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Abstract
The I/O forwarding architecture is widely adopted on mod-
ern supercomputers, with a layer of intermediate nodes sit-
ting between the many compute nodes and backend stor-
age nodes. This allows compute nodes to run more effi-
ciently and stably with a leaner OS, offloads I/O coordi-
nation and communication with backend from the compute
nodes, maintains less concurrent connections to storage sys-
tems, and provides additional resources for effective caching,
prefetching, write buffering, and I/O aggregation. However,
with many existing machines, these forwarding nodes are as-
signed to serve a fixed set of compute nodes.

We explore an automatic mechanism, DFRA, for
application-adaptive dynamic forwarding resource alloca-
tion. We use I/O monitoring data that proves affordable to
acquire in real time and maintain for long-term history anal-
ysis. Upon each job’s dispatch, DFRA conducts a history-
based study to determine whether the job should be granted
more forwarding resources or given dedicated forwarding
nodes. Such customized I/O forwarding lets the small frac-
tion of I/O-intensive applications achieve higher I/O perfor-
mance and scalability, meanwhile effectively isolating dis-
ruptive I/O activities. We implemented, evaluated, and de-
ployed DFRA on Sunway TaihuLight, the current No.3 su-
percomputer in the world. It improves applications’ I/O
performance by up to 18.9×, eliminates most of the inter-
application I/O interference, and has saved over 200 million
of core-hours during its test deployment on TaihuLight for 11
months. Finally, our proposed DFRA design is not platform-
dependent, making it applicable to the management of exist-
ing and future I/O forwarding or burst buffer resources.

1 Introduction
Supercomputers today typically organize the many compo-
nents of their storage infrastructure into a parallel and global
controlled file system (PFS). Performance optimization by
manipulating the many concurrent devices featuring differ-
ent performance characteristics is a complicated yet criti-
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cal task to administrators, application developers, and users.
Moreover, it gets more challenging due to I/O contention and
performance interference caused by concurrent jobs sharing
the same PFS, bringing significant I/O performance fluctu-
ation [28, 38, 40, 44, 61]. Meanwhile, different applications
have vastly different I/O demands and behaviors, making it
impossible for center administrators to decide one-size-for-
all I/O configurations.

The task is even more difficult when it comes to the de-
sign and procurement of future systems. It is hard for ma-
chine owners to gauge the I/O demand from future users
and design a “balanced” system with coordinated computa-
tion, network, and I/O resources. In particular, design and
procurement typically happen years before any application
could test run, while even decades-old programs usually see
very different performance and scalability due to newer ar-
chitecture/hardware/software on the more powerful incom-
ing machine.

Figure 1: Typical I/O forwarding architecture for supercomputers

To give an example, consider the design of an I/O for-
warding infrastructure [19], a widely adopted I/O subsystem
organization that adds an extra forwarding layer between the
compute nodes and storage nodes, as illustrated in Figure 1.
This layer decouples file I/O from the compute nodes (CNi
in Fig 1), shipping those functions to the forwarding nodes
instead, which are additional I/O nodes responsible for trans-
ferring I/O requests. It also enables compute nodes (1) to
adopt a lightweight OS [48, 53, 64] that forwards file system
calls to forwarding nodes, for higher and more consistent ap-
plication performance [19], (2) to maintain fewer concurrent
connections to the storage subsystem than having clients di-
rectly access file system servers, for better operational relia-
bility, and (3) to facilitate the connection between two differ-
ent network domains, typically set up with different topol-
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ogy and configurations, for computation and storage respec-
tively. Finally, it provides an additional layer of prefetch-
ing/caching (or, more recently, burst buffer operations [51]),
significantly improving user-perceived I/O performance and
reducing backend data traffic.

Rank Machine Vendor # C node # F node File system
3 Taihulight [11] NRCPC 40,960 240 Lustre [24]
4 Tianhe-2A [69] NUDT 16,000 256 Lustre + H2FS
5 Piz Daint [9] Cray 6,751 54 Lustre + GPFS [57]
6 Trinity [17] Cray 19,420 576 Lustre
9 Titan [15] Cray 18,688 432 Lustre
10 Sequoia [10] IBM 98,304 768 Lustre
12 Cori [2] Cray 12,076 130 Lustre + GPFS
14 Oakforest-PACS [8] Fujitsu 8,208 50 Lustre
18 K computer [5] Fujitsu 82,944 5184 FEFS [56]

Table 1: I/O forwarding adopters among TOP20 machines (Nov 18)

Due to these advantages, I/O forwarding is quite popular,
adopted by 9 out of the current TOP20 supercomputers (by
the latest TOP500 list [16]). Table 1 summarizes their cur-
rent TOP500 rankings and system configurations, including
the number of compute and forwarding nodes. Note that re-
cent Cray installations such as Cori and Trintiy use forward-
ing nodes with SSD-based burst buffers [3]. Forwarding ar-
chitecture is also targeted in an Exascale storage design [45].

Despite the I/O forwarding layer’s nature in decoupling
compute nodes from backend storage nodes and enabling
flexible I/O resource allocation, to provision a future sys-
tem with forwarding resources (or to manage them for a
current one) is challenging, as reasoned earlier. As a re-
sult, existing systems mostly adopt a fixed forwarding-node
mapping (FFM) strategy between compute nodes and for-
warding nodes, as illustrated in Figure 1. Though compute
nodes are connected to all forwarding nodes, each forward-
ing node is assigned a fixed subset of k compute nodes to
serve [48, 49, 63]. E.g., the compute-to-forwarding mapping
is fixed at 512-1 at the No.3 supercomputer TaihuLight [30],
and 380-1 at the No.5 Piz Daint [55].

This paper proposes a new method of forwarding re-
source provisioning. Rather than making fixed map-
ping decisions based on rough estimates, supercomputer
owners could enable dynamic forwarding resource alloca-
tion (DFRA), with flexible, application-aware compute-to-
forwarding node mappings. We argue that DFRA not only
alleviates center management’s difficult hardware provision-
ing burdens, but significantly improves forwarding resource
utilization and inter-application performance isolation.

DFRA is motivated by results of our whole-system I/O
monitoring at a leading supercomputing center and extensive
experiments. Specifically, we found the common practice of
FFM problematic: (1) while the default allocation suffices on
average in serving applications’ I/O demands, the forwarding
layer could easily become a performance bottleneck, lead-
ing to poor application I/O performance and scalability as
well as low backend resource utilization; meanwhile the ma-
jority of forwarding nodes tend to stay under-utilized. (2)
Forwarding nodes shared among relatively small jobs or par-
titions of large jobs become a contention point, where ap-

plications with conflicting I/O demands could inflict severe
performance interference to each other. Section 2 provides a
more detailed discussion of these issues.

Targeting these two major limitations of FFM, we de-
vised a practical forwarding-node scaling method, which es-
timates the number of forwarding nodes needed by a cer-
tain job based on its I/O history records. We also performed
an in-depth inter-application interference study, based on
which we developed an interference detection mechanism to
prevent contention-prone applications from sharing common
forwarding nodes. Both approaches leverage automatic and
online I/O subsystem monitoring and performance data anal-
ysis that require no user effort.

