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Abstract

A large number of studies have provided datasets in the field
of CPS security research, but the rate of actually using these
datasets is low. It is difficult to objectively compare and ana-
lyze research results based on different testbeds or datasets.
Our goal is to create public datasets for CPS security re-
searchers working for anomaly detection. It is challenging for
individuals to collect long-term datasets repeatedly for a large
number of scenarios. This can lead to mistakes and inaccurate
information. The process of collection must be comfortable
and automated. For this purpose, we constructed a testbed in
which three physical control systems (GE turbine, Emerson
boiler, and FESTO water treatment system) can be combined
with each other through the dSPACE Hardware-in-the-loop
(HIL) simulator. We have built an environment that can au-
tomatically control each sensor and control point remotely.
Using this environment, it is possible to collect datasets while
repeatedly driving a large number of benign/malicious sce-
narios for a long period while minimizing human effort. We
will develop and release CPS datasets using the testbed in the
future.

1 Introduction

Cyber-physical systems (CPSs) are used in a variety of na-
tional core infrastructures such as waterworks, railways, trans-
portation, and power plants. Abnormal or malicious behaviors
in these CPSs can pose a serious threat to society.

Anomaly detection studies for CPS security have been
carried out mainly in the field of network traffic [6, 8, 11].
A recent category of techniques focuses on changes in the
physical states of control systems. With respect to detect CPS-
specific attacks, numerous studies have been conducted to
detect security incidents while monitoring the CPS operation
status [1,4, 5]. It is necessary to obtain various datasets for
such investigations. However, this is extremely difficult.

The characteristics of normal operating conditions can be
best identified by collecting information from an actual con-
trol system. However, it is difficult to accurately evaluate the

performance of anomaly detection because there are limita-
tions in the experiments used to reproduce the abnormal state
in an actual CPS. Numerous researchers have built testbeds to
conduct various experiments. In addition, a large number of
studies have provided datasets in the field of security research,
but the rate of actually using these datasets is low [12]. It
is difficult to objectively compare and analyze research re-
sults based on different testbeds or datasets. Numerous public
datasets are required to begin research in one field.

There have been a few recent works on dataset genera-
tion for CPS research [7,9, 10]. There are certain drawbacks
of using the currently available CPS datasets presented in
literature [3].

* Criteria of abnormal states. Most data labeling is per-
formed manually. Hence, there may be a problem with
the accuracy of labeling information, particularly time.
Additionally, sensor information may not be stabilized
immediately after attacks but may gradually return to the
normal state. There is lack of information on analyzing
the system behaviors in normal and abnormal conditions.

* Same attack in different environments. Anomaly-
based detection can detect the same attack depending on
the operating situation. For accurate performance analy-
sis, the same attack scenario must be collected several
times in different operating situations.

* Monitoring manipulation attack. An attacker can ma-
nipulate monitoring information using human-machine
interface (HMI)/Historian/SCADA for attack conceal-
ment. While there are attacks that send malicious control
commands, such as Stuxnet, and transmit data by pre-
tending to be a normal situation on an HMI, there are no
available scenarios among open datasets.

* Human effort. It is challenging for individuals to col-
lect long-term datasets repeatedly for a large number of
scenarios. This can lead to errors and inaccurate infor-
mation. The process of collection must be comfortable
and automated.



We are developing a dataset that can be used for anomaly
detection based on CPS operation information. For this pur-
pose, we constructed a testbed in which three physical control
systems (GE, Emerson, and FESTO) can be combined with
each other through the dSPACE (HIL) simulator. To over-
come the abovementioned problems and generate datasets for
various attack scenarios, we considered the following points
when constructing the testbed.

* We have built an environment that can automatically con-
trol each sensor and control point remotely. This makes
it possible to collect datasets while repeatedly driving a
large number of benign/malicious scenarios for a long
period as well as minimizing human effort.

* Our testbed provides a method that manipulates mon-
itoring information to prevent an operator or security
equipment from recognizing an attack situation.

* We propose two methods to facilitate the changing of the
testbed according to different scenarios without changing
the control logic of each control device, and we imple-
ment the methods in our testbed.

