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Abstract

Graph processing is becoming commonplace in many appli-

cations to analyze huge datasets. Much of the prior work in

this area has assumed I/O devices with considerable laten-

cies, especially for random accesses, using large amount of

DRAM to trade-off additional computation for I/O accesses.

However, emerging storage devices, including currently pop-

ular SSDs, provide fairly comparable sequential and random

accesses, making these prior solutions inefficient. In this pa-

per, we point out this inefficiency, and propose a new graph

partitioning and processing framework to leverage these new

device capabilities. We show experimentally on an actual plat-

form that our proposal can give 2X better performance than a

state-of-the-art solution.

1 Introduction

Graph processing is heavily employed as the fundamental

computing platform for analyzing huge datasets in many

applications such as social networks, web search, and ma-

chine learning. Processing large graphs leads to many random

and fine-grained accesses to memory and secondary storage,

which is detrimental to application performance. Prior work

have attempted to develop optimized frameworks for graph

processing either in a distributed system [11, 17, 19, 23, 25]

or for a single machine [8, 9, 12, 13, 15, 16, 18, 20, 22, 26], by

partially/completely storing the graph data in main memory

(DRAM memory).

Recent efforts on single machine approaches aim at storing

Vertex data in the main memory to serve their fine-grained

accesses in the byte-addressable DRAM memory, while the

Edge data which usually has coarser accesses, is stored in

the secondary storage. With growing graph dataset size, even

partially storing them on DRAM memory is not cost-effective.

On the other hand, emerging storage devices, including cur-

rently popular Solid State Drives (SSDs), continue to scale

and offer larger capacity with lower access latency, and can be

used to accommodate voluminous graph datasets and deliver

good performance. However, an SSD’s large access granu-

larity (several KB’s) is an impediment towards exploiting its

substantial bandwidth for graph processing.

Prior works [9, 15] attempt to alleviate this issue by either

storing some part of graph data in the main memory or ef-

fectively partition the graph data. Such techniques are either

designed for the conventional Hard Disk Drives (HDDs) and

are not able to saturate an SSD’s substantial bandwidth, or

are not readily applicable when the vertex data is stored on

secondary storage. GraFBoost [13] is a recent fully external

graph processing framework that stores all graph data on the

SSD, and tries to provide global sequentiality for I/O accesses.

Despite yielding performance benefits, providing global se-

quentiality hinders its scalability as graph dataset sizes in-

crease dramatically. On the other hand, since NVMe SSDs

deliver comparable performance for random and sequential

page-level I/O accesses [2–4], such perfect sequentiality may

not be all that essential.

In this paper, we first study the performance issues of ex-

ternal graph processing, and propose a partitioning for vertex

data to relax the global sequentiality constraint. More specif-

ically, we address the performance and scalability issues of

state-of-the-art external graph processing, where all graph

data resides on the SSD. To this end, we devise a partitioning

technique for vertex data such that, in each sub-iteration of

graph algorithm execution, instead of randomly updating any

vertices in the graph, updates occur to only a subset of vertices

(which is sufficiently small to fit in main memory).

With our proposed partitioning, after transferring the vertex

data associated with a partition into main memory from SSD,

the subsequent information required to generate updates –to

the vertices present in the memory– will be streamed from

SSD. Thus, the fine-grained updates will be only applied to

the set of vertices in the memory, eliminating the need for

coalescing all the intermediate updates to provide perfect

sequentiality. Our proposed enhancements can give more than

2X better performance than a state-of-the-art solution.
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2 Background and Related Work

Graph Data Representation: Graphs are represented by (i)

Vertex data that refers to a set of vertices with vertex attributes

including its ID, value, and its neighboring information (i.e.,

byte offset of its neighbors), and (ii) Edge data that contains

the set of edges connected to each vertex along with its prop-

erties. Edge data is usually stored in a compressed format. A

common compressed representation of graph data is called

Compressed Sparse Column (CSC) wherein vertex file stores

the vertex information along with the byte offset of its neigh-

bors in the edge file.

Programming Model: Due to its unique characteristics,

large-scale graph processing is inherently not suited to the

parallelism offered by previous parallel programming mod-

els. Among different models to facilitate processing of large

graphs, Vertex-Centric programming model [19] has received

much attention, as this iterative model is properly designed to

distribute and parallelize large graph analytics. In this model,

each vertex runs a vertex program which reads its attributes

as well as its neighboring vertices, and generates updates to

itself and/or its neighbors.

