
CAERUS: Chronoscopic Assessment Engine for Recovering Undocumented
Specifications

Adam J. Seitz1 Adam Satar1 Brian Burke1 Lok Yan2

Zachary J. Estrada1

{adamjseitz@gmail.com,adamsatar@me.com,lok.yan@us.af.mil,estrada@rose-hulman.edu}
1Rose-Hulman Institute of Technology, Terre Haute, IN USA

2Air Force Research Laboratory, Rome, NY USA

Abstract
A significant feature of embedded systems, in particular
legacy systems, is their sensitivity to signal timing. Any mod-
ifications (e.g., security protections) to legacy systems could
affect the timing of critical control signals. Some timing prop-
erties are well known (e.g., baud rates for communication).
However, other timing properties are not well specified or
understood. Those properties only surface as a result of addi-
tional testing such as part of modernization or upgrade efforts.
We present a programmable hardware/software framework
to recover and uncover the undocumented timing properties
of embedded systems, CAERUS. CAERUS is based on com-
modity hardware components and the software has been open
sourced.

1 Introduction

Legacy systems are systems that are no longer supported
by upstream vendors but must remain in use due to their
criticality. Due to the lack of support, those legacy systems
pose significant risk to security and maintenance efforts.1

Many legacy systems provide critical functions, so removing
them is often not an option. Modernizing legacy systems is
challenging since much of the expertise and documentation
related to those systems have been lost. Therefore, recovering
undocumented properties of legacy systems is an important
step towards modernization.

When trying to modernize a legacy system (e.g., by adding
security features), it is expected that instead of replacing the
system, new protection features may be introduced that treat
the legacy code as a black box [5, 7]. Black box techniques
are used in cases where the legacy system cannot be modified
safely. For example, a legacy firmware binary might be ex-
ecuted in an emulator to preserve the behavioral semantics.
However, embedded systems may also depend on precise tim-
ing for correct operation [1,3,4,6]. Additionally, the timing of

1https://www.meritalk.com/articles/
legacy-it-systems-obstacle-to-cybersecurity-gao-gene-dodaro/

those signals may not be well understood; the emulator will
not be timing accurate leading to semantically equivalent but
timing different behavior. Any external protection added to a
legacy system may impact timing and therefore may impact
the correct operation of that system. This dependence on tim-
ing becomes an undocumented specification, a specification
that needs to be recovered. To summarize, we observe that
while the logical behavior of legacy systems might be known
(e.g., from test cases, characterizing good or correct behaviors
from existing systems, or directly analyzing firmware bina-
ries) how timing affects the behavior is unknown and must be
recovered. In fact, we assume that the logical behavior is well
known.

In this work, we present a new hardware analysis frame-
work that is able to uncover timing properties of hardware
circuits and/or communications buses, Chronoscopic As-
sessment Engine for Recovering Undocumented Specifica-
tions (CAERUS). CAERUS is based on commodity compo-
nents and its code is open source.2 The contributions of the
CAERUS framework are the ability to: 1. record arbitrary
digital signals, 2. programmatically interpret and perturb the
signals both in terms of logic (e.g., voltage levels) and timing
(e.g., jitter), and 3. replay the newly synthesized signals.

2 Related Work

Previous work on building tools for timing testbeds in hard-
ware security has focused specifically on clock signals [2, 8].
There exist high-quality commercial (e.g., riscure Spider) and
open source (e.g., NewAE ChipWhisperer) tools for perform-
ing timing side channel analysis in embedded systems. To
the best of our knowledge CAERUS is the first open hard-
ware record/replay platform targeted at uncovering the hidden
timing properties of embedded systems.

2https://github.com/caerus-timing

1

https://www.meritalk.com/articles/legacy-it-systems-obstacle-to-cybersecurity-gao-gene-dodaro/
https://www.meritalk.com/articles/legacy-it-systems-obstacle-to-cybersecurity-gao-gene-dodaro/
https://github.com/caerus-timing


3 Implementation

CAERUS has three main functionalities: signal capture, signal
replay, and programmable signal perturbation. During signal
capture, the system records input and output signals used by
the device under test (DUT). During signal replay, the input
signals stored during capture will be replayed to the device
inputs. With the programmable perturbation functionality,
signals can be modified both in terms of logic level and timing
properties.