We implemented, evaluated, and deployed our proposed
approach in the production environment of Sunway Tai-
huLight, currently the world’s No.3 supercomputer. De-
ployment on such a large production system requires us
to adopt practical and robust decision making and reduce
software complexity when possible. In particular, we po-
sitioned DFRA as a “remapping” service, performed only
when projected I/O time savings significantly offset the
node-relinking overhead.

Since its deployment in Feb 2018, DFRA has been ap-
plied to ultra-scale I/O intensive applications on TaihuLight
and has brought savings of bringing around 30 million core-
hours per month, benefiting major users (who together con-
sume over 97% of total core-hours). Our results show that
our remapping can achieve up to 18.9× improvement to real,
large-scale applications’ I/O performance. Finally, though
our development and evaluation are based on the TaihuLight
supercomputer, the proposed dynamic forwarding resource
allocation is not platform-specific and can be applied to other
machines adopting I/O forwarding.

2 Background and Problems

Modern I/O forwarding architectures in HPC machines typ-
ically deploy a static mapping strategy [18] (referred to as
FFM for the rest of the paper), with I/O requests from a
compute node mapped to a fixed forwarding node. Here we
demonstrate the problems associated with this approach, us-
ing the world’s No.3 supercomputer TaihuLight as a sample
platform. Specifically, we discuss resource misallocation,
inter-application interference, and forwarding node anoma-
lies, proceeded by introduction to the platform and the real-
world applications to be discussed.

2.1 Overview of Platform and Applications
Platform Sunway TaihuLight is currently the world’s No.3
supercomputer [30], with over 10M cores and 125-Petaflop
peak performance. Its main storage system is a 10PB Lustre
parallel file system [24], delivering 240GB/s and 220GB/s
aggregating bandwidths for reads and writes respectively,
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using 288 storage nodes and 144 Sugon DS800 disk ar-
rays. Between its compute nodes and the Lustre backend
is a globally-shared layer of 240 I/O forwarding nodes. Each
forwarding node provides a bandwidth of 2.5GB/s and plays
a dual role, both as a Lightweight File System (LWFS) [6]
server to the compute nodes and a client to the Lustre back-
end. Before our DFRA deployment, 80 forwarding nodes
were used for daily service, the other 160 reserved as backup
or for large production runs with whole-system reservations.

In addition, TaihuLight has an online, end-to-end I/O
monitoring system, Beacon [21]. It provides rich profil-
ing information such as average application I/O bandwidth,
I/O time and I/O access mode, as well as real-time system
load and performance measurements across different layers
of TaihuLight’s storage system.
Applications Our test programs include 11 real-world ap-
plications and one parallel I/O benchmark. Six of them
are 2017 and 2018 ACM Gordon Bell Prize contenders:
CESM [37] (Community Earth System Model) is an earth
simulation software system which consists of many cli-
mate models; CAM [59] is a standalone global atmospheric
model deriving from the CESM project for climate simula-
tion/projection; AWP [25] is a widely-used earthquake simu-
lator [26,54]; Shentu [35] is an extreme-scale graph engine;
LAMMPS [68] (Large-scale Atomic/Molecular Massively Par-
allel Simulator) is a popular molecular dynamics software;
Macdrp [23] is a new earthquake simulation tool, special-
izing in accurate replay of earthquake scenarios with com-
plex surface topography. CAM and AWP were among the three
2017 Gordon Bell Prize finalists (AWP being the final win-
ner), while Shentu is in the 2018 finalist.

Note that although all 6 applications above can scale to the
full TaihuLight system’s 40,000+ compute nodes, full-scale
production runs are conducted mostly with pre-arranged
system-wide reservation. In most cases, we do not have such
reservation or the largest-scale input datasets to evaluate their
maximum-scale executions. However, throughout the year,
their developers and users conducted many mid-size runs,
each using hundreds or thousands of compute nodes. Most
of our experiments evaluate at such scale, where I/O perfor-
mance improvement can save shared I/O resources and re-
duce application execution time. Meanwhile, our findings
here remain applicable to larger-scale runs.

The remaining large-scale applications in our testbed are:
DNDC [32] (biogeochemistry application for agroecosystems
simulation), WRF [1] (regional numerical weather prediction
system), APT [67] (particle dynamics simulation code), XCFD
(computational fluid dynamics simulator), and swDNN [29]
(deep neural network engine). For the ease of controlling I/O
behaviors and execution parameters, we also use MPI-IO [7],
a widely-used MPI-IO benchmark by LANL.

These programs represent diverse data access behaviors
regarding request characteristics, I/O volume, I/O library,
and file sharing mode. Table 2 summarizes their I/O pro-

App Throughput IOPS Metadata I/O Lib I/O Mode
MPI-ION High Low Low MPI-IO N-N
DNDC Low Low High POSIX N-N
APT Low High Low HDF5 N-N
WRF1 Low Low Low NetCDF 1-1
WRFN High High Low NetCDF N-N
CAM Low Low Low NetCDF 1-1
AWP Low Low Low MPI-IO N-1

Shentu High High Low POSIX N-N
Macdrp High Low Low POSIX N-N
LAMMPS High Low Low MPI-IO N-N
XCFD High Low Low POSIX N-N
CESM High Low Low NetCDF N-N
swDNN Low Low Low HDF5 N-N

Table 2: Summary of test programs’ I/O characteristics. “N-N”
mode means N processes operate N separate files. “N-1” means N
processes operate on one shared file. “1-1” means only one process
among all processes operates on one file.

files. Here we roughly label each application as “high” or
“low” in three dimensions: I/O throughput, IOPS, and meta-
data operation intensity, using empirical thresholds.1

2.2 Motivation 1: Resource Misallocation
As shown above, applications have drastically different
I/O demands, some requiring a much lower compute-to-
forwarding nodes ratio than others. Traditional FFM does
not account for varying I/O behaviors across applications,
leading to significant resource misallocation. Below we dis-
cuss concrete sample scenarios.
Forwarding node under-provisioning The default I/O for-
warding node allocation of one per 512 compute nodes in
TaihuLight is adequate for the majority of applications we
have profiled, but severely low for the most I/O intensive ap-
plications, where the forwarding nodes become an I/O per-
formance bottleneck. Due to the transparent nature of the
forwarding layer, such bottleneck is often obscure and hard
to detect by application developers or users.

Figure 2 demonstrates the impact of allocating more for-
warding nodes to two representative real-world applications:
XCFD and WRF1. We plot the I/O performance speedup (nor-
malized to that under the default allocation of one forwarding
node), as a function of the number of exclusive forwarding
nodes assigned to the application.

We find that XCFD benefits significantly from increased
forwarding nodes. XCFD adopts an N-N parallel I/O mode,
where each MPI process accesses its own files. Thus many
backend storage nodes and OSTs (Object Storage Targets,
Lustre term for a single exported backend object storage vol-
ume) are involved in each I/O phase, especially when N is
large. In general, applications with such I/O behavior suffer
under FFM, due to the limited processing bandwidth in the
assigned forwarding nodes.