* We build a PID simulator to predict the influence on the
surrounding physical system according to the operation
range of the main control point and to derive an appro-
priate attack point for reproducing attack scenarios.

The rest of this paper is organized as follows. In Section 2,
we propose an attack model of CPSs and methods to repro-
duce the attack model in the testbed. Section 3 introduces
our power plant testbed that consists of three single processes
(GE turbine, Emerson boiler, and FESTO water treatment
system) and an HIL simulator. Section 4 describes the pro-
cess of reproducing the benign and malicious scenarios in
the power plant testbed using the attack model. Finally, we
discuss conclusions and future work in Section 5.

2 Attack Generation Based on Process Con-
trol Loop

We focus on recreating the effects of an attack, not its specific
vectors. It is difficult for an attacker to control the entire sys-
tem. Therefore, some devices and sensors may be manipulated
and attacked.

We assume that an attacker has the following abilities:

1) An attacker can access field devices (sensors and actua-
tors) and forge sensor values and control commands.

2) An attacker can access control devices (DCS and PLC)
and forge sensor values, control commands, and moni-
toring signals through a control logic unit.

3) An attacker can manipulate monitoring signals to hide
attacks against SCADA systems and internal security
appliances.

2.1 Process Control Loop (PCL) Model

The process control loop (PCL) model is used to ensure the
validity of an attack by defining an attack model and evaluat-
ing the inconsistency of the PCL. The PCL model describes
the behavior of an individual component of a PCL, except
for a controlled process, as a physical domain, as shown in
Fig. 1. An ICS generally contains multiple PCLs to help a
process output run in a stable manner by utilizing sensors,
controllers, and actuators. A PCL uses one of six fundamental
control strategies to design a controller, i.e., feedback control,
feedforward control, cascade control, split-range control, ratio
control, and override select control. All these techniques can
be represented by four types of variables, i.e., the setpoint
(SP), process variable (PV), control output (CO), and control
parameters (CPs). For the desired SP value of the process out-
put, a controller calculates the CO value from the SP and PV
values measured by sensors at the process output and applies
a correction based on a control algorithm with CPs. The CO
value is transmitted to an actuator to adjust the process output.
An HMI helps an operator monitor the PV value and control
the SP and CP values.

An inconsistent PCL can be identified by a control algo-
rithm model. To obtain an accurate model of a control algo-
rithm, it is necessary to derive a mathematical relationship
from PLC or DCS control logic to consider internal parame-
ters such as the range limit, rate limit, and sampling interval.
In general, well-known controller models, such as PID con-
trollers, can obtain high-accuracy numerical models using
data-based grey-box model estimation or neural networks.
We discuss a PID controller as an example in Chapter 3.

2.2 Manipulating PCL Components

The manipulation of PCL components is accomplished
through signal injection during each component’s signaling
process or parameter modification in the middle of data pro-
cessing.

First, the SP value can be tampered by the parameters of a
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Figure 1: Process control loop model
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setpoint algorithm shown in Fig. 2. In general, when an oper-
ator sets the desired SP value, a controller gradually increases
or decreases the SP output through limiting the rate of the SP
value for system safety. For example, if the desired SP value
of turbine speed is higher than the current value, the SP is
gradually increased according to a predetermined slope. This
leads to a decrease in physical fatigue.

Next, the PV and CO values can be manipulated in signal
transmission, data conversion, or a sensor calibration process.
However, the manipulation of the PV and CO during signal
transmission rarely occurs in reality because hardware must
be installed between a controller and a sensor. The PV, which
is an analog input value, is converted into a process value and
a calibration step, and the CO is processed in the reverse order
of the PV. Hence, the PV and CO values can be tampered
by the scaling and biasing parameters for data conversion.
For example, a replay attack can be performed by setting the
scaling factor to zero and injecting prerecorded normal data to
the biasing value. In addition, we can use the parameters for
sensor calibration, which is required to linearize the output to
the sensor input. In numerous cases, it is limited to the valid
range of the sensor after correcting the output for each input
section using a piecewise linear function.