The physical design of CAERUS is illustrated in Figure 1.
CAERUS has three main physical components: the signal
playback system, the logic analyzer, and the command and
control subsystem. The signal playback system is a custom
hardware/software co-design which stores and replays signals
with timing perturbations. The logic analyzer is a commodity
device that is used by the command and control subsystem to
record signals for later playback or for verification of func-
tionality during testing.

3.1 Recording Signals
Signals are recorded using a Logic Analyzer, referred to as
“LA” for the remainder of this paper. The Saleae Logic 8 LA
used in this implementation provides a USB interface that can
be controlled with a Python API.3 This Python API is what the
Command and Control (CnC) subsystem uses to control the
LA. The CnC communicates with the LA to capture signals.

3.2 Replaying Signals
The signal playback subsystem (SPS) is implemented on a
Digilent Zybo Zynq-Z7000 ARM/FPGA SoC development
board. The Zybo board has an ARM core integrated with
an FPGA. The SPS is capable of generating digital signal
pulses on the order of nanoseconds and simultaneously driv-
ing up to four playback channels at variable frequencies. The
SPS is composed of custom IP modules developed in Verilog
HDL with accompanying firmware that exposes the replay
functionality to the command and control subsystem. The
CnC is responsible for mutating signals for playback. After
modifying the previously recorded signals, the CnC delivers
signals to the SPS. The signal representation in Python allows
the user to define custom mutations. The list of mutations
supported at the time of writing is shown in Table 1. Note that
although the list of currently supported mutations is small,
the Append mutation allows the user to construct an arbitrary
signal out of smaller signals.

In addition to replaying signals, there are some advanced
features that take into account the unique properties of em-
bedded systems. The user can create arbitrary signals in the
CnC user interface. CAERUS supports a “stop channel and
stop address” feature. Stop channel and stop address allows

3https://pypi.org/project/saleae/

Target Device

Behavior 
model

Test 
routine

User interface

Recorded
samples

Outputs to
target device

Inputs from
target device

Correctness

Result
data

User

Result
information

User commands

Saleae 
Logic 

Analyzer

Memory 
Controller

Firmware

Channel
Units

Playback clock 
controller

Control signalsClock signals

Control
signals

Control signals
Playback

state

Saleae 
Logic 

Software

Commands

Recorded
samples

Commands

Signal
info

User
config

UART commands

Figure 1: The design of CAERUS. The grey boxes outline the
components developed as part of this work.

2

https://pypi.org/project/saleae/


Table 1: Mutations Supported by CAERUS

Operation Description Input(s) Example

Append Append another signal to this one The other signal S1: S2: O:

Cut Remove part of a signal Start time/end time to remove S1: O:

Scale X Scale the rate of playback of the signal Multiplier (scale factor) S1: O:,SCALE:3

Insert Delay Insert a delay into the signal Delay duration, delay start time S1: O:,DELAY:3@0

Glitch Insert a glitch into the signal Glitch start, glitch length O:GLITCH:1,0.25S1:

the software to define an address where playback will stop
as well as whether a particular signal should be played in a
loop. This allows efficient playback of signals that are sam-
pled at different rates (e.g., a clock on the order of MHz and
a communication bus on the order of kbps).

3.3 Behavior Model

The goal of the experimental platform is to determine the
sensitivity of an embedded system to variations in timing pa-
rameters of its input signals. The CnC system uses a behavior
model to assert correctness of the system being tested. The
behavior model describes the expected behavior of a system
in terms of its signals. After an experiment, the CnC subsys-
tem processes the recorded output signals according to the
Behavior Model, if any of the conditions proscribed by the
behavior model are violated, then that experiment fails verifi-
cation. A description of how behavior models are defined is
described in Section 4.4.

3.4 Built-in Tests

The expected use case of CAERUS is for the user to specify
a test routine that is run by the CnC system. The test routine
is responsible for coordinating and perturbing the replay of
signals as well as running the behavior model to determine
the timing properties of the system.

Along with supporting user-defined tests, CAERUS pro-
vides built-in test routines that could be used with a broad set
of devices. These test routines still require the user to specify
a behavior model to assert correct device behavior as correct
behavior is target device dependent.

3.4.1 Clock Frequency Range

The clock frequency range test determines a precise range of
valid clock frequencies for a device. The user inputs an upper
and lower bound for the clock frequency. The test routine
then uses a uses binary search with configurable precision to
determine which clock frequencies still allow the behavior
model to validate.