1Calculated by α× per-forwarding-node peak performance. In this pa-
per we set α as 0.4, resulting in thresholds of 1GB/s for throughput, 10,000
for IOPS, and 200/s for metadata operation rate, respectively.

USENIX Association 17th USENIX Conference on File and Storage Technologies    267



1 2 4 8 16
No. of forwarding nodes

0

2

4

I/O
 s

pe
ed

up
 (x

)

WRF-256 XCFD-128

Figure 2: I/O performance speedup of WRF1 and XCFD with increas-
ing dedicated forwarding node allocation. For the rest of the paper,
the number after application name gives the number of compute
nodes used in execution.

Our I/O profiling on TaihuLight indicates that among
jobs using at least 32 compute nodes, around 9% use the
N-N I/O mode, potentially seeing significant performance
improvement given more forwarding nodes. Such under-
provisioning was observed on other supercomputers, e.g.,
recent Cray systems where I/O requests issued by a single
compute node can saturate a forwarding node [27].

Applications like WRF1, meanwhile, adopt the 1-1 I/O
mode, where they aggregate reads/writes to a single file in
each I/O phase. Intuitively, such applications do not bene-
fit from higher forwarding node allocation. In addition, on
TaihuLight applications with the 1-1 mode typically do not
generate large I/O volumes in a single I/O phase, though they
tend to run longer. Combining these two factors, 1-1 appli-
cations are mostly insensitive to additional forwarding layer
resources beyond the default allocation.

Forwarding node load imbalance Application-oblivious
forwarding resource allocation can lead to severe load im-
balance across forwarding nodes. To verify this, we exam-
ined historical I/O traces collected on TaihuLight’s forward-
ing nodes to check how they are occupied over time.

For every forwarding node, TaihuLight’s profiling system
records its per-second pass-through bandwidth. Analysis of
such results first indicates that during the majority of profiled
time intervals, the forwarding nodes are severely underuti-
lized, echoing other studies’ findings on overall low super-
computer I/O resource utilization [43, 47]. Meanwhile we
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Figure 3: Sample TaihuLight forwarding layer load history

found high variability of loads across forwarding nodes and
high day-to-day variances on forwarding node occupancy.
We illustrate this with the forwarding nodes’ daily occu-
pancy, calculated as the fraction of 1-second windows in a
day where a node’s average bandwidth reaches 80% of the
peak forwarding bandwidth of 2.5 GB/s. Figure 3 plots the
minimum, average, and maximum daily occupancy across

the 80 TaihuLight forwarding nodes, between July 15th and
August 31st, 2017. We see both high variability in overall
load (irregular average and maximum curves) and high load
imbalance (large difference between the two).2

With recent and emerging systems adopting a burst buffer
(BB) layer, such under-utilization and imbalance could bring
wasted NVM spaces, buffer overflow, unnecessary data
swapping, or imbalanced device wear.

2.3 Motivation 2: Inter-job Interference
I/O interference is a serious problem known to modern su-
percomputer users [28, 38, 40, 44, 61]. The common FFM
practice not only neglects individual applications’ I/O de-
mands, but also creates an additional contention point by
sharing forwarding nodes among concurrent jobs with con-
flicting I/O patterns. Figure 4 illustrates this using three real
applications: AWP Shentu, and LAMMPS.All used the default
512-1 compute-to-forwarding mapping.
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Figure 4: I/O performance impact of forwarding node sharing

We tested two execution modes, with each application al-
located dedicated forwarding nodes vs. applications using
shared ones. In both modes all three applications ran si-
multaneously. Note that for Shentu in the shared mode, it
was allocated one dedicated forwarding node and two more
nodes to share with other applications: one with AWP and
one with LAMMPS, which were each running on 256 compute
nodes (and thus allocated half of a forwarding node each).

As expected, all three experienced faster I/O with ded-
icated forwarding nodes. However, some suffered much
higher performance interference. While AWP and LAMMPS

saw mild slowdowns (4% and 23% increase in total I/O
time), Shentu had a 3× increase. This is due to the highly
disruptive behavior of AWP’s N-1 I/O mode (discussed in
more details later), causing severe slowdown of Shentu pro-
cesses accessing the same forwarding node. Given the syn-
chronous nature of many parallel programs, their barrier-
style parallel I/O operations wait for all processes involved to
finish. Thus slowdown from the “problem forwarding node”
shared with AWP is propagated to the entire application, de-
spite that it had one dedicated forwarding node and shared
the final one with a much more friendly LAMMPS.

In Section 5, we present an in-depth inter-application in-
terference study, based on which we perform application-
aware interference estimation to avoid sharing forwarding
nodes among applications prone to interference.

2Our recent paper on TaihuLight’s Beacon monitoring system gives
more details on workload characteristics [21].
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2.4 Motivation 3: Forwarding Node Anomaly
Finally, when certain forwarding nodes show abnormal be-
havior due to software or hardware faults, applications as-
signed to work through these slow nodes under FFM would
suffer. We found TaihuLight forwarding nodes prone to cor-
rectable failures in memory or network, confirming the “fail-
slow” phenomenon observed at data centers [33].
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Figure 5: Forwarding node peak performance. Forwarding nodes
with IDs 3, 8 and 34 show abnormal performance.

Figure 5 shows sample benchmarking results measuring
read/write bandwidth across 96 currently active forward-
ing nodes, conducted during system maintenance. While
most forwarding nodes do report consistent bandwidth lev-
els (with expected variability due to network contention, disk
status, etc.), a small number of them clearly exhibit perfor-
mance anomalies. In particular, forwarding node No.8 (high-
lighted with arrow) is an obvious outlier, with average read
and write bandwidth at 7% and 12% of peak, respectively.

Fortunately, the I/O monitoring system in TaihuLight per-
forms routine, automatic node anomaly detection across all
layers of the I/O infrastructure. As shown in Section 3,
our proposed dynamic forwarding system leverages such
anomaly detection to skip nodes experiencing anomalous be-
havior in its dynamic allocation.

3 System Overview
Given the above multi-faceted problems caused by FFM,
we propose a practical-use and efficient dynamic forward-
ing resource allocation mechanism, DFRA. DFRA works by
remapping a group of compute nodes (scheduled to soon
start executing an application) to other than their default for-
warding node assignments, whenever the remapping is ex-
pected to produce significant application I/O time savings.
It serves three specific purposes: (1) to perform application-
aware forwarding node allocation to avoid resource under-
provisioning for I/O-intensive jobs, (2) to mitigate inter-
application performance interference at the forwarding layer,
and (3) to (temporarily) exclude forwarding nodes identified
as having performance anomalies.