Finally, the CP value is a parameter of the control algo-
rithm; for example, the control response of the system can
be manipulated by changing the proportional gain, integral
gain, or differential gain value of the PID controller. Common
control mechanisms, such as PID control, include input and
output scaling and bias parameters for general use and can be
used as critical attack operation points.

Meanwhile, to implement attack scenarios of various types
and difficulties by manipulating the PCL components, it is
necessary to change the manipulation order and values of
each parameter differently. Let us consider an example of an
attack scenario where false reports are sent to an HMI and a
controller’s output is manipulated arbitrarily. The attack target

PV value can be replayed with the prerecorded PV value. In
addition, it can be simultaneously changed to a value larger
than the current value of the scaling factor of the controller
or the process output can be manipulated by injecting an
attacker-defined pattern that maximizes system fatigue.

The attacks on each PCL component are performed in
the order of pre-configuration, false data injection, and post-
configuration. First, the pre-configuration is required to con-
figure system settings before false data injection. This enables
a manipulated value to be immediately applied to a target com-
ponent and then false data injection begins. The false data
injection step is the phase during which data manipulation
actually occurs. After all data injection operations are com-
pleted, all modifications are restored to the normal condition
in the post-configuration phase and no other operation occurs
until the control state of the PCL becomes normal. This is for
the clear and easy analysis of the impact on each operation.

In a false data injection phase, we can change the target
value of PCL components to a specific value or slightly in-
crease or decrease the value according to a user-defined pat-
tern by referring to the current value. This makes it possible
to implement attack scenarios of various difficulty levels by
maintaining controller consistency at a certain level or higher.

False data injection in real systems can be achieved by
forcing another value to a critical data point or embedding
malicious control logic. Some DCS controllers have exter-
nally accessible public parameters for the optimization of
control logic, and data injection is possible only by changing
the public parameters without changing the control logic or
adding hardware. In many cases, however, the control logic
parameters of most PLCs and DCSs are private parameters
that cannot be changed over a network. Hence, it is necessary
to modify private parameters to refer to the memory value
that can be accessed externally. False signal injection is only
possible through the installation of additional hardware [2].

2.3 Attack Effects of PCL Components

The goal of this study is not to reproduce attacks but to sim-
ulate the result of the attacks. Table 1 shows the possible
attacks that can occur through PCL manipulation.

We can simulate multiple attack scenarios by simultane-
ously or sequentially manipulating multiple PCL components.
Several PCL components can be manipulated for each process
control loop used in each system. In general, the SP, CO, and
PC are used to modulate actuator control commands, and the
PV is mainly used to hide an attack by modulating monitor-
ing information. The accessible PC varies depending on the
configuration of a manufacturer and control logic.

2.4 Validation of the PCL Attack Effects

The PID controller simulation is used to validate the effective-
ness of attacks on PCL components. All attacks performed



Target Attack Effects PCL
- Physical access to equipment change and
configuration manipulation.

- Sensor circuit breakdown through electromagnetic
wave injection.

- False signal injection via sensor communication
interface.

- Change configuration manipulation through
physical access.

Actuator |- False signal injection via communication interface. CcO
- Change settings via the management interface
(portable maintenance device).

PLC, |- Manipulate set-points, actuator control commands, |CO, PV,
DCS |control parameters, etc. through control logic changes.| CP

- Set-point change by acquiring HMI access authority.
HMI |- False monitoring information injection via HMI SP, PV
communication interface.

Sensor PV

Table 1: Mapping PCL manipulation to attack effects

for the purpose of data collection ultimately change the actua-
tor output and the process output. Therefore, it is possible to
identify the increase in the effectiveness of the attack by eval-
uating the inconsistency of the PCL. That is, we can obtain
the residues between the CO value changed by forgery and
modification of the SP, PV, and CP values and the CO value
estimated from the simulation model of the PCL. The PCLs
in our testbed are implemented by a PID control algorithm.
We used the actual collected data to evaluate the effectiveness
of the attack by comparing the estimated results through the
simulation of the PID controller in Appendix A. The values
are used as the labeling information of attack data.