3.4.2 Duty Cycle Test

The duty cycle test allows the user to input a range of duty
cycles along with a clock signal and a reset signal. This test
reports a range of valid duty cycles for the clock, performing
a binary search similar to the clock frequency range test.

3.4.3 Maximum Drift Test

This test finds the maximum delay that can be added between
the beginning of two signals. Starting the signals offset is in-
tended to simulate the effect of a drift that may have occurred
over a longer period of time. The user specifies a maximum
positive delay and a maximum negative delay as well as two
input signals.

3.4.4 Maximum Glitch Duration

The maximum glitch duration test allows the user to test the
resilience of a system to glitches in the clock signal. The
inputs of the test are: a clock signal, a reset signal, and a
location value in the range [0,100] to specify where the glitch
will begin in the clock cycle.

4 Usage

The general process for running a test through CAERUS is:
define a test routine, define a behavior model, record inputs,
and run the test routine. The user interacts with CAERUS
through a software interface that communicates with the CnC
system. The CnC system then communicates with both the
logic analyzer and the record/replay device to perform the
steps outlined previously.

4.1 Assumptions
In order to use CAERUS, the user must understand the correct
functional behavior of the test system in terms of its measur-
able inputs and outputs. This functional behavior is captured
by the user in the behavior model (e.g., if the reported vehicle
speed is ≤ 30mph, a diesel engine controller should disable
engine braking). For many experiments, a range/space of pos-
sible timing values is also provided by the user. E.g., a user
inputs that the maximum clock frequency for a MCU will be

3



Figure 2: An example of the user interface when running an
experiment. DUT is Device Under Test

within the range [20,40Mz] when performing a clock range
test from Section 3.4.1.

The main goal of CAERUS is to uncover the timing permu-
tations that cause the system to stop behaving correctly. It may
be worth noting that in many cases, the actual response of a
system to incorrectly timed input(s) may also be unknown to
the user. That is, the behavior model will fail, but how exactly
the outputs would change is not known a priori.

4.2 The User Interface
A screenshot of CAERUS’s interface is shown in Figure 2.
This screenshot was taken during the setup of the experiment
presented in Section 5. In Figure 2, we see multiple fields. The
INPUTS/OUTPUTS fields describe the inputs and outputs
from the device under test (DUT) perspective. The outputs
correspond to the possible channels that could be recorded
from the Logic Analyzer (8 channels are supported as we are
using the Saleae Logic 8). The TESTS list the test routine(s)
currently selected to run. The SETTINGS describe the config-
uration of the LA, such as the sample rate, as well as which
behavior model is used for asserting correct device behavior.

4.3 Defining a Test Routine
The test routine is a python script responsible for coordinating
the replay of signals, applying perturbations, and running the
behavior model. A test routine will typically run for multiple
iterations, sweeping various parameters. As seen in the sample
test routines given in Section 3.4, the mutations applied to the
signal change dynamically during a test (e.g., to find some
upper or lower bound for a given timing property).

4.4 Defining a Behavior Model
The behavior model’s inputs are the input and output signals
from the target device. The behavior model checks those

signals to assert if the system performed its task successfully,
reporting the result back to the test routine. The test routine
then modifies the signals and executes the next iteration based
on the result from the behavior model.

The behavior model does not need to capture the complete
functionality of the test system, only what is needed to verify
correct operation in a given test. The behavior model corre-
sponds to the expected behavior of the target device from a
black box perspective. Having access to the binary/source
code of a test system significantly improves development of
the behavior model. If a reference contains timing information
(e.g., maximum clock frequency), that documentation could
be used to determine ranges. CAERUS would then be used
to determine the physical limits (e.g., how does the system
actually behave).

We note that defining a behavior model for a complex sys-
tem is nontrivial. The behavior model can be represented
abstractly by a state machine, with the pattern of signals pro-
viding the state transitions. For very complex systems, we
expect the behavior model would be developed iteratively
with the test routine, helping the user understand their device.
In this way, we imagine that CAERUS could also be helpful
as a reverse-engineering tool that allows a user to build a soft-
ware model of a hardware device. Automatically generating a
behavior model is beyond the scope of this work.

5 Example

5.1 Minimum Button Duration
We present a simple example to illustrate the usage of
CAERUS in uncovering a timing property of a system. The
goal of this example experiment is to determine the minimum
time needed for a system to register a button press.