To remap at the job granularity does not pose much tech-
nical difficulty by itself. The challenge lies in developing an
automatic workflow that examines both the application’s I/O
demands and real-time system status, and performs effective
inter-application I/O interference estimation, while remain-
ing as transparent as possible to users and relieving adminis-

trators from labor-intensive manual optimizations.
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Figure 6: DFRA decision-making workflow

To this end, we leverage the Beacon I/O monitoring sys-
tem on TaihuLight to perform continuous application I/O
profiling and learn the I/O characteristics of applications
from history.3 Assisted with all-layer profiling data, from the
compute nodes to the backend OSTs, plus per-job scheduling
history that reveals the mapping of a job’s processes to com-
pute nodes, we obtain a detailed understanding of each past
job’s I/O behavior, including peak bandwidth per compute
node, request type/size distribution, periodic I/O frequency,
I/O mode (N-N, N-1, 1-1, etc.), and metadata access inten-
sity. Given that HPC platforms typically see applications run
repeatedly, with very similar I/O patterns [62], there is high
likelihood that the past reflects the future.

We have designed, implemented, and deployed a dynamic
forwarding resource allocation mechanism on TaihuLight,
as depicted in Figure 6 It determines whether a target job
A, scheduled to begin execution on a certain set of compute
nodes, needs to have forwarding nodes remapped and if so,
to which nodes. Implementation-wise, such proposed dy-
namic forwarding resource allocation component resides on
a single dedicated server (DFRA server). It interacts with the
Beacon I/O monitoring system and the job scheduler. Bea-
con provides an I/O performance database to query using A’s
job information (e.g., application name, project name, user
name, and execution scale) and estimates its I/O characteris-
tics based on historical records.

The job’s expected I/O features, such as I/O mode and the
number of compute nodes performing I/O, are then fed to
the DFRA server. First it checks whether this application
needs to scale out to use more forwarding nodes. If not (the
more likely case), then we incorporate real-time scheduling
information to know about the “neighbor applications” An
(the set of applications currently running on D, the forward-
ing nodes to be assigned under the default allocation). This
allows the DFRA server to check whether the default map-
ping will produce significant performance interference with
neighbors already running there. If significant interference
is expected, we keep the default allocation size D, but would

3Partial I/O traces released at https://github.com/Beaconsys/Beacon
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remap the compute nodes to dedicated forwarding nodes.4

If scaling is required, we first calculate S, the number of
forwarding nodes needed. We then check I, the number of
idle forwarding nodes currently available, excluding those
undergoing performance anomaly, and allocate the fewer be-
tween S and I. Though more sophisticated “partial-node”
allocation is possible, we choose the more simple scheme
considering the overall forwarding node under-utilization.

In summary, there are two types of “upgrades”: to grant
more forwarding nodes (for capacity) or grant unused for-
warding nodes (for isolation). In both cases, as we only al-
locate dedicated nodes from the idle pool, no interference
check is further needed. In the specific case of TaihuLight,
at the beginning of this research, beside the 80 forwarding
nodes using the default 512-1 mapping, more than 100 are
reserved for backup or manual allocation. For systems with-
out such over-provisioning, we recommend the default allo-
cation be lowered to serve the majority of jobs, who are not
I/O-intensive, and have a set of “spare” forwarding nodes for
ad-hoc remapping.

Note that this is a best-effort system transparent to users.
Additionally, for the majority of applications, who are not
I/O-intensive enough to warrant higher allocation and not
significantly interference-prone with expected neighbors, the
decision is to remain with default mapping.

The actual remapping process is conducted upon the jobs’
dispatch and involves making RPCs from the DFRA server
to the compute nodes concerned, instructing them to drop off
the original connection and connect to newly assigned for-
warding nodes, allocated from the current available forward-
ing node pool. Considering that a job tends to have consis-
tent I/O behavior, this remapping is done once per job execu-
tion, rather than per request. If remapped, when A completes,
its compute nodes will be reset to default mapping, making
DFRA maintenance simple and robust.

4 Automatic Forwarding Node Scaling
To decide on the “upgrade eligibility” of a job, we estimate
its multiple I/O behavior metrics based on the query results
of I/O monitoring database. When historical information is
not sufficient, e.g., as in the case of new applications, our
system does not change the default mapping. I/O monitoring
data collected from these runs will help forwarding resource
allocation in future executions.

Our scaling decision-making adopts a per-job forwarding
node allocation algorithm. It considers both the application-
specific I/O workload characteristics and historical perfor-
mance data of forwarding node load levels while serving this
application. Most of the threshold values are set empirically
according to our extensive benchmarking of the system, and
can be further adjusted based on continuous I/O performance

4This does not consider the jobs’ duration, as history records or job script
specified run times are not reliable indicators. Such conservative strategy is
allowed by the typical abundance of idle forwarding nodes.

monitoring. More specifically, the target job A needs to meet
the following criteria to be eligible for a higher forwarding
resource allocation than the default setting:

1. its total I/O volume is over Vmin during its previous ex-
ecution;

2. it has at least Nmin compute nodes performing I/O; and
3. it is not considered metadata-operation-bound, i.e., its

past average number of metadata operations waiting at
a forwarding node’s queues is under Wmetadata.

The rationale is based on the primary reason for a job to have
an upgraded allocation: it possesses enough I/O parallelism
to benefit from more forwarding resources. For such ben-
efit to offset the forwarding node remapping overhead, first
the application needs to generate a minimum amount of I/O
traffic. Applications diagnosed as metadata-operation-heavy,
regardless of their total I/O volume or I/O parallelism, are
found to not benefit from more forwarding nodes as their
bottleneck is the metadata server (MDS).

If A passes this test, with past history showing that it is
expected to use NA of its compute nodes to perform I/O, the
number of its forwarding node allocation S is calculated as
dNA/Fe. Here F is a scaling factor that reflects typically
how many I/O-intensive compute nodes can be handled by
a forwarding node without reaching its performance cap. In
our implementation, F is set as

⌈
B f /Bc

⌉
, where B f and Bc

are the peak I/O bandwidths of a single forwarding and com-
pute node, respectively. If not enough idle forwarding nodes
are available, we allocate all the available nodes. We expect
this case to be extremely rare, as given the typical system
load, there are enough idle forwarding nodes to satisfy all
allocation upgrades.

In our deployment on TaihuLight, we empirically set
Vmin at 20 GB, Nmin at the F value (32 based on the for-
mula above), and Wmetadata at twice the per-forwarding-node
thread pool size, also 32. These can be easily adjusted based
on machine specifications and desired aggressiveness.

We do not downgrade allocations for the metadata-heavy
or 1-1 I/O mode jobs, considering their baseline per-process
I/O activities (such as executable loading, logging, and
standard output). Also considering TaihuLight’s sufficient
backup forwarding nodes, we opt not to pay the remapping
overhead for downgrading allocations in this deployment,
though downgrading is easy to implement when needed.

Figure 7 shows how application I/O performance, in ag-
gregate I/O bandwidth measured from the application side,
changes with different compute-to-forwarding node ratios.
As these tests used dedicated forwarding nodes, we started
from the 256-1 allocation, rather than the default 512-1.