3 A Programmable CPS Testbed with Real-
Time HIL Simulator

To create a richer dataset by utilizing multiple small-size
control systems, we constructed a testbed in which three inde-
pendent real industrial control systems ware interconnected
via a real-time HIL simulator, which has a 500 MW steam
power plant model balancing with 100 MW pumped-storage
hydro plant model. Moreover, to minimize the effort involved
during dataset collection, the testbed could be run automati-
cally according to normal and attack scenarios and a simulator
was developed for each PID process to provide information
that could help data analysis.

3.1 Opverall Architecture

In numerous cases, small testbeds for research purposes have a
limited number of changeable PCL components and a simple
control process. This limits the reproducibility of various sce-
narios. Emerson’s boiler control system, GE’s turbine control
system, and FESTO’s water treatment control system are used,
which are constructed in small sizes by utilizing components
that are actually used in industrial environments.
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Figure 4: Simulink model of HIL simulator

We built a single complex plant simulation system with var-
ious PCL components by linking the abovementioned three
independent control systems with the HIL simulator. The
Emerson boiler control system and the GE turbine control sys-
tem simulated the thermal power plant in conjunction with the
HIL simulator, and the FESTO water treatment control system
simulated the pumping power plant in conjunction with the
HIL simulator. The thermal power plant and pumped-storage
power plant modeled in the HIL simulator were located in the
same area. They were connected to an infinite bus and had a
combined power generation environment model in which one
input load was distributed and developed at each power plant.

» HIL power plant simulator: An HIL-based simulator was
developed to combine three control systems (boiler, tur-
bine, and water treatment) to form a combined power
generation system. To control power generation accord-
ing to input load, it is necessary to determine the valve
opening/closing rate of the thermal power plant and
pumped-storage power plant to determine the valve open-
ing/closing rate of each control system (boiler and water
treatment systems).

* GE turbine system : This is a control system for the
turbine speed control and vibration monitoring of the
thermal power plant. The RPM of the actual turbine



control system is controlled according to the frequency
of the HIL simulator.

* Emerson boiler system: This a system for controlling
boiler pressure, temperature, and water level in the ther-
mal power plant. It controls the opening and closing rate
of the main valve of the actual boiler control system ac-
cording to the steam valve opening rate of the thermal
power plant in the HIL simulator. The modified pressure
and temperature values of the main piping are transmit-
ted to the HIL simulator in real time to determine the
amount of generated power.

e FESTO water treatment system: This is a system for
controlling the water level of the pumped-storage power
plant. It controls the opening and closing rate of the water
valve of the actual water treatment system according to
the opening and closing rate of the pumping station in the
HIL simulator. Accordingly, the hydraulic pressure, flow
rate, and water level of the upper water tank (dam) are
transmitted to the HIL simulator in real time to determine
the amount of generated power.

3.2 HMI Automator

As shown in Fig. 5, we have developed a tool to schedule
HMI tasks for a long period without human intervention. Our
system is a semi-automated system with an HIL simulator.
Therefore, humans have to set the process variables, such as
the SP for the planned process output.

In this case, there are several practical limitations to re-
produce various normal and abnormal situations over a long
period, and it is difficult to maintain consistency each time
when an attack is performed in the same situation. In addi-
tion, data labeling by operators can degrade the accuracy and
reliability of data.

The implemented tool sets the SP value at a scheduled
day and time for each PCL. Scheduled tasks can be executed
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Figure 5: HMI Automator

only in the steady state of the PCL. In addition, the task
start time and SP value can be randomly changed within a
predetermined range so that various operation scenarios can
be generated under the same setting conditions. As the time
of occurrence of the control event generated by the scheduler,
the SP value, and stabilization can be utilized as metadata, the
reliability of PCL data as learning data is improved and the
post analysis of PCL data is facilitated.

3.3 Attack Tool with PCL Manipulation

We have developed an attack tool that remotely controls the
PCL component physically implemented in the PLC/DCS
system according to an attack scenario and records the details
of the attack to label data. Through attack task scheduling, the
values of the PLC/DCS attack point on the OPC are sequen-
tially manipulated and the attack active command is transmit-
ted to the controller-in-the-middle [2] for signal manipulation.
After the attack task for one PCL component is terminated,
the PCL waits until it reaches the steady state, thereby reduc-
ing the interference between PCL attacks and facilitating the
analysis of the attack effect. In a few cases, multiple tasks
can be executed simultaneously to allow for multiple attacks
regardless of whether they are steady state or not.

