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Abstract
This paper presents Proteus, a framework for conducting

rapid, emulation-based analysis of distributed ledger technolo-
gies (DLTs) using FIREWHEEL, an orchestration tool that
assists a user in building, controlling, observing, and analyz-
ing realistic experiments of distributed systems. Proteus is
designed to support any DLT that has some form of a “trans-
action” and which operates on a peer-to-peer network layer.
Proteus provides a framework for an investigator to set up a
network of nodes, execute rich agent-driven behaviors, and
extract run-time observations. Proteus relies on common fea-
tures of DLTs to define agent-driven scenarios in a DLT-
agnostic way allowing for those scenarios to be executed
against different DLTs. We demonstrate the utility of using
Proteus by executing a 51% attack on an emulated Ethereum
network containing 2000 nodes.

1 Introduction

Since the creation of Bitcoin in 2008 [32], distributed ledgers,
including blockchains, have exploded in popularity and span
many real-world applications. Within each domain, there are
numerous competing systems, each with a unique set of fea-
tures including computation [45], privacy [40], and perfor-
mance and scaling [38]. After Bitcoin’s release, much of the
blockchain innovation focused specifically on enhancing per-
missionless cryptocurrency ecosystems, of which there are
now over 2,100 unique currencies [1]. However, aspects of
this technology have been applied to more traditional finan-
cial systems by way of permissioned ledgers [10] and feder-
ated byzantine agreement models [30]. Additionally, new dis-
tributed ledger systems were developed that no longer use a
traditional “blockchain” but rather use directed acyclic graphs
(DAGs) [5] or a Hashgraph [4, 8]. We refer to all of these sys-
tems collectively as Distributed Ledger Technologies (DLTs)
and consider all such systems to be within our domain of in-
terest.

The rapid growth of new DLTs has far outpaced the cre-
ation of tools by which these systems can be analyzed [39].

Blockchain software developers have indicated a need for
more effective tools for testing and security analysis [14]. For
researchers, this dearth of testing capabilities also creates chal-
lenges for understanding DLTs at the system level. To address
this gap, we propose leveraging recent advances in emulation
capabilities. In such situations where mathematical simula-
tions are insufficient and real-world experimentation is infea-
sible, emulation provides a realistic and safe research envi-
ronment, allowing researchers the flexibility to test the effects
of pathological or even malicious behaviors on real software.

Despite the rich diversity of DLTs, all of these technologies
share a few core traits. First, they can be described as decen-
tralized systems that communicate over the standard Internet
Protocol. Second, they implement some concept of an (often
peer-to-peer) overlay network. Finally, participating actors in-
teract through some form of a transaction or a transaction-like
event. These commonalities introduce a compelling opportu-
nity for the creation of a DLT-agnostic testing platform.

We developed Proteus as an extension to FIREWHEEL, an
experimentation platform, to take advantage of DLT common-
alities and enable efficient testing and analysis of DLT soft-
ware. We demonstrate that by using Proteus, a researcher can
understand quickly the system-level impacts of a new mining
approach or even assess the security implications of a given at-
tack. Proteus is not intended to encompass the minutia of each
DLT; by using a general framework, we can examine behav-
ioral differences between DLT protocols, execute and observe
network-level attacks, and discover the security implications
of software vulnerabilities. Our primary contributions include:

• An orchestration framework that minimizes the time a
user must spend on analyzing a new DLT.

• A method of programmatically controlling emulated
DLT user behavior so that complex experiments can be
constructed.

• An analysis of a 51% attack executed against an emu-
lated Ethereum network containing 2000 nodes.



2 Background and Related Work

This section details the necessary background on the
FIREWHEEL experiment orchestration tool, upon which Pro-
teus relies, and outlines previous work on distributed ledger
technology experimentation and analysis.