Here several applications, namely APT, DNDC, WRF1, and
CAM, due to insufficient I/O parallelism or being metadata-
heavy, do not pass the eligibility test. Their I/O performance
results confirm that they would have received very little per-
formance improvement with more forwarding nodes been al-
located. The other applications, however, see substantial I/O
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Figure 7: Aggregate I/O bandwidth under increasing forwarding
node allocation (compute-to-forwarding mapping ratio), normal-
ized to the 16-1 case. All applications ran using 256 compute nodes
(1024 MPI processes). Each test was repeated 5 times, with average
results plotted and error bars giving 95% confidence intervals.

bandwidth enhancement with increased forwarding node al-
locations, by up to a factor of 10.9×. Judging from results
across all such applications, our current F setting of 32 de-
liver best aggregate I/O bandwidth in most cases.

5 Interference Analysis and Avoidance

Our DFRA system attempts to mitigate this performance in-
terference by assigning jobs that are expected to interfere to
different forwarding nodes. Note that prior work on interfer-
ence detection and optimization focused mostly on deriving
offline, analytical interference models (e.g., [28,31]). In con-
trast, our work focuses on designing practical online interfer-
ence estimation techniques that DFRA can use effectively.

5.1 Inter-application Interference Analysis
We first conduct a rather controlled study, to observe I/O in-
terference behavior between pairs of representative I/O ap-
plications. From the applications described in Table 2, we
select eight that cover different I/O resource-consumption
patterns. Next, we perform pairwise co-execution among
these selected applications. For this, we use 256 compute
nodes (1024 MPI processes) each, so that the paired work-
loads have equal execution scale. Under the default alloca-
tion, the 512 compute nodes running the two programs hence
share one forwarding node.

To gauge interference, we measure each application’s I/O
slowdown by calculating the application’s relative slowdown
factor in overall I/O performance (the time spent in the I/O
interference interval) from that of its solo run. Table 3 shows
the pairwise results, with high-interference pairs (with ei-
ther slowdown factor >3) marked in bold, and medium-
interference ones (those among the rest with either slowdown
factor >2) marked with “*”.

The majority of our applications in this study are intensive
in at least one dimension of I/O resource usage and are ex-
pected to see I/O performance slowdown when they share
the same I/O path. Results in Table 3 confirm this. An
application exhibits an I/O slowdown of around 2× when

co-running with itself (another instance of the same appli-
cation), due to the expected resource contention. The re-
maining pairwise slowdown results reveal several interesting
interference behaviors.

First, we find that applications with low demands in all
three dimensions (throughput, IOPS, and metadata opera-
tion rate) do not introduce or suffer significant I/O slowdown
when co-running with other applications, with the exception
of applications using the N-1 I/O mode (recall Table 2).

To understand the reasons behind, we conducted follow-
up investigations. The three applications that fall into the
“Low/Low/Low” category are WRF1, CAM, and AWP. Among
them, AWP turns out to be a highly disruptive workload, caus-
ing high degrees of I/O slowdown to whoever runs with
it. We performed additional experiments, including MPI-IO

tests emulating its behavior with different I/O parameters,
and identified the problem being its N-1 file sharing mode.
While N-1 writes have been notoriously slow (such as with
Lustre [20], also verified by our own benchmarking), our
study reveals that it brings high disturbance (average of
38.4× to other applications tested).

Further examination of profiling results identified the for-
warding layer as the source of interference. Each forwarding
node maintains a fixed thread pool, processing client requests
from the compute nodes it is in charge of. While designed to
allow parallel handling of concurrent client requests, appli-
cations using the N-1 file sharing mode generate a large num-
ber of requests and flood the thread pool. Their occupation
of the forwarding layer thread resources is further prolonged
by the slow Lustre backend processing of such I/O requests
(often involving synchronization via locks). The result is that
other concurrent applications, whose I/O requests might be
far fewer and more efficient, are blocked waiting for thread
resources, while the I/O system remains under-utilized.

Such effect is highlighted by follow-up test results in Fig-
ure 8. We pair 2 benchmarks, MPI-IO1 (N-1) and MPI-ION
(N-N), running at different scales. The bars (left y axis)
show the queue lengths of pending requests at the forward-
ing layer. While the queue length increases proportionally to
the number of compute processes, as expected, the “co-run”
queue length of MPI-ION does not grow significantly from
its solo run. The much greater increase in MPI-ION latency
(red curves using the right y axis), meanwhile, comes from
the slowdown of each MPI-IO1 request.

Secondly, we observe from Table 3 that DNDC introduced
significant slowdown to all other workloads (by a factor
from 2.4× to 33.3×). A closer look finds that DNDC is
the only application in our testbed with significant meta-
data access intensity. DNDC’s production runs are not par-
ticularly large (only using 2048 processes), which simulta-
neously read 64,000 small files (up to several KBs each).
The large number of open/close requests pile up and block
requests from other applications obviously.

More profiling reveals that read requests see much faster
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Apps MPI-ION APT DNDC WRF1 WRFN Shentu CAM AWP

MPI-ION *(2.1, 2.1) (1.1, 9.3) (4.8, 1.1) (1.0, 1.0) *(2.1, 2.0) (1.3, 4.5) (1.0, 1.0) (3.3, 1.1)
APT - *(2.0, 2.1) (33.3, 1.0) (1.0, 1.0) (4.3, 1.4) (6.3, 1.3) (1.0, 1.0) (50.0, 1.1)
DNDC - - *(2.0, 2.0) (1.0, 25.0) (1.0, 11.1) (1.1, 16.7) (1.0, 33.3) *(2.2, 2.4)
WRF1 - - - (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (50.0, 1.0)
WRFN - - - - *(2.1, 2.1) *(2.0, 2.3) (1.0, 1.0) (12.5, 1.3)
Shentu - - - - - *(2.0, 2.0) (1.0, 1.0) (12.5, 1.1)
CAM - - - - - - (1.0, 1.0) (100.0, 1.0)
AWP - - - - - - - *(2.0, 2.0)

Table 3: I/O slowdown factor pairs of applications listed in row and column headers. E.g., in the 1st row, 2nd column, MPI-ION has slowdown
of 1.1 and APT has 9.3 when they co-execute. (Bold and “*” indicate high- and medium-interference, respectively)
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Figure 8: Interference between MPI-IO1 and MPI-ION . Bar repre-
sents queue length and line represents latency.

processing than open, with only slight increase in pro-
cessing time when DNDC joins a read-heavy job, indicating
bottleneck-free Lustre handling. The wait time, however,
sees almost 4× increase for read and around 2× for open
operations. Besides that the forwarding node thread pool be-
ing the point of contention, the asymmetric delay prompted
us to examine its scheduling policy. We found that metadata
requests were given higher priority over normal file I/O, fa-
voring interactive file system user experience. This, com-
bined with their longer processing time, makes metadata-
heavy applications like DNDC unsuspected disruptive work-
loads. While our ongoing work targets more adaptive poli-
cies, for DFRA we specifically check jobs’ metadata opera-
tion intensity for interference estimate.