5.1.1 Device Operation

We used a PIC16F887 microcontroller with one digital input
(a button) and one UART output. We wrote a simple software
program to respond to the digital input as a button press.
When the button is pressed, the output signal is raised high by
the MCU only if the button has been held down for a certain
amount of time (software debounce). The amount of time
the button needs to be held for the button press to register is
software configurable and we change this parameter in our
experiments.

5.1.2 Test Routine and Behavior Model

The goal of the experiment is to uncover the minimum dura-
tion that will still cause the MCU to register the button press.
The behavior model checks to see if output signal is logic
high after the button is pressed. If the signal is high, then the
system registered the button press. The test routine does a

4



Table 2: Minimum Button Duration
Duration (ms) Mean StdDev Min/Max

1 1.005 2.985×10−3 1.001/1.007
7 7.000 6.569×10−3 6.993/7.055

34 34.00 8.413×10−3 33.97/34.01
1 - HS 1.026 0 1.026/1.026
7 - HS 7.024 0 7.024/7.024
34 - HS 34.04 1.194×10−4 34.02/34.88

binary search over pulse widths until it finds the minimum
pulse with a certain error (10µs in our experiments). Once
the behavior model fails to validate, the test routine backs off
until it finds a pulse width that does validate. That pulse width
is reported as the minimum button duration.

5.1.3 Results

The button durations tested were 1ms, 7ms, and 34ms. Those
values were chosen as 7ms is a typical debounce time and 1ms
and 34ms represent extreme values. We ran 100 experiments
for each button press duration and the results are in the Table 2.
Two oscillators were used: the internal RC oscillator (accuracy
of ± 1%) and an external HS crystal oscillator (tolerance
of ±30ppm). In Table 2, we see that the system was able to
correctly identify the duration for each configuration.

We see that the standard deviation is larger for the longer
durations with the internal oscillator. These variations are
expected due to accumulated error as longer durations require
more timer ticks. This is evidenced by the much lower stan-
dard deviation with the higher precision oscillator. The HS
results did have a mean that was further from the ideal value.
The difference from ideal might be explained by the overhead
in processing interrupts or lack of clock synchronization be-
tween the SPS and DUT. This simple test demonstrates that
timing behaviors are rarely straightforward and we plan to
explore further in future work. CAERUS allows us to perform
that exploration programmatically and economically.

6 Conclusions

We have presented CAERUS, an open platform for uncov-
ering timing properties of embedded systems. The system
uses a custom hardware/software platform built on commod-
ity components. CAERUS performs record/replay of signals,
supporting a variety of mutations and built-in tests. The plat-
form was designed with extensibility in mind and provides
a Python API for users to create their own tests and valida-
tion mechanisms. In future work, we will use CAERUS to
uncover the timing properties of complex systems as well as
validate the security impact of timing violations. We will also
develop more advanced analysis capability and improve the
user experience.

Acknowledgments

The authors wish to thank the anonymous reviewers as well
as Stephen Schwab for their insightful feedback.

Effort sponsored by the Air Force under MOU FA8750-15-
3-6000. The U.S. Government is authorized to reproduce and
distribute copies for Governmental purposes notwithstand-
ing any copyright or other restrictive legends. Any opinions,
findings and conclusions in this paper are those of the au-
thors and do not necessarily reflect the views of the US Air
Force and/or US government. Approved for public release:
#88ABW-2019-2592.

References

[1] Matthias Becker, Saad Mubeen, Moris Behnam, and
Thomas Nolte. Extending automotive legacy systems
with existing end-to-end timing constraints. In Shahram
Latifi, editor, Information Technology - New Generations,
pages 597–605, Cham, 2018. Springer International Pub-
lishing.

[2] Santosh Desiraju. High Speed Clock Glitching. PhD
thesis, Cleveland State University, 2015.

[3] Peter A Sandborn and Varun J Prabhakar. The forecasting
and impact of the loss of critical human skills necessary
for supporting legacy systems. IEEE Transactions on
Engineering Management, 62(3):361–371, 2015.

[4] Alberto Sangiovanni-Vincentelli and Marco Di Natale.
Embedded system design for automotive applications.
Computer, 40(10):42–51, 2007.

[5] Dries Schellekens, Brecht Wyseur, and Bart Preneel. Re-
mote attestation on legacy operating systems with trusted
platform modules. Science of