2.1 FIREWHEEL

FIREWHEEL [20] is an experiment orchestration tool that as-
sists a user in building, controlling, observing, and analyzing
repeatable experiments of distributed network systems at any
scale. FIREWHEEL enables users to define models of net-
work topologies and any time-scheduled actions they wish to
performed within the experiment. At run-time, FIREWHEEL
first represents a topology abstractly, using a graph data-
structure, and then instantiates the topology across a cluster
of network-connected servers and triggers the execution of
scheduled actions at their appointed times. While many exper-
iments are instantiated via emulation using KVM/QEMU [12,
27] and Open vSwitch [36], FIREWHEEL can utilize a vari-
ety of execution platforms including bare metal, emulation,
simulation, or a combination of these approaches.

FIREWHEEL enables a researcher to 1) programmatically
define and manipulate an experimental topology, 2) deploy the
topology across a compute cluster, 3) manage the execution
of in-experiment events, 4) centrally collect, analyze, and
display experimental data, and 5) maintain an experimental
description to reliably repeat an experiment. FIREWHEEL
also includes a growing library of model components that
ease construction of common topology features such as Linux
and Windows hosts, routers, Internet services, and Windows
services.

FIREWHEEL runs on commodity compute and networking
hardware and a FIREWHEEL cluster can vary in size from
a single laptop to hundreds of high-performance compute
nodes.

Model Components Model components are the building
blocks of FIREWHEEL experiments. Users build experiment
models by creating and combining model components that de-
fine the topologies, attributes, configurations, and scheduled
actions for their experiments. Essentially, a model compo-
nent is a collection of files required to accomplish a specific
objective with some additional metadata that identifies it to
FIREWHEEL. Model components can contain Python code,
which can create high-level abstractions of the experiment
nodes and edges, virtual machine (VM) resources that are used
to manipulate the VMs, and VM images. Model components
can depend on the functions of other model components, mak-
ing it easy to build complex experiments quickly. The model
components developed for Proteus are described in Section 3.

Control Once an experiment has been defined through a
set of model components, FIREWHEEL’s Control system
will translate the set of model components into an internal in-
memory graph representation of the experiment. This graph,
backed by NetworkX [25], contains all the information about
each VM (the graph vertices) and the network connections
amongst them (the graph edges) that were collectively speci-
fied by the model components. Once constructed, the exper-
iment graph is used to instantiate a topology via a config-
urable launching mechanism. Proteus currently uses the de-
fault launching mechanism for FIREWHEEL (QEMU, KVM,
and Open vSwitch) to begin an experiment.

VM Resource Handler Each node in the experiment may
also have a schedule, in which each schedule entry outlines
the command or executable to run, which files or resources
are required to accomplish the action, and when the action
is to occur. These schedule entries are defined by the model
components and are propagated into the experiment graph.
Once an experiment has launched, FIREWHEEL’s VM Re-
source Handler monitors and manages the execution of VM
schedule entries. Actions can be identified as either pre or
post experiment start time. Pre-start time actions are used to
configure each VM and prepare it for the experiment. These
actions typically involve installing or configuring software.
Once all VMs are configured, the Network Time Protocol is
used to sync the time across the cluster and ensure a consis-
tent experiment state. Next, the post-start time actions occur
in accordance with their schedule.

FIREWHEEL redirects stdout and stderr from each
VM resource into log files, which are ingested into Elas-
ticsearch [2]. Then, using Kibana [6], a front-end for Elas-
ticsearch, users can easily analyze experimental results, as
shown in Section 5.2.

Networking FIREWHEEL supports emulating switches
and routers: switches by bridging the interfaces of experi-
ment VMs and routers by launching a router-based VM (typi-
cally VyOS). Additionally, FIREWHEEL has the ability to
alter parameters on network links including bandwidth and
latency1. Once an experiment is launched, FIREWHEEL’s
only interaction with the experiment networking is to ensure
connectivity and adhere to the link-based properties set by
the user. The remaining network interactions (OSI layers 2-7)
are contained within the experiment and depend on the VMs
and their installed software. When running in cluster mode,
FIREWHEEL isolates experiment traffic between nodes by
using either GRE tunnels or VLANs.