Finally, we find that even applications with seemingly or-
thogonal resource usage patterns may not get along well,
with asymmetric performance impact on each other. In par-
ticular, we find that high-bandwidth, low-IOPS applications
impact the performance of low-bandwidth, high-IOPS ones
(but not vice versa). This can be seen from the APT-MPI-ION
results in Table 3, with the high-IOPS APT suffering an al-
most 10× slowdown while the high-bandwidth MPI-ION is
hardly impacted. A closer look reveals that APT reaches
IOPS of over 80,000, with requests sized under 1KB. The
reason behind the asymmetric slowdown is then intuitive:
high-bandwidth applications likely perform sequential I/O
with large request sizes, which force the many small requests
from the high-IOPS applications to wait long.

In summary, we discover that I/O interference not only
comes from bandwidth-intensive applications and problem-
atic access patterns (as assumed by previous studies [31,44]),
but also from applications issuing inefficient I/O requests,
while simultaneously incurring high contention and low uti-
lization, such as in the metadata-heavy and high-IOPS cases.

5.2 Inter-job Interference Estimate for DFRA
We now discuss DFRA’s inter-application interference
check, introduced in Section 5.1. Recall that it is needed only
when we decide that the target job A, which is to be sched-
uled, does not need more forwarding nodes than granted by
the default mapping. The interference check is then per-
formed pairwise, between A and each member of its neighbor
application set An.

As actual I/O interferences incurred during co-executions
of applications depend on other factors such as their I/O
phases’ frequency and interleaving, we use our interference
analysis results to make conservative, qualitative decisions.
More specifically, for A and each of its neighbor in An, we
consider interference is likely if either A or the neighbor is:

1. using the N-1 I/O mode, or
2. considered “metadata operation heavy” (average num-

ber of metadata operations waiting at a forwarding
nodes queue > Wmetadata), or

3. considered “high-bandwidth” or “high-IOPS” (using
criteria described in Section 2.1).

For A, the above check has to be based on our monitor-
ing system’s per-application I/O performance history data.
For jobs in An, however, our history-based I/O behavior in-
ference can and should be complemented with real-time I/O
behavior analysis. In particular, as the inferred I/O behav-
ior includes pattern information such as I/O phase frequency,
I/O volume per process performing I/O, and I/O mode, such
estimates can be verified by actual data collected during the
neighbors’ current execution. E.g., if a forwarding node is
receiving unexpectedly low I/O load from an application run-
ning, DFRA considers the application turns off I/O for this
run, overriding its positive interference estimate. Similarly,
if an application is issuing I/O at intensity not indicated by
its past history, we play safe and use the peak load level mea-
sured during its execution so far on the forwarding node(s)
involved, to determine whether interference is likely.

6 Evaluation
6.1 Job Statistics from I/O History Analysis
First, DFRA’s working relies on applications’ overall con-
sistency in I/O behavior. We verified this with the 18-month
TaihuLight I/O profiling results, confirming observations by
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existing studies [31, 44]. Specifically, if we simply forecast
a new job’s I/O mode and volume as those in its latest run
using the same number of compute nodes, we can success-
fully predict these parameters with under 20% deviation for
96,621 jobs (90.3%) out of 107,001 in total.

Category Count Count(%) Core-hour(%)
Total jobs 107,001 100% 100%

Job benefits from DFRA 14,712 13.7% 79.0%
Job’s I/O volume < Vmin (20 GB) 83,562 78.1% 18.9%

Job’s I/O nodes < Nmin (32) 8,727 8.2% 2.1%
Job’s metadata queue length

> Wmetadata (32) 0 0.0% 0.0%

Table 4: DFRA eligibility screening results, based on using per-job
I/O history between April 2017 and August 2018

We then give statistics about DFRA’s decisions and its po-
tential beneficiaries, by running these 18-month job I/O pro-
files through DFRA’s scaling decision making. For jobs that
were refused allocation upgrades, we categorize them by the
first test failed during the DFRA allocation scaling eligibility
check (Section 4). Table 4 lists the results.

First, 13.7% jobs (minority in count yet accounting for
79.0% of core-hours) are granted upgrades and expected to
benefit from DFRA. This demonstrates that though the I/O
system is overall underutilized, there are substantial amount
of I/O-intensive jobs as potential beneficiaries. Among the
rest, most fail to meet the total I/O volume threshold Vmin,
followed by the number of I/O nodes involved. No job fails
at the metadata-intensity check, as such applications in this
particular job history do not pass the I/O volume test.

Also, throughout this history “replay” using DFRA, the
average forwarding node consumption is 171.2, suggesting
that DFRA can get much better I/O performance while work-
ing well under the total 240-node forwarding capacity.

6.2 Performance/Consistency Improvement
Next we examine the impact of DFRA’s deployment on real
applications’ I/O performance in the TaihuLight production
environment. We run the 11 applications (introduced in Sec-
tion 2.1) each for 10 times at randomly selected times during
a 1-month period, each time under DFRA and FFM within
the same job execution, with remapping done in between. To
control total resource usage, Shentu, LAMMPS, and Macdrp

run with 1,024 compute nodes, with the other applications
run at their typical mid-size run scale (swDNN using 512
nodes while the rest using 256). They are further divided into
two groups: scaling, with more forwarding nodes granted by
DFRA, and non-scaling, with dedicated forwarding node al-
location if deemed interference-prone by DFRA (which may
depend on their neighbor jobs under the default mapping,
though APT and DNDC are always isolated).

DFRA brings an average I/O speedup of 3.5× across all
11 applications, from 1.03×(CAM) to 18.9×(Shentu). As
expected, applications in the scaling group receive higher
speedup (average at 4.8× and up to 18.9×), while non-
scaling applications benefit more from reduced performance

variability (and potential slowdown incurred on their neigh-
bors). However, the scaling group also obtains dramatic im-
provement in I/O performance consistency, with average re-
duction of 91.1% in range of I/O times.

The reason lies in the “mis-alignment” of compute nodes
to forwarding nodes using FFM. Our job history finds over
99% of large-scale jobs (using 512 compute nodes or more)
assigned to share forwarding nodes with other jobs, though
their job scales are often perfect multiples of the default fac-
tor of 512. Intuitively, such fragmentation often also leads to
dramatic load imbalance across forwarding nodes (partially)
serving the same I/O-intensive application.

App Comp. time I/O time w. FFM I/O time w. DFRA Total time reduction
Shentu-1024 1,303s 1,204s 64s 45%
LAMMPS-1024 3,510s 431s 97s 8%
Macdrp-1024 6,932s 260s 105s 2%
swDNN-512 0s 132,710s 31,476s 76%
AWP-256 2,301s 255s 204s 2%
CESM-256 4,742s 942s 846s 2%
WRFN -256 1,640s 135s 89s 3%
DNDC-256 992s 222s 216s 0.5%
WRF1-256 1,640s 513s 479s 2%
APT-256 222s 46s 24s 8%
CAM-256 3,226s 899s 876s 0.6%

Table 5: Per-phase computation and I/O time of applications

Table 5 describes the impact of DFRA on resource-
intensive applications’ overall performance. All applica-
tions but one (swDNN) have clear repeated phases alternat-
ing between computation and I/O, while the number of such
computation-I/O cycles may vary across runs according to
users’ needs. Therefore we illustrate the relative impact by
listing the more stable per-cycle average computation time,
average I/O time (with FFM and DFRA respectively), and
the percentage of total time saving by DFRA. The last col-
umn does not change when a particular production run ad-
justs the number of computation-I/O cycles. swDNN, unlike
timestep numerical simulations, is a parallel deep learning
model training application that has fine-grained, interleaving
computation and I/O, therefore we treat its execution as a
single I/O phase.

As most applications conform to their “total I/O budget”
by adjusting their I/O frequency, by taking one snapshot
every k computation timesteps, DFRA is not expected to
yield significant overall runtime reduction, especially with
the non-scaling ones. However, it does bring impressive to-
tal time savings for I/O-bound applications Shentu (45%)
and swDNN (76%), as well as over 8% savings for APT and
LAMMPS. Meanwhile, making I/O faster also implies that the
applications could afford to output more frequently under the
same I/O budget.

Figure 10 illustrates this scenario using a Shentu test run
using 1024 compute nodes, which are not allocated contigu-
ously. Under DFRA, its 32 dedicated forwarding nodes serve
equal partitions of compute nodes, as each compute node can
be individually remapped to any forwarding node, allowing
almost all compute nodes finishing I/O simultaneously. Un-
der FFM, instead, these dispersed 1024 compute nodes are
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Figure 10: Sample Shentu-1024 I/O bandwidth timelines

mapped to 7 forwarding nodes. As a result, the same I/O ac-
tivities take much longer, with multiple stair-steps produced
by completion of different forwarding nodes.

(a) Before DFRA (b) After DFRA

Figure 11: Impact of DFRA’s interference avoidance on pairwise
application co-run slowdown. Darkness of each block reflects the
slowdown factor of the application at row header by the applica-
tion at the column header. Blocks with slowdown factor values
give co-running pairs with interference anticipated by DFRA and
hence allocated separate forwarding resources. In all experiments,
the compute-to-forwarding mapping uses the default setting (512-
1), with DFRA allocating dedicated forwarding nodes to applica-
tion pairs it considers interference-prone.

To evaluate our proposed interference avoidance, we re-
run the pairwise experiments (see Section 5) with DFRA on
TaihuLight. Results are in Figure 11. We found DFRA can
detect potential interference with pairs having slowdown fac-
tors over 1.1 at either side. In this test, we only separate these
applications, without scaling up forwarding nodes, to isolate
the benefits brought by interference avoidance.

Compared with the left plot, where just by sharing a for-
warding node, certain applications could perceive a 2× to
100× I/O slowdown, the right plot reduces such slowdown to
uniformly under 1.1×. With many jobs on TaihuLight shar-
ing forwarding nodes, DFRA removes the infrequent (yet
highly damaging) inter-application interference cases.

Finally, we evaluate an alternative approach, RR, which
maps compute nodes to forwarding nodes in a round-robin

manner. We test RR 32-1, where each group of contiguous
32 compute nodes are assigned to one forwarding node. Fig-
ure 12 gives the speedup (again over the 512-1 fixed alloca-
tion) of running one of the 5 applications given at the x-axis
simultaneously with either DNDC or AWP. Each application
runs on 256 compute nodes, with two co-running applica-
tions sharing 8 forwarding nodes using RR. For fair com-
parison, DFRA uses 64-1 allocation here, so that all co-run
experiments enlist 8 forwarding nodes in total. RR spreads
the load of each application to all 8 forwarding nodes, but
does not offer the performance isolation brought by DFRA,
when two applications running on disjoint compute nodes
get mapped to common forwarding nodes. DFRA gives the
two applications each a 64-1 dedicated allocation, delivering
much higher I/O speedup in most cases, plus performance
isolation from co-executing applications.

6.3 DFRA Decision Analysis
We now validate DFRA’s forwarding node scaling deci-
sions. Figure 13 shows, in log scale, performance of MPI-IO
benchmarks with parameters uniformly sampled from a
range, to adopt different I/O modes (N-1, N-N and N-M),
I/O performing nodes, I/O request sizes, and metadata oper-
ation ratios. All tests are again divided into the scaling and
non-scaling groups, referring to cases where the DFRA au-
tomatic scaling decision making processes chose to upgrade
a job’s forwarding node allocation, or retain the default one.
The final results for both cases are consistent with the esti-
mations projected by DFRA. Scaling cases can achieve on
average 2.6× speedup (min at 1.1× and max at 7.1×), while
the non-scaling ones’ performance receives only trivial per-
formance improvement (up to 1.05×).

Next we further examine the effectiveness of DFRA scal-
ing, by measuring the queue length and I/O bandwidth of
real-world applications on TaihuLight. Figure 14 shows re-
sults, again in log scale, with representative applications cov-
ering all I/O categories mentioned in Table 2. Among them,
DNDC and APT are “non-scaling”: DNDC is metadata-intensive
and APT issues a large number of small-size I/O requests. We
find their performance bottleneck not at the forwarding layer,
explaining their little improvement in queue length and band-
width when given more forwarding nodes. AWP adopts an
N-1 I/O mode, generating high request pressure for forward-
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Figure 12: Speedup over 512-1 fixed allocation baseline, with two
applications co-running, each using 256 compute nodes. Note that
with its dedicated allocation, DFRA’s performance is not impacted
by co-running applications.
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Results are sorted by speedup. Above the bars we list the minimum,
average, and maximum speedup for each group.

DNDC (H
igh M

DS)

APT (H
igh IO

PS)

AWP (N
-1)

Shentu(H
igh BW Read)

LAMMPS(H
igh BW W

rite
)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Q
u

eu
e 

le
n

g
th

256-1 128-1 64-1 32-1 16-1

(a) Average queue length

DNDC (H
igh M

DS)

APT (H
igh IO

PS)

AWP (N
-1)

Shentu(H
igh BW Read)

LAMMPS(H
igh BW W

rite
)

10
0

10
1

10
2

10
3

10
4

10
5

I/O
 b

an
d

w
id

th
 (

M
B

/s
) 256-1 128-1 64-1 32-1 16-1

(b) Average aggregate bandwidth

Figure 14: Average queue length (average number of requests pend-
ing in the queue, sampled at 0.01-second intervals) and I/O band-
width with varying compute-to-forwarding mapping ratios during
I/O execution. All applications use 256 compute node (1024 pro-
cesses), with dedicated forwarding nodes.

ing nodes, thus receiving significant queue length improve-
ment. Both Shentu and LAMMPS are bandwidth-hungry, ben-
efiting significantly from the bandwidth side. In particu-
lar, Shentu gets a higher speedup as scaled-up allocation
soothes its forwarding-side cache trashing.

6.4 Node Anomaly Screening

DFRA could screen out the abnormal forwarding nodes au-
tomatically. During our investigation, anomaly on forward-
ing nodes occurs for 6 times from Apr 2017 to Aug 2018.
Jobs using such abnormal forwarding nodes typically experi-
ence substantial performance degradation. Figure 15 shows
the performance impact when jobs get allocated an abnor-
mal forwarding node. The I/O performance could see a 20×
slowdown, due to the explicit barriers common with parallel
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Figure 15: Performance impact when jobs run on abnormal for-
warding nodes. All applications run with computing-forwarding
ratio of 32-1.

I/O, forcing all processes to wait for the slow progress of the
impaired forwarding node.

6.5 Overhead and Overall Resource Saving
Here we assess DFRA’s overhead in performing the actual
node remapping, while the allocation decision itself takes
under 0.1s in all tests on TaihuLight. Figure 16 shows the
average remapping time cost for different job sizes, plus the
corresponding job dispatch time (without remapping) for ref-
erence. Though the remapping overhead increases linearly
when more compute nodes are involved, it composes a mi-
nor addition to the baseline job dispatch overhead (the lat-
ter mainly due to compute nodes’ slow wake-up from their
power saving mode).

Note that this overhead is offset by our conservative
screening based on jobs’ past I/O profile. Even with 16,384
compute nodes, such minor delay in job dispatch is negligi-
ble compared with the total time saved in I/O phases, espe-
cially for long-running jobs. Since its deployment in Feb
2018, DFRA has brought an average execution time sav-
ing of over 6 minutes (up to several hours) to I/O-intensive
jobs eligible for its remapping, estimated by comparing the
I/O bandwidth benchmarked with the same application at the
same job scale, before and after DFRA. Going over the ac-
tual TaihuLight job history, we thus estimate DFRA’s overall
resource saving at over 200 million of core-hours.
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Figure 16: Average dynamic forwarding node remapping overhead

6.6 Extension to Burst Buffer Allocation
Finally, we briefly report our recent effort to apply DFRA
techniques to dynamic allocation of burst buffer (BB) re-
sources. We setup a testbed following the BB construction
adopted by a previous study [41], containing 8 forwarding
nodes, each with one 1.2TB Memblaze SSD to compose re-
mote shared burst buffers.
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Figure 17: I/O speedup with different compute-to-BB node ratio,
over performance with a baseline 256-1 allocation. Results are av-
erage from 3 tests, with error bars omitted due to small variance.

Figure 17 shows the performance impact of scaling up BB
node allocations. All runs use 256 compute nodes. Not sur-
prisingly, the more I/O-intensive applications (using N-N or
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N-1) benefit significantly from more BB nodes, while the 1-1
mode WRF1 sees little improvement. The similarity between
such result and that with forwarding resource scaling sug-
gests that DFRA is promising for BB layer management as
well. To this end, the next generation Sunway supercomputer
will adopt DFRA, including for its planned BB layer.

7 Related Work
I/O forwarding design and optimization Cplant [12] first
introduces the I/O forwarding layer, but without support for
data caching or request aggregation. I/O forwarding then be-
came popular at extreme scale in IBM Blue Gene (BG) plat-
forms [14, 36, 48]. IOFSL [13] is an open-source, portable,
high performance I/O forwarding solution that provides a
POSIX-like view of a forwarded file system to an applica-
tion. The Cray XC series uses Data Virtualization Service
(DVS) [4] for I/O forwarding. Our proposed DFRA method-
ology is compatible with recent trends in I/O forwarding
adoption at large supercomputers, such as the Cray series.

For better I/O forwarding performance, Ohta et al. [50]
present two optimization methods to reduce I/O bottlenecks:
I/O pipelining and request scheduling. Vishwanath et al. [63]
boost I/O forwarding through a work-queue model to sched-
ule I/O and asynchronous data staging. PLFS adds an inter-
position software layer that transparently partitions files to
improve N-1 performance [20]. DFRA is orthogonal to these
optimizations and focuses on application-aware forwarding
allocation and performance isolation.
Resource-aware scheduling This work echoes efforts in
resource-aware scheduling, such as approaches improving
utilization of datacenters/cloud resources, including CPU,
cache, memory, and storage [22,34,58]. Our focus, however,
is on HPC systems. To this end, AID [44] identifies appli-
cations’ I/O patterns and reschedules heavy I/O applications
to avoid congestion. CALCioM [28] coordinates applica-
tions’ I/O activities dynamically via inter-application com-
munication. Gainaru et al. propose a global scheduler [31],
which based on system condition and applications’ histor-
ical behavior prioritizes I/O requests across applications to
reduce I/O interference. The libPIO [65] library monitors
resource usage at the I/O routers and based on the loads al-
locates OSTs to specific I/O clients.

Regarding application-level I/O aware scheduling, AS-
CAR [40] is a storage traffic management framework that
improves bandwidth utilization by I/O pattern classification.
Lofstead et al. [46] propose an adaptive approach that groups
processes and directs their output to particular storage tar-
gets, with inter-group coordination. IOrchestrator [71] builds
a monitoring program to retrieve spatial locality information
and schedules future I/O requests.

Our proposed scheme takes a different path that does not
require any application or I/O middleware modification. It
observes application and system I/O performance, and based

on both real-time monitoring results and past monitoring his-
tory, automatically adjusts its default allocation to grant more
or dedicated forwarding resources.
I/O interference analysis On detecting and mitigating in-
terference, Yildiz et al. [70] examine sources of I/O interfer-
ence in HPC storage systems and identify the bad flow con-
trol across the I/O path as a main cause. CALCiom [28] and
Gainaaru’s study [31] show that concurrent file system ac-
cesses lead to I/O bursts, and propose scheduling strategy en-
hancements. On relieving burst buffer congestion, Kougkas
et al. [39] leverage burst buffer coordination to stage applica-
tion I/O. TRIO [66] orchestrates application’s write requests
in the burst buffer and Thapaliya et al. [60] manage interfer-
ence in the shared burst buffer through I/O request schedul-
ing. The ADIOS I/O middleware manages interference by
dynamically shifting workload from heavily used OSTs to
those less loaded [42]. Qian et al. [52] present a token bucket
filter in Lustre to guarantee QoS under interference.

This work is complementary to the above studies and uses
interference analysis as a tool, achieving performance isola-
tion using interference avoidance.

8 Conclusion
In this work, we explore adaptive storage resource provision-
ing for the widely used I/O forwarding architecture. Our
experience of deploying it on the No.3 supercomputer and
evaluating with ultra-scale applications finds dynamic, per-
application forwarding resource allocation highly profitable.
Judiciously applied to a minor fraction of jobs expected
to be sensitive to forwarding node mapping, our remap-
ping scheme both generates significant I/O performance im-
provement and mitigates inter-application I/O interference.
We also report multiple prior findings by other researchers
as confirmed or contradicted by our experiments. Finally,
though this study has focused on the allocation of forward-
ing nodes, the same approach can apply to other resource
types, such as burst buffer capacity/bandwidth allocation.
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