System Process PCL components
SP Low and High level set-points
Water Level control PV level sensor
treatment CO Pump, Discharge valve
PC Analog 1/O calibration
Sp RPM set-point
. PV RPM sensor
Turbine RPM control o Turbine
PC Analog I/0 calibration
SP Main tank pressure set-point
Pressure control PV Pressure sensor
CO Pressure control valve
PC | PID gain, Analog I/O calibration
Sp Return tank level set-point
Boiler Return tank PV | Level sensor, Discharge flow sensor
level FF control | CO Level control valve
PC PID gain, Analog I/O calibration
SP Return tank flow set-point
Discharge PV Discharge flow sensor
flow control CO Flow control valve
PC PID gain, Analog I/O calibration

Table 2: A part of the PCL components in our testbed

In our testbed, we have identified 26 PCL components that
can be manipulated in the 5 important PCLs that affect the
entire system (Table 2). The testbed uses a PID control algo-
rithm and has a complex configuration including feedback,
feedforward, and cascade. In particular, boiler systems have
many PCL components compared to the turbine and the wa-
ter treatment control system, including all of these complex
configurations.



4 Attack Scenarios on CPS Testbed

We can express various benign scenarios and attack scenarios
by manipulating PCL components in the programmable CPS
testbed. For better understanding, we present a benign sce-
nario through random changes in the SP and suggest attack
scenarios through CO, SP, PV changes in the water treatment
system and the boiler system.

4.1 Benign Scenarios

A normal operating scenario assumes that an operator rou-
tinely operates the control facility via the HMI. The operator
monitors the current sensor PV value displayed on the HMI
and changes the SPs of various control devices to operate
the control facility. When the control process moves out of
the normal range, physical values, such as pressure and water
level, are changed abnormally and the hybrid control system
enters an abnormal operating state.

Through experiments, we confirmed the normal range of
the SP where the entire process was stable while changing
the value for each SP (Table 3). We used the HMI operation
task scheduler to periodically set the SPs to random values
within the normal range to represent the benign scenario.

System | Process control loop Set-points Min/Max | Normal range
Water Level control Low level set-point 0/100 0~20
treatment High level set-point 0/100 70~90
Turbine RPM control RPM set-point 0/4000 300 3000
Pressure control Main tank pressure set-point 0/10 0~2
Boiler Return tank Return tank level set-point 0/1600 350 ~450
level FF control
Discharge Return tank flow set-point | 0/2500 | 800~1200
flow control

Table 3: Normal range of the set-points

4.2 Attack Scenarios

An abnormal operating condition implies that a few control
facilities are out of the normal range and operate in an un-
predictable state owing to an attack or device malfunction.
We can express various attack scenarios by combining at-
tack time, PCL components, and attack methods on the power
plant testbed. To help understand the attack model, we present
attack scenarios in the water treatment system and the boiler
system.

4.2.1 Scenario 1: Pump CO Forgery Attack

In the benign scenario, when the power load on a combined
power plant is low, power can be supplied only through ther-
mal power generation. Therefore, the pumped-storage hydro-
electric power station stops power generation and drives the
pump to raise the water level of the dam.

Attack scenario 1 changes the S1-level-COl1 at the PCL
components to make the pump malfunction and simultane-
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Figure 6: Pump CO Forgery attack (Scenario 1)

ously changes the S1-level-PV1 to modulate the level mon-
itoring signal transmitted to the HMI (Table 4). The PCL
component, S1-level-CO1, refers to the pump control com-
mand (COL1) in the level control process (level) of the water
treatment system (S1). The pump control command is the volt-
age across the pump motor, 0 to 10 V. The PCL component,
S1-level-PV1, refers to a level sensor measurement (PV1) in
the level control process (level) of the water treatment system
(S1).