1FIREWHEEL uses the Traffic Control (tc) [9] package to manipulate
traffic. Therefore, any parameters available through that package are usable
within an experiment.



2.2 Related Work

When conducting analyses on blockchain systems, existing
testing methodologies can be categorized into simulations,
emulations, and physical tests. Each approach has trade-offs,
involving factors such as experiment fidelity, computational
cost, and reproducibility.

Simulators enable a researcher to imitate the processes of
the software being tested. Typically, researchers can input
a series of parameters that informs the system about timing
information. These systems then provide time-based event
logs that can be analyzed. Some simulators, such as those
built in [22] and [23] are cryptocurrency-specific while oth-
ers, including simbit [15], VIBES [42], and those presented
in [24, 43, 46], enable simulating a diverse, but generalized
set of blockchain parameters. Except simbit and the simula-
tor developed by Gervais et al. [22], these papers do not con-
sider network-level effects in their simulations and are unable
to provide insight into the peer-to-peer network structure of
the protocols. Furthermore, none of the aforementioned simu-
lators run the actual DLT software implementations, which
makes analysis of specific application nuances impossible.

Shadow [31], a discrete-event network simulator both
accounts for network artifacts and permits running the
bitcoind application to enable analyzing implementation ar-
tifacts. While the initial blockchain-related Shadow plugin
is Bitcoin, Shadow can likely simulate many blockchain pro-
grams. However, there are some limitations to this approach.
First, Shadow does not support multi-processing, and it re-
quires that any nonblocking calls poll I/O events. This limita-
tion could require source-code modifications, which reduces
fidelity and increases the implementation overhead for each
new DLT. Second, Shadow does not provide an interface in
which the network can be modified dynamically. For example,
it would not be possible to explore how BGP routing decisions
might impact the security of Bitcoin’s peer-to-peer network.

Emulation, which is the approach used by Proteus, en-
ables running unmodified software, typically in a virtual ma-
chine (VM). Geier et al. [21] uses SherlockFog as a mech-
anism to deploy an Ethereum network. This work does not
include a framework for easily adapting an experiment to
work with other DLTs. Additionally, the topology is writ-
ten in the custom SherlockFog language rather than Python.
Chen et al. [16] demonstrates that containers can be used as
a lightweight alternative to full VMs and effectively provide
higher fidelity blockchain experiments with minimal extra
overhead. However, this approach lacks the ability to modify
the underlying network topology.

Physical testbeds are the most resource intensive and least
reproducible option for analyzing DLT environments. Bitcoin-
NG [18] and TrustChain [35], which propose new DLTs, and
Pongnumkul et al. [37], which administers a performance anal-
ysis between two DLTs, all conduct experiments via physical
hardware. However, they do not use an orchestration frame-

work, which decreases the repeatability of their results. Sim-
ilarly, BLOCKBENCH [17], which provides a blockchain
benchmarking framework, also does not use an orchestration
framework, but provides the source code, which can be lever-
aged in replication. Currently, BLOCKBENCH does not have
an easy way to automate running the test suite nor does it have
the ability to manipulate and analyze network performance.
Shbair et al. [41] developed a framework for analyzing pri-
vate and permissioned blockchains using the Grid’5000 sys-
tem. This experiment is more reproducible than other works,
but is limited to the Grid’5000 platform. Their blockchain
orchestration tool is tailored to provide a specific Ethereum
network experiment rather than the generalizable approach
taken by Proteus. In addition, Grid’5000 is a geographically
distributed testbed, which may impact the network character-
istics of the experiment.

Proteus builds on this body of previous work by providing
a novel balance of developing high-fidelity and reproducible
blockchain experiments that can be conducted on commodity
hardware. Furthermore, we demonstrate that the architecture
of Proteus enables dynamic DLT experimentation.

