
Graham Bleaney
Security Engineer

Teaching an old dog new tricks:
Reusing security solutions in novel domains

1. Motivations and Context

2. Case Studies

3. Limitations

4. Conclusions

Agenda

About Me

Graham Bleaney

Security Engineer at Facebook Meta

Focus on Python Security

Motivation and Context

We build generalized solution to help us shift left and solve
problems at scale

SECURITY AT META

MOTIVATION AND CONTEXT

Generalized Solution

Solutions like bug bounty and static analyzers can adapt to the
next bug we don’t yet know exist

MOTIVATION AND CONTEXT

Shifting Left

Prevented
Found

Automatically
Found

Manually
Found

Externally
Never
Found

Exploited> > > > >

MOTIVATION AND CONTEXT

Solving problems at scale

To deal with the size of our codebase, we used tooling to find half of
all bugs in 2021

MOTIVATION AND CONTEXT

In 2019, we detected a
mistake

Initially found in a code review, then scaled detection
with generalized tooling to detect data flows

https://techcrunch.com/2019/03/21/facebook-plaintext-passwords/

TechCrunch:

We can and should apply security solutions to new problems
outside the traditional space of security

THESIS

Case Studies

CASE STUDIES

Case 1:
Instagram Threads Location Data

We want to use user locations to calculate status, but never
store them

Track data flows and make sure they don’t go where they
shouldn’t

GENERALIZED PROBLEM

CASE STUDIES

Static Taint Flow Analysis

Tainted Data = Data that originated from, or is
influenced by, a source of data that we want to track

(Taint) Source = Where we define tainted data to
originate

(Taint) Sink = Where want to detect tainted data
ending up

Static Taint Flow Analysis = Tracking flows of tainted
data from source to sink

Sink(s)Source(s)

function

call return

Issue

CASE STUDIES

Pretend SQL Injection Flow

views/user.py
async def get_pictures(request: HttpRequest) -> HttpResponse:

user_id = request.GET['user_id’]
pictures = load_pictures(user_id)
...

model/media.py
async def load_pictures(user_id: str):

query = f"SELECT * FROM pictures WHERE user_id = {user_id}"
connection = create_sql_connection()
result = await connection.execute(query)
...

CASE STUDIES

Pretend Threads Flow

views/threads.py
async def get_status(location: Coordinate) -> HttpResponse:

""" Return a status for a given location """
status = infer_status(location.lat, location.lng)
...

model/status.py
async def infer_status (latitude: float, longitude: float):

""" Infer a status for a given location """
LOG.debug(f"Infering status for location: {latitude}, {longitude}"
...

CASE STUDIES

Tools

Zoncolan Pysa Mariana Trench

CASE STUDIES

Extending
Protections

Cross Repo Taint Exchange lets
us stitch together analyzers

CASE STUDIES

Additional Use Cases

Passwords Private data
Experimentation

Framework

Loggers Returned to
users

Conditional
Statements

CASE STUDIES

Case 2:
Data Abuse

We want to know when bad actors are
collecting data they shouldn’t

https://www.cnet.com/tech/services-and-software/facebook-says-data-leak-is-from-old-vulnerability-that-no-longer-exists/

CNET:

Incentivize people who spot an issue to warn us, so we can fix
it before it’s exploited

GENERALIZED PROBLEM

CASE STUDIES

Applications

Security Data Abuse / Scraping

+

CASE STUDIES

Case 3:
Password Logging

We want to make it impossible for systems that don’t
need access to passwords to log them in plain text

Obfuscate information in transit

GENERALIZED PROBLEM

CASE STUDIES

Applications

Security Password Logging

HTTPS

CASE STUDIES

Case 4:
Unsafe Data Access

We want to make developers aware of the risks of APIs which can bypass the privacy checks built
into database access, and discourage its use

Ensure developers understand the risks of an API, and use it
sparingly

GENERALIZED PROBLEM

CASE STUDIES

Applications

Security

Privacy Checks

function omnicient_THIS_WILL_BYPASS_PRIVACY_CHECKS(
...

)

return <div dangerouslySetInnerHTML={{__html: value}} />;

Limitations

LIMITATIONS

Solution Design

Not all solutions translate; avoid square pegs in round holes

LIMITATIONS

Organization Design

Solutions often have implicit dependencies on the structure
of a security organization

LIMITATIONS

Gaps in
Coverage

Translate defense in
depth, just like you
translate your
solutions

Safe-by-default Frameworks

Static Analysis

Human Review

Bounty Programs

Conclusion

We can and should apply security solutions to new problems
outside the traditional space of security

THESIS

CONCLUSION

Takeaways

Great security solutions solve generalized problems which also exist outside security

These solutions can help in domains such as performance, compliance, privacy, and data abuse

Recognize when reusing solutions wont work

CONCLUSION

Thanks

• Ted Reed

• David Molnar

• Kyle McEachern

• Ryan Nakamoto

• Parmeshwar Arewar

• Edward Qiu

• Otto Ebeling

• Swathi Joshi

• Pritam Dash

CONCLUSION

Interested in solving difficult problems like these?

Chat with me after the talk or shoot me an email:

gbleaney@fb.com

Questions