It is possible to modulate S1-level-CO1 by changing Wa-
terpumpGain and WaterpumpBias among the control logic
symbols of the PLC that control the water treatment system.
WaterpumpGain and WaterpumpBias are the gain and bias
of the pump control command CO, and they are set as 1 and 0
in the steady state, respectively, so that CO is not modulated.
When the attack starts, WaterpumpGain changes from 1 to
0 and WaterpumpBias changes from O to 10 to fix the pump
control voltage CO at 10 V. Therefore, the pump motor con-
tinues to operate at the maximum power and the water level
of the dam continuously rises and reaches the dangerous level.
In the first graph shown in Fig. 6, the voltage applied to the
pump shows that 10 V is continually output when the attack
starts.

If the operator is monitoring the dam level through the HMI
screen, the attacker can modulate S1-level-PV1 to prevent the
operator from recognizing the occurrence of the attack. To
modulate level sensor measurement, S1-level-PV1 can be
modulated by changing LevelSensorGain and LevelSensor-
Bias among the PLC’s control logic symbols. LevelSensor-
Gain and LevelSensorBias are the gain and bias of the level
sensor value and they are set as 1 and 0, respectively, in the
steady state, so that the PV is not modulated.

When the attack starts, the PV value is linearly reduced to
hide the rise in water level. The PV is decreased gradually
by linearly changing LevelSensorGain from 1 to 0.5. The
second graph in Fig. 6 shows the actual water level of the dam



System Process | PCL components Symbol of control logic | Attack metheod | Normal Attack
S1-Level-CO1 (pump control command) WaterpumpGé.lm A1) Constant ! 0
WaterpumpBias Al) Constant 0 10
water treatment(S1) | Level - -
LevelSensorGain A2) Linear 1 (1:-0.01:0.5)
S1-Level-PV1 (level sensor measurement) -
LevelSensorBias - 0 0
Table 4: Configuration of the attack scenario 1
System Process | PCL components Symbol of control logic | Attack metheod | Normal Attack
S3-Pressure-SP1 (press set-point) PressSPG?un Al Constant ! 0
. PressSPBias - 0 0
Boiler(S3) | Pressure :
S3-Pressure-PV1 (pressure sensor measurement) PressSensorGain Al) Constant 1 0
o pressure ¢ PressSensorBias R) Replay 0 replay signal
Table 5: Configuration of the attack scenario 2
and the false water level information sent to the HMI. G
L

4.2.2 Scenario 2: Pressure SP Forgery Attack

In the benign scenario, the pressure SP of the boiler system
is set to a value between 0 and 2 to control the opening and
closing rate of the piping valve. An attacker can perform an
attack by setting the pressure SP high in the press control
process to break the pipe at high pressure, or to set the SP low
to close the piping valve.

The attack scenario 2 change the S3-pressure-SP1 at the
PCL components to make the valve malfunction and simul-
taneously change the S3-Pressure-PV1 to modulate the level
monitoring signal transmitted to the HMI (Table 5). The
PCL component, S3-pressure-SP1, refers to the Press set-
point(SP1) in the press control process (Press) of the boiler
system (S3). The press set-point is the normal range is 0 to 2.
The PCL component, S3-Pressure-PV1, refers to a pressure
sensor measurement (PV1) in the press control process (Press)
of the boiler system (S3).

It is possible to conduct S3-pressure-SP1 by changing
PressSPGain and PressSP in the control tags of the PLC.
PressSPGain and PressSPBias are the gain and bias of the
pressure SP, respectively. When the attack starts, PressSP-
Gain changes from 1 to 0 and PressSPBias maintains a value
of 0. Therefore, the piping valve is closed and the pressure
applied to the piping is rapidly lowered. The first graph shown
in the Fig. 7, the Press SP becomes 0 when the attack starts.

If the operator is monitoring the pressure change of the
pipe through the HMI screen, the attacker can modulate S3-
pressure-PV1 to prevent the operator from recognizing the
occurrence of the attack. To modulate pressure sensor mea-
surement, S3-pressure-PV1 can be modulated by changing
PressSensorGain and PressSensorBias among the PLC con-
trol logic symbols. PressSensorGain and PressSensorBias
are the gain and bias of the level sensor value and they are
set as 1 and O respectively, in the steady state so that PV
is not modulated. When the attack starts, the PV value for
a certain period is replied to forge the pressure monitoring
value. To do this, the PressSensorGain was changed from 1
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Figure 7: Pressure SP forgery attack (Scenario 2)

to 0 to remove the actual PV value and add a reply signal to
the PressSensorBias to modulate the monitoring signal. The
second graph shown in Fig. 7 shows the actual press of the
pipe and the false press information transmitted to the HMI.
It can be confirmed that the previous pressure sensor signal is
replayed when the attack starts.

5 Conclusion and Future Work

Although there are a growing number of studies for CPS
security, there is still a lack of open data sets that can be used
for research. Our testbed is designed to generate accurate data
sets for various scenarios while minimizing human effort.

Our goal is to create datasets for CPS security researchers
working for anomaly detection. We will develop and release
CPS datasets using this testbed in the future.
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Appendix A.
Validating the Attack Effects on PID Controller

The CO value of the PID controller can be estimated through a
recursive neural network using the SP and PV values. The PID
controller calculates the proportional, derivative, and integral
terms for an error input, E[k] = SP[k] — PV [k], and outputs
the weighted sum of the three terms. As the PID controller
in a PLC/DCS is a discrete-time system with a sampling
interval T, the differential equation of the PID controller can
be represented as

COl =COlk— 1]+ (KP+K,T+ KTD) E[K]
)
(Kp—i— 2”) Ek—1]+ %E[k—z]

where the coefficients (Kp, K;,Kp) are the gains of the PID
controller. In many cases, the PID gains and sampling interval
of Eq. 1 are not known directly, and furthermore the PID
control loop includes additional blocks such as saturation and
rate limiter. The saturation block limits the input value to the
upper and lower saturation values, and the rate limiter limits
the rate of change of input signal.

To obtain the models of PID feedback, feedforward, and
cascade control loops, we used the Nonlienar AutoRegressive
Exogenous (NARX) feedback neural network Toolbox on
MATLAB, which is mainly used for time series data modeling.
This is because the PID control mechanism in Eq. 1 has a
time-delayed recursive model of the controller output with
error inputs as shown in Fig. 8.
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Figure 8: Recurrent neural network (NARX network closed-
loop architecture) for modeling a PID controller



The NARX neural network regresses past independent n-
sample input values and past m-sample output values to pre-
dict the next output value as shown in Fig. 8. We set n and m
to four at least greater than two From Eq. 1 and use 10 neu-
rons in the hidden layer. The inputs x(¢) of the neural network
for modeling a feedforward control must be two-dimensional
with a process error and a feedforward PV value. A cascade
control loop has a structure in which two PID blocks are con-
nected successively, so that both the input and the output of
the learning network are two-dimensional.

Fig. 9 shows the control output of the feedforward PID
controller of the liquid level using the training and testing
data collected for two days.

The closed-loop network outputs a relatively large error
in the steady-state during the first 22 h. However, it could
validate the attack effects for the PLC components when false
data injection with three types of data patterns occurs in one
of SP, PV, and CO, as shown in Fig. 9.
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Figure 9: Residue of the estimated CO using PID simulation
for the actual data collected for two days

Appendix B.
PCL Dataset Description

A data sample is collected every second for a set of 9 PCLs,
consisting of 9 SPs, 19 COs, and 40 PVs. Under normal oper-
ating conditions, they are stored on the time-series database
about 66 MB per day, and Fig. 10 shows a portion of the data
collected over a week.

Meanwhile, all attacks performed for the purpose of data
collection were logged with the labels in Table 6.

Figure 10: A portion of the data collected for a week

Label Description Format

Start Time time when an attack scenario starts POSIX time
End Time time when an attack scenario ends POSIX time

Target PCL target PCL name String
Target Variables PCL variables (i.e. SP, PVs, CO) String array

Attack Intent Description of the intended affect of the attack String
Attack Methods data injection method String array
Attack Values injected values under the attack Float array
PCL Errors error between the SP and PV for all PCLs Float array
PCL Inconsistency residue of PID control output for all PCLs Float array

Table 6: Attack labels
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