3 Proteus Design

Proteus is designed to be a modular framework, with experi-
ments constructed by combining components at different lay-
ers to emulate a diverse set of possible experiments. A DLT
supported by Proteus is abstracted into components, which
enables the same experiment scenarios to be reused with any
supported DLT. By making the initial implementation of new
DLTs in Proteus an easy process, simple scenarios with new
DLTs can be quickly emulated to conduct general purpose
analysis. Proteus’ design supports use cases including com-
parative analysis of different DLTs, assessing the security and
privacy of a DLT against network attacks, evaluating the scal-
ing properties of DLTs, and analyzing impacts of DLT soft-
ware improvements.

Proteus adopts an Agent-based modeling paradigm [13,29]
to emulate realistic and diverse network behaviors at scale.
Agents, represented in the FIREWHEEL graph as individual
vertices, are each assigned a behavior that will be executed
concurrently during the experiment. Proteus experiments start
with each VM completing a series of synchronized setup
phases to instantiate the DLT and complete peering. Each
agent then begins autonomously executing its assigned behav-
ior, which likely includes taking dynamic actions based on the
evolving state of the network. This approach enables the abil-
ity to compose complex scenarios from simple components
in a way that intuitively models the logic of real-world actors.

3.1 Proteus Agents
Proteus agents are defined by combining a component
from each of five layers: physical, peering, policy, adapter,



Figure 1: Proteus Architecture.

and client. Each component makes specific changes to the
FIREWHEEL graph and assigns a relevant behavior to an
agent. Except for the physical layer, which must be defined
globally, each agent can be independently assigned one of
many unique behaviors. Additionally, the Proteus framework
provides infrastructure to enable communication and synchro-
nization between agents, which we label as the messaging sys-
tem. A high-level view of a Proteus experiment is illustrated
in Figure 1.

While FIREWHEEL provides some underlying features
used by Proteus, these layers were a fundamental enhance-
ment to FIREWHEEL’s existing capabilities by creating a
new abstraction layer which can be leveraged for DLT-specific
experimentation. Without the improvements made by Pro-
teus, conducting large-scale dynamic DLT experiments via
any emulation platform, including FIREWHEEL, would be
time-consuming and require a high-degree of customization
for each new experiment.

Physical Layer Proteus’ physical layer component enables
a user to define and customize the physical, data-link, and
networking layers of their experiment. Thus, a user is able
to mirror the physical infrastructure of a DLT network with
an emulated replica, regardless of whether it is Internet-scale
or a simple private network. Users create these topologies by
programmatically adding switches and routers to the network
graph and providing the IP addresses for each VM. Simple
network topologies such as a “full mesh” or “star” can be
used during initial testing and switched out later for more
complicated topologies. These interchangeable topologies
allow Proteus users to test latency issues, network bottlenecks,
and model potential geographical bias of a DLT.

The transport layer of the networking stack is entirely de-
pendent on the DLT software under test. For example, Bitcoin
uses TCP as its transport protocol while Ethereum’s Node

Discovery Protocol uses UDP [3, 7]. Programmatic configura-
tion of the transport layer is not supported within Proteus be-
cause it would require DLT-specific software modifications.

Peering Layer Most DLTs implement a network of peer-
to-peer (P2P) connections overlaying the physical layer. The
structure of this P2P network is an important factor in the
robustness and security of the DLT’s protocol. Proteus enables
users to define static topologies, such as a “d-regular tree”
[19], and dynamic topologies that adjust connections over
time. Testing P2P topologies allows researchers to measure
the effectiveness of transaction and block propagation as well
as the resilience of the network against targeted attacks.

Policy Layer Policies are the core components enabling
Agent-based modeling in Proteus. Each policy is a set of ac-
tions that aims to mimic typical behaviors in a DLT, including
combinations of sending transactions, mining blocks, manag-
ing peering, and other well-defined actions. In this layer, each
agent is assigned a specific policy, resulting in experiments
that model complex scenarios such as a 51% attack or de-
nial of service via transaction flooding. Experiments usually
consist of a few agents behaving maliciously while all other
agents are benign actors like miners, users, and observers.