Graph Processing Frameworks: Numerous prior efforts

incorporate vertex-centric model and disperse graph data

amongst several machines, with each machine storing its por-

tion on DRAM memory, to expedite the fine-grained and

random accesses to the graph data. Distributing the graph

data, on the other hand, necessitates frequent communications.

Such approaches employ various partitioning techniques to

minimize the communication overhead [11, 17, 19, 25], and

balance the load.

Apart from distributed graph analytic frameworks, single-

machine techniques have also been proposed [7–9, 12, 13, 15,

16,18,20–22,26]. When a single machine is used, it may fully

or partially store graph data on the secondary storage, and

transfer it to main memory in fairly large chunks to achieve

high I/O sequentiality. It is common in such techniques to

store vertex data on main memory, and edge data on the

secondary storage. GraphChi [15], specifically designed for

HDDs, splits graph data into different partitions, where par-

titions are processed consecutively. Their enhancements has

two consequences: (i) with increasing graph data size, the

number of partitions can proportionally increase, resulting in

high I/O costs, and (ii) when only a portion of graph data is re-

quired (e.g., when running a sparse graph algorithm), all graph

data has to be transferred to main memory. FlashGraph [9]

stores vertex data on DRAM memory while edge data resides

on an array of SSDs. However, with graph data continuing

to grow, even storing the vertex data–which is usually orders

of magnitude smaller than edge data– requires considerable

amount of expensive DRAM memory. Thus, it is important

to consider completely external graph processing approaches.

External Graph Processing: Storing vertex data on SSD

has performance and lifetime penalty due to fine-grained I/O

accesses. For example, in push-style vertex-centric model,

the value of different vertices (e.g., the rank in PageRank

algorithm) needs be updated at the end of each iteration. Such

updates are usually in the range of a few bytes (e.g., 4 byte

integer), whereas the SSD page size is a few kilobytes (e.g.,

4KB∼16KB). Apart from its poor performance, an important

consequence of the miss-match between the granularity of

vertex updates and SSD page size, is its detrimental impact

on SSD’s endurance.

GraFBoost [13] proposes a sort-reduce scheme to coalesce

all the fine-grained updates and submit large and sequential

writes to the SSD. In each iteration of GraFBoost after run-

ning an edge program for the edges connected to a vertex v,

a set of updates are generated for the neighbors of v. These

updates are in the form of < key,value > pairs, where key is

the neighbor’s ID, and value refers to the value of v (source

vertex). The number of intermediate updates can be commen-

surate with the number of edges, denoted as |E|, with many

duplicate keys generated for each destination vertex.

GraFBoost sorts and reduces the < key,value > pairs to

convert the fine-grained updates to large sequential SSD

writes. Since the number of updates can reach well beyond the

size of available DRAM memory, the graph data is streamed

from SSD, processed and sorted in main memory in large

parts (e.g., 512MB), and then logged on the SSD. Subse-

quently, these 512MB chunks are streamed from SSD, merge-

reduced and written back to the SSD. Despite providing sig-

nificant benefits, GraFBoost, or any external graph processing

approach which tries to provide perfect sequentiality for all

vertex updates, incurs high computation overhead. This com-

putation could be avoided for SSDs which provide quite good

page-level random access performance, unlike HDDs.

3 Motivation

In this section, we study the performance and scalability is-

sues of GraFBoost, a state-of-the-art external graph process-

ing framework. To investigate its performance, we run various

graph algorithms, using different input graphs. For our exper-

iments, we use a system with 48 Intel Xeon cores, 256 GB

of DRAM, and two datacenter-scale Samsung NVMe SSDs

with 3.2 TB capacity in total, which provide up to 6.4 GB/s

sequential Read speed. We run two algorithms, Breadth First

Search (BFS) and PageRank on various input graphs (details

can be found in Table 1) including web crawl graph [6], twit-

ter graph [5], and synthetic graphs generated based on Graph

500 benchmark [1]. This synthetic set of input graphs enables

us to generate and examine graphs with various size.

Performance Analysis. We give the breakdown of normal-

ized execution time for BFS and PageRank in Figure 1, run-

ning on three graphs: web, twitter, and kron30. The latency

of different steps of GraFBoost, including (i) reading/writing

vertex data, (ii) reading edge data and running edge program,

and (ii) the sort-reduce phase, are reported in Figure 1. As
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Figure 1: Execution time breakdown of GraFBoost.

Figure 2: Percentage of execution time spent on sorting.

shown in this figure, the sort phase is the major contributor to

the overall execution time, by accounting for nearly 61% of

the total execution time for running PageRank on web graph.

GraFBoost, despite effectively eliminating fine-grained I/O

accesses, requires to expend considerable part of its execution

time only for the sorting phase. In other words, it trades off

the additional computation for I/O accesses. This is, in fact,

very common in many graph processing frameworks, to mini-

mize the communication/transfer overhead at the expense of

adding more computation.

Scalability. To investigate the scalability of GraFBoost,

we present a simplified analysis of its execution time. As-

suming a graph with N edges, the latency of SSD accesses is

linear with respect to N, i.e., O(N). Moreover, Sorting in the

memory takes O(N ∗ log(N)) to complete, on average. With

DRAM access speed k times faster than SSD, if the number

of edges grows, such that log(N)> k, the sorting phase can

dominate the total execution time and hinder its scalability.

To quantitatively confirm our analysis, we run PageRank on a

synthetic graph with different edge factors (ratio of number

of edges to vertices). We report the percentage of time spent

in the sort phase, in Figure 2, for kron graphs with 1 billion

vertices and edge factors of 8∼32. As it is evident, increasing

the number of edges results in larger sorting overheads, as

more number of updates are generated, which in turn, takes

longer time to sort.

Summary. Even though the computation cost that GraF-

Boost introduces may appear to be an acceptable trade-off for

Figure 3: Data structures in our design.

current systems and graph datasets, its benefits are expected

to dramatically drop as the graph data sizes grow. Preserv-

ing comprehensive sequentiality and sorting of intermediate

data, seems to be unnecessary with SSDs providing nearly

identical page-level random and sequential access latencies.

Instead, if graph vertices can be placed on SSD pages such

that each page contains a set of vertices which are likely to

be updated at almost the same time, the sorting phase could

be eliminated altogether. However, perfectly clustering the

graph vertices is known to be an NP-hard problem [14]. In

this paper, we aim to provide a local sequentiality which, un-

like prior works, does not require any sorting of intermediate

updates to achieve lower execution times.

4 Proposed Mechanism

In this section, we describe our proposed partitioning tech-

nique that re-organizes vertex data and splits them into several

partitions, so that each can fit on a limited DRAM space. The

high-level idea is to change the order in which graph vertices

are updated, so that at each time, the updates are directed at a

subset of vertices residing in main memory. Specifically, we

propose to partition the vertex data and process each parti-

tion by reading its respective vertex data into main memory,

followed by streaming the required edge data from the SSD.

Figure 3 shows different data structures employed in our de-

sign. Since in each iteration, updates happen to the destination

vertices, we (i) split the destination vertices and assign each

subset of them to a partition (Destination Vertex Data in this

figure), and (ii) store source vertices and their neighboring in-

formation –a pointer to the out-edges of each vertex1– for each

partition, separately (Source Vertex Data in the figure). Lastly,

we organize the edge data for each partition as shown in this

1e is called an out-edge of vertex u, if e : u => v.
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figure (Edge Data). Note that, our proposed enhancements

are based on the push-style vertex-centric graph processing

model.

4.1 Partitioning Vertex Data

There has already been extensive prior work on partitioning

graph data. However, they are not well suited for fully exter-

nal graph processing, due to a number of reasons: (i) some

of these studies [9, 15, 18] require all vertex data be present

in the main memory when processing the graph, which as

prior work [13] shows, they sometimes even fail to finish their

execution when the available DRAM space is not enough

to store the vertex data; (ii) some others [9, 11, 23, 24, 26]

propose 2-D partitioning where graph data is assigned to

each partition with the rows/columns corresponding to the

source/destination vertices, respectively. These proposals typ-

ically do not decouple vertex data from edge data, needing

the vertices and edges assigned to a partition be completely

present in main memory, or cache, to process it. This con-

straint results in dramatic rise in the number of partitions

which, in turn, accentuates the cross-partition communication

overhead. Instead, we devise a mechanism that only requires

the vertex data of a partition be present in main memory while

edge data can be streamed from SSD, as needed. Based on

our proposed greedy partitioning algorithm, destination ver-

tices are uniquely assigned to each partition, whereas source

vertices can have duplicates (mirrors) on different partitions.

The goal of this greedy partitioning is to minimize the number

of mirrors for source vertices while preserving the uniqueness

of destination vertices. Based on this partitioning, for each

edge e : u => v,

• If v is already assigned to a partition, u will be added to

the same partition, if it does not already exist on that.

• Else if, v is not assigned to any partition yet,

– If u is assigned to a set of partitions {P1,P2, ...},

we choose the partition with the least number of

edges corresponding to it.

– Else, we assign u and v to the partition with least

number of edges corresponding to it.

This partitioning guarantees that each destination vertex

is uniquely assigned to a partition and it does not have any

mirrors. After this phase, the destination vertex IDs are up-

dated with respect to their new order. These changes are also

reflected on the respective source vertices and the edge data.

The size of partitions are adjusted such that destination ver-

tices for each partition can fit in main memory. Note that,

partitioning is done off-line, as a pre-processing step, latency

of which does not impact the execution time.

Figure 4: Overhead of the proposed partitioning.

4.1.1 Partitioning Overhead

We study the efficacy of our proposed partitioning, based on

the replication factor, i.e., the average number of mirrors that

each vertex has, and the space overhead. To this end, we run

our partitioning algorithm on twitter graph, for different

number of partitions, and report results in Figure 4. As shown

in this figure, with increasing number of partitions, the repli-

cation factor increases sub-linearly according to the number

of partitions, and it is fairly below the worst case. For instance,

with 8 partitions, the replication factor and the space over-

head are around 4.5 and 12%, respectively. These overheads

happen to be smaller for other graphs listed in Table 1 (3.07

replication factor, on average).

4.2 Execution Model

Different partitions are processed consecutively. For each:

1. The destination vertex data associated with that partition is

transferred to main memory from SSD.

2. Source vertex data (their attributes and neighboring infor-

mation) for this partition, are streamed from SSD in 32 MB

chunks. This can be done in parallel with each thread reading

different chunks. Decisions regarding which vertex data is

currently required to be processed (i.e., is active), can be made

either on-the-fly or after the source vertex data is transferred

into main memory.

3. After determining the set of active vertices (active vertex

list), for each active vertex, byte offset of its neighbors on the

edge data file is extracted and the required edges are trans-

ferred to main memory. Thus, for a chunk of source data, all

the required information to run the graph algorithm exists in

main memory, including the source vertex attributes, desti-

nation vertices in the current partition, and the neighboring
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Figure 5: Meta-data for updating mirrors.

Figure 6: Pseudo code for updating mirrors.

information. This implies that, all the updates generated by

this source vertex chunk will happen to the set of destination

vertices present in main memory.

4. The graph algorithm runs, and the updates are generated for

the destination vertices. As an example, in PageRank, the rank

(value) of each source vertex is sent to the destination vertices.

The ranks are accumulated in each destination vertex and

dampened by a factor specified for this algorithm (e.g., 0.15).

In this step, multiple threads are attempting to update ele-

ments of the same vertex (destinations) list in memory, which

can incur high synchronization cost. Instead, we perform the

vertex data updates in two steps: (i) first, threads push up-

dates (in large chunks, e.g., 1MB) to multiple buffers, each

dedicated to a portion of the vertex list, and (ii) subsequently,

writer threads pull data from these buffers and update their

specified portion (similar to Map-Reduce [10] paradigm).

5. When processing for a partition completes, the meta-data

(depicted in Figure 5) required for updating its mirrors on

other partitions, is read from SSD. The meta-data includes

the partition IDs of mirrors of each vertex2, and the chunk

offset for each partition. To minimize the overhead of mirror

updates, all source vertex tables store the vertices in the order

of their IDs to enables sequential updates to the mirrors.

6. The mirror updates are generated and written on SSD.

2We keep Partition IDs in a bitmap to minimize space overhead.

Table 1: Characteristics of the evaluated graph data.

Graph webgraph twitter kron30 kron32

Num Vertices 3.5B 41M 1B 4B

Num Edges 128B 1.47B 17B 32B

Text Size 2.7TB 25GB 351GB 295GB

Rep. Factor 3.7 4.5 1.91 2.2

Space Overhead 10.5% 12% 10.3% 11.5%

4.3 Updating Mirrors

We give pseudo code for mirror updates, in Figure 6. For each

vertex in destination vertices, we determine on which parti-

tions its mirrors are located (line 3). In line 4, we insert the

value of that vertex to a buffer assigned to destined partition.

Lastly, the generated updates are written to the source vertex

files on SSD (line 7∼9)3. Generating mirrors for different

partitions is proportional to the number of destination vertices

in each partition, resulting in overall running time of O(|V |),
with |V | referring to the number of vertices.

5 Experimental Evaluation

5.1 Evaluation Environment

We evaluate the performance of our proposed mechanism

against software version of GraFBoost. GraFBoost also has a

hardware implementation, using hardware accelerators. Since

the hardware implementation is not available to us, we extract

its performance numbers from the original paper [13]. To

make a fair comparison, we use the same configuration as

GraFBoost: we use 32 processing cores (out of 48 available

in our system), 128 GB of memory, and two Samsung NVMe

SSDs, totalling 3.2 TB of capacity with nearly identical band-

width as GraFBoost, i.e., 6.4 GB/s sequential read bandwidth.

Similarly, we use the same set of graph data, details of which

are reported in Table 1. In this table, we also present the

replication factor and space overhead of our partitioning tech-

nique, for 8 partitions4, as it is sufficient for the evaluated

graph datasets.

5.2 Evaluation Results

Figure 7 shows the amount of reduction in total execution

time (higher is better) for PageRank and BFS, for our proposal

(V-Part), and software and hardware versions of GraFBoost

(GraFSoft and GraFHard). All performance numbers are

normalized to that of GraFSoft. We also show the execu-

tion time (in seconds) for PageRank and BFS algorithms, for

GraFSoft and V-Part in Figure 8. As illustrated in these two

figures, our proposed partitioning provides better performance

3This can be done in parallel for mirror updates on different partitions.
4We fix the memory size assigned to a partition’s vertex data (e.g., 2GB),

and find the proper number of partitions, accordingly.
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Figure 7: Execution time improvement results.

Figure 8: Execution time for (i) a PageRank iteration,

and (ii) BFS.

than GraFSoft by around 2.2X (when running PageRank on

kron32), and 1.8X and 1.6X, on average, as a result of elimi-

nating the burdensome sorting phase of GraFBoost when run-

ning PageRank and BFS algorithms, respectively. Moreover,

our proposed approach reaps higher benefits when the graph

Figure 9: Execution time breakdown for PageRank.

size is larger (web and kron32). As shown in Figure 7, our

optimizations can get very close to GraFHard performance

in some cases (e.g., for PageRank on web), without incurring

any of its hardware and implementation costs. In fact, our

mechanism can also use the hardware accelerators to off-load

some computation to provide even higher benefits, which we

leave it to future work.

In Figure 9 we present the breakdown of execution time for

PageRank algorithm. This figure reveals the contribution of

each part to the total execution time, including SSD accesses

(I/O), processing the in-memory graph data (Memory), and

the time spent on updating mirrors (Mirror Update). The

I/O part does not include SSD accesses for updating mir-

rors (this part is calculated in Mirror Update). As shown in

this figure, the extra work that is introduced to the system

for updating mirrors, is less than 15% across the evaluated

graphs (even less than 10% in some cases such as kron30).

This figure also demonstrates that, despite common wisdom,

I/O is not the main contributor to the total execution time in

graph processing. In some cases, memory accesses delays

the processing time more than I/O. Incorporating more effi-

cient caching and pre-fetching techniques, can help lower the

memory overhead.

6 Conclusion

In this paper, we study the performance and scalability issues

of external graph processing, and devise a mechanism to parti-

tion graph vertices to alleviate extra computation overhead of

state-of-the-art external graph processing. Our optimizations

yield significant performance benefits compared to the state-

of-the-art, with more than 2X reduction in total execution

time.
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