4006134) and the Ministry of Science and ICT
(MSIT), Korea (R0114-16-0046, Software Black Box for
Highly Dependable Computing), and (2016-0-00023, Na-
tional Program for Excellence in SW) supervised by the In-
stitute for Information and communications Technology Pro-
motion (IITP), Korea.

90 17th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] ACAR, U. A., BEN-DAVID, N., AND RAINEY, M. Contention in

structured concurrency: Provably efficient dynamic non-zero indica-
tors for nested parallelism. In Proceedings of the 22nd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Program-
ming (2017), ACM, pp. 75–88.

[2] ATTIYA, H., GUERRAOUI, R., HENDLER, D., KUZNETSOV, P.,
MICHAEL, M. M., AND VECHEV, M. Laws of order: Expensive syn-
chronization in concurrent algorithms cannot be eliminated. In Pro-
ceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (New York, NY, USA, 2011),
POPL ’11, ACM, pp. 487–498.

[3] BHAT, S. S., EQBAL, R., CLEMENTS, A. T., KAASHOEK, M. F.,
AND ZELDOVICH, N. Scaling a file system to many cores using an
operation log. In Proceedings of the Twenty-Sixth ACM Symposium
on Operating Systems Principles (2017), ACM.

[4] BOYD-WICKIZER, S. Optimizing Communication Bottlenecks in
Multiprocessor Operating System Kernels. PhD thesis, Massachusetts
Institute of Technology, 2014.

[5] BOYD-WICKIZER, S., CLEMENTS, A. T., MAO, Y., PESTEREV, A.,
KAASHOEK, M. F., MORRIS, R., ZELDOVICH, N., ET AL. An analy-
sis of linux scalability to many cores. In OSDI (2010), vol. 10, pp. 86–
93.

[6] CLEMENTS, A., ZELDOVICH, N., ET AL. sv6: Posix-like scalable
multicore research os kernel. https://github.com/aclements/

sv6, 2014.

[7] CLEMENTS, A. T., KAASHOEK, M. F., AND ZELDOVICH, N.
Radixvm: Scalable address spaces for multithreaded applications. In
Proceedings of the 8th ACM European Conference on Computer Sys-
tems (2013), ACM, pp. 211–224.

[8] COLLINS, G. E. A method for overlapping and erasure of lists. Com-
mun. ACM 3, 12 (Dec. 1960), 655–657.

[9] CORBET, J. The search for fast, scalable counters. https://lwn.

net/Articles/170003/, 2006.

[10] CORBET, J. Per-cpu reference counts. https://lwn.net/

Articles/557478/, 2013.

[11] CORBET, J. Filebench. https://github.com/filebench/

filebench/wiki, 2017.

[12] DASHTI, M., FEDOROVA, A., FUNSTON, J., GAUD, F., LACHAIZE,
R., LEPERS, B., QUEMA, V., AND ROTH, M. Traffic management:
a holistic approach to memory placement on numa systems. In ACM
SIGPLAN Notices (2013), vol. 48, ACM, pp. 381–394.

[13] DAVID, T., GUERRAOUI, R., AND TRIGONAKIS, V. Everything you
always wanted to know about synchronization but were afraid to ask.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (2013), ACM, pp. 33–48.

[14] ELLEN, F., LEV, Y., LUCHANGCO, V., AND MOIR, M. Snzi:
Scalable nonzero indicators. In Proceedings of the twenty-sixth an-
nual ACM symposium on Principles of distributed computing (2007),
ACM, pp. 13–22.

[15] KNUTH, D. E. Structured programming with go to statements. ACM
Comput. Surv. 6, 4 (Dec. 1974), 261–301.

[16] MCKENNEY, P. E., BOYD-WICKIZER, S., AND WALPOLE, J. Rcu
usage in the linux kernel: One decade later. Technical report (2013).

[17] MIN, C., KASHYAP, S., MAASS, S., AND KIM, T. Understanding
manycore scalability of file systems. In USENIX Annual Technical
Conference (2016), pp. 71–85.

[18] NARULA, N., CUTLER, C., KOHLER, E., AND MORRIS, R. Phase
reconciliation for contended in-memory transactions. In OSDI (2014),
vol. 14, pp. 511–524.

[19] PETER, S., LI, J., ZHANG, I., PORTS, D. R., WOOS, D., KRISH-
NAMURTHY, A., ANDERSON, T., AND ROSCOE, T. Arrakis: The op-
erating system is the control plane. ACM Transactions on Computer
Systems (TOCS) 33, 4 (2016), 11.

[20] PIGGIN, N. A lockless page cache in linux. In Proceedings of the
Linux Symposium (2006), vol. 2.

[21] Apache HBase. https://github.com/apache/hbase/blob/

rel/2.1.0/hbase-server/src/main/java/org/apache/

hadoop/hbase/io/hfile/bucket/BucketCache.java#L484.

[22] Facebook RocksDB. https://github.com/facebook/rocksdb/
blob/v5.14.3/utilities/persistent_cache/hash_table_

evictable.h#L62.

[23] MariaDB Server. https://github.com/MariaDB/server/blob/
10.3/storage/innobase/buf/buf0buf.cc#L4350.

[24] SEO, S., AMER, A., BALAJI, P., BORDAGE, C., BOSILCA, G.,
BROOKS, A., CASTELLO, A., GENET, D., HERAULT, T., JINDAL,
P., ET AL. Argobots: A lightweight threading/tasking framework.
Tech. rep., Argonne National Laboratory (ANL), 2016.

[25] TARASOV, V., ZADOK, E., AND SHEPLER, S. Filebench: A flexible
framework for file system benchmarking. USENIX; login 41 (2016).

Notes
1PAYGO: pay migration tax (i.e., the anchoring overhead) as you go to

other core.

USENIX Association 17th USENIX Conference on File and Storage Technologies 91

https://github.com/aclements/sv6
https://github.com/aclements/sv6
https://lwn.net/Articles/170003/
https://lwn.net/Articles/170003/
https://lwn.net/Articles/557478/
https://lwn.net/Articles/557478/
https://github.com/filebench/filebench/wiki
https://github.com/filebench/filebench/wiki
https://github.com/apache/hbase/blob/rel/2.1.0/hbase-server/src/main/java/org/apache/hadoop/hbase/io/hfile/bucket/BucketCache.java#L484
https://github.com/apache/hbase/blob/rel/2.1.0/hbase-server/src/main/java/org/apache/hadoop/hbase/io/hfile/bucket/BucketCache.java#L484
https://github.com/apache/hbase/blob/rel/2.1.0/hbase-server/src/main/java/org/apache/hadoop/hbase/io/hfile/bucket/BucketCache.java#L484
https://github.com/facebook/rocksdb/blob/v5.14.3/utilities/persistent_cache/hash_table_evictable.h#L62
https://github.com/facebook/rocksdb/blob/v5.14.3/utilities/persistent_cache/hash_table_evictable.h#L62
https://github.com/facebook/rocksdb/blob/v5.14.3/utilities/persistent_cache/hash_table_evictable.h#L62
https://github.com/MariaDB/server/blob/10.3/storage/innobase/buf/buf0buf.cc#L4350
https://github.com/MariaDB/server/blob/10.3/storage/innobase/buf/buf0buf.cc#L4350

	Introduction
	Related Work and Motivation
	Related Work
	Motivation

	Paygo
	Design Overview
	Paygo Operations
	Object Reclamation
	Anchoring in Action
	Table Overflow

	Paygo Implementation
	User-Level Paygo
	Evaluation
	Experimental Setup
	Scalability
	Strongly Contending Workloads
	Weakly Contending Workloads
	In-Depth Analysis
	Scalability of User-level Paygo
	Comparing preempt_disable() and spin lock

	Query Overhead

	Limitations and Future Work
	Conclusion