Adapter Layer The adapter component is the interface be-
tween the policy and client components. Whereas the previ-
ously described model components implement abstract, DLT-
agnostic behavior, the adapter is responsible for translating
each policy’s behaviors into concrete invocations of the un-
derlying DLT software. We detail the interface an adapter im-
plements in Section 4.2.

Client Layer Lastly, the client layer is responsible for
scheduling the installation of the DLT and its various depen-
dencies on each agent VM at experiment setup time. Pro-
teus makes use of this component, although it depends on
FIREWHEEL rather than Proteus itself. Although the client
and adapter components are tightly coupled, there are two pri-
mary advantages to having them separate. First, the adapter
could be used to test different versions of the same DLT soft-
ware being installed by different client components. Second,
since the client component does not rely on Proteus, it can be
reused in other FIREWHEEL experiments.

3.2 Messaging System

The Proteus messaging system provides an in-experiment
communication channel that enables agents to communicate
amongst themselves. This system serves three primary pur-
poses. First, it enables a mechanism for coordinated launch
and teardown of the experiment at the application level, as



described in Section 4.2. Second, agents can use the messag-
ing system to pass “out-of-band” messages, such as wallet
addresses or network information to another agent. Finally,
the messaging system enables a global synchronization func-
tion allowing any number of agents to perform actions syn-
chronously, which is necessary for modeling certain behav-
iors.

4 DLT Integration

The modular makeup of Proteus is intended to enable extensi-
bility at various levels. Creating additional physical, peering,
and policy layer behaviors is a straightforward process and
any new implementation of these levels can be immediately
re-purposed by other users. For example, the Proteus policy
used in this paper to emulate a 51% Ethereum attack also
works to emulate a 51% Bitcoin attack. However, one of the
primary design goals of Proteus is to streamline the process
of adding new DLTs. This is an intrinsically nuanced process,
which we outline in the remainder of this section.

4.1 Client Creation
The process of creating a DLT client is analogous to setting
up a node in the live DLT network. This includes dependency
installation, fetching/building binaries, and node configura-
tion. The exact steps are unique to each DLT, but the process
is typically well-documented for users who want to join the
live network. The challenges of translating this process into a
Proteus client include 1) experiments are run in an isolated
environment without Internet connection and 2) software in-
stallation is explicitly described in code. These challenges
represent a necessary cost to ensure the reproducible and iso-
lated nature of FIREWHEEL experiments.

To enable software installation in an offline environment,
users need to save the target software and all of its dependen-
cies. This can be performed easily by launching an Internet-
connected VM and saving a cached copy of the necessary
software. Many package managers have a “download” option
that will assist in this process.

Once a user has captured the required software and depen-
dencies, they must codify the process of installing these within
their experiment environment. This burden is alleviated by
leveraging FIREWHEEL’s built-in functions to conduct com-
mon actions such as adding files to the VM, installing pack-
ages offline, and running executables. For reference, it takes
less than 50 lines of Python code to develop a fully function-
ing Ethereum client.

4.2 Adapter Development
Proteus adapters were purposefully designed to have a sim-
ple application programming interface (API), supporting the
rapid, initial data collection of an emulated, large-scale DLT

experiment. However, they are often able to be tested only in
the environment where they will be executed, since they have
to communicate with a running instance of the DLT. This can
dramatically increase the time to develop a new adapter, since
their development usually requires multiple generations of
code and creating the FIREWHEEL environment for each it-
eration adds notable overhead. To address this issue, we cre-
ated an experiment configuration and GUI application where
adapter updates can be pushed out to agents and the Proteus
framework can be reset.

This tool, named Blocky, launches a single FIREWHEEL
experiment with only a handful of VMs configured with the
client component to initialize the DLT. The dashboard, dis-
played in Figure 2, connects to each VM and provides the
user an interface to invoke individual API commands. There-
fore, Blocky prevents having to repeatedly restart each experi-
ment and allows developers to interactively and incrementally
create a new adapter.

The following 11 methods of the adapter API supply the
minimum amount of functionality to Proteus:

• init_application – Launch node/wallet software.
• teardown – Terminate node/wallet software.
• get_applicationID – Return DLT application identifier.
• get_networkID – Return IP address.
• propose_block – Append a new block to the ledger.
• send_transaction – Issue the provided transaction.
• handle_custom – Handle a user defined command.
• get_balance – Get the balance of the wallet (if applica-

ble).
• get_peers – Get a list of the node’s peers.
• add_peer – Connect the node with a given peer.
• remove_peer – Disconnect a peer from the node.
Using Blocky, a base Ethereum adapter can be created in a

few hours by a developer comfortable with the go-ethereum
API, though further customization may be needed for more
complex experiments. The resulting adapter is roughly 350
lines of relatively simple Python code.

5 Evaluation

To evaluate the effectiveness of Proteus on a real-world sce-
nario, we developed several policies that exercise Proteus’ ba-
sic functionality. The most complex of these policies executes
a 51% attack. In this section, we detail how we collect metrics
from Proteus experiments and then provide details of running
the 51% attack policy against an emulated Ethereum network.

5.1 Existing Analytics
When analyzing the effects of a new DLT, it is important to
understand both system-level characteristics and DLT-specific
information. Proteus uses the Analytics model component,
which provides FIREWHEEL experiments with tools for mon-
itoring and collecting data on each VM. Current capabili-



Figure 2: Blocky: The Proteus adapter development tool.

ties include capturing network traffic; tracking network port
changes; using strace on processes; capturing specified log
files; tracking network and disk I/O; and monitoring CPU,
memory, and disk utilization.

Proteus also collects DLT-specific information from each
action being performed by the Policy that the Agent is exe-
cuting. These logs include information about sent/received
transactions, hash power, and wallet balances. This data is au-
tomatically ingested into Elasticsearch, enabling a researcher
to visualize experiment results in real-time with Kibana.

5.2 Case Study: 51% Attack
The original Bitcoin [32] white paper noted that when a col-
luding set of malicious nodes controls a majority of the net-
work mining power, they can subvert the security of the sys-
tem and double-spend a transaction. This attack is colloquially
known as a 51% attack. With respect to Bitcoin, this attack is
largely thought to be impractical [11, 28]; however, less pop-
ular cryptocurrencies including Ethereum Classic [33], Bit-
coin Gold [26], and Verge [44] have all had successful 51%
attacks carried out against them in which attackers double-
spent millions of dollars.

To gain insight into how to quickly detect and prevent these
attacks, we ran multiple experiments using Proteus to emulate
a 51% attack against Ethereum. We divided Ethereum nodes
into malicious and honest partitions, where the malicious par-
tition has 60% of the total network hash power. Figure 3
shows a scaled version of the initial peer-to-peer topology, in

Figure 3: Example initial P2P topology of the 51% attack.

which nodes in each partition are peered amongst themselves
in a regular tree and there is one cut edge between the parti-
tions. The malicious partition policy enforces that malicious
nodes exclusively peer with each other, except the malicious
cut vertex (hereafter referred to as the boss), which ensures
that it is peered to exactly one honest node.

The agents begin mining on a stabilized network, and all
malicious agents send any mining rewards to the boss. Once
the boss has sufficient funds, it broadcasts a transaction, which
will be double-spent later, to the honest partition. Next, the
boss removes its honest peer, disconnecting both partitions,
and sends a double-spend transaction to the malicious parti-
tion, forking the chain. Because the malicious partition has
more mining power, its blockchain will surpass the honest
blockchain in height, at which point the boss publishes the
malicious chain, completing the 51% attack.

Several network metrics may indicate whether this attack
has occurred, including time to generate a new block, the net-
work hash power, and blockchain reorganization depth. In
this experiment, neither partition adds new hash power to the
network. Therefore, when the malicious partition stops min-
ing on the honest blockchain, the network hash power will
drop and the time between new blocks will increase. Figure 4
shows the Ethereum network’s hash power during the emu-
lated 51% attack. During this experiment, the hash power de-
creases from approximately 308,000 hashes per second when
the attack begins (around 22:28) to about 99,000 hashes per
second when the attack is in full force (around 22:38)2. Fig-
ure 5, which illustrates block times, almost mirrors Figure 4,
likely because these metrics are closely related. As expected,
once the attack begins, the block time increases because the
malicious agents started mining on a separate fork and the
mining difficulty had not yet been adjusted to the decreased
hash power of the network.

Blockchain reorganizations, known as reorgs, denote when
a client identifies a chain that is longer than the one that the
client previously thought was the longest. The client will
then switch to the longest chain. Previously confirmed blocks
that are now not on the longest chain become orphans. The
number of orphaned blocks is referred to as the reorg depth.
When the network is behaving honestly, these reorgs are small

2To help mitigate resource contention amongst experiment VMs, we
artificially throttle mining new blocks by randomizing sleep/mine intervals.
This causes a lower hash rate than would normally be expected.



Figure 4: Ethereum hash power during the 51% attack.

Figure 5: Ethereum block times during the 51% attack.

and tend to stay under a depth of 3. However, larger reorgs
likely indicate malicious activity [34]. Figure 6 shows the
reorganization depth throughout the 51% attack. When the
attacker publishes the malicious chain (around 22:39), there is
a large spike in the reorganization depth, as the honest agent
adopts the malicious chain.

This example shows that large drops in hash power and
spikes in reorg depth could indicate an increased risk of an
impending 51% attack. However, we note that a drop in hash
power would likely not occur if an attacker adds new resources
that are not seen by the honest nodes rather than using com-
putational resources that are already part of the network.

These experiments were conducted on a cluster of 20
FIREWHEEL nodes, each with dual socket Intel R© Xeon R©

E5-v4 2.10GHz CPUs (16 cores per socket and HyperThread-
ing enabled) and 512GB Memory. Each node has local solid-
state drives and they are networked together with 100 Giga-
bit Ethernet. Our experiments included 2000 Ubuntu 16.04
Server VMs running go-ethereum-1.8.23. It took approxi-
mately 10 minutes from experiment launch until all the VMs
were started, configured, and had their go-ethereum daemons

Figure 6: Ethereum reorg depth during the 51% attack.

peered. The malicious Proteus policy, which orchestrates the
51% attack, is approximately 450 lines of Python code.

6 Conclusion and Future Work

In this paper we presented Proteus, a framework for conduct-
ing rapid, emulated analysis of DLTs. First, we showed how
Proteus uses agent-driven behavior to model complex scenar-
ios in a DLT-agnostic way. Next, we described how users can
quickly add a new DLT client and adapter. Lastly, we evalu-
ated this framework by demonstrating a 51% attack on a pri-
vate Ethereum network of 2000 nodes. Our results validate
Proteus’ utility in assessing the security guarantees of DLTs.

Proteus was designed to apply a single policy to multiple
DLTs, which is an area of current research. Future testing
may enable identification of cross-DLT analytics to detect
common attacks on these platforms. We are also interested in
developing adapters for non-cryptocurrency DLTs and assess-
ing their compatibility with our framework. Lastly, we hope
to incorporate real-world P2P topologies in Proteus and eval-
uate how they might impact the indicators of a 51% attack.
For example, the attack outlined in this paper uses client-level
peering to conduct the attack but a more realistic topology
would include routing-level decisions that could impact the
effects of this attack.

Availability and Funding

FIREWHEEL was developed at Sandia National Laborato-
ries, which is a multimission laboratory managed and oper-
ated by National Technology & Engineering Solutions of San-
dia, LLC, a wholly owned subsidiary of Honeywell Interna-
tional Inc., for the U.S. Department of Energy’s National Nu-
clear Security Administration under contract DE-NA0003525.
There is a non-exclusive license for use of this work by or
on behalf of the U.S. Government. We will be submitting
FIREWHEEL and Proteus through the appropriate review



process so that these tools may become available to the wider
community in the future.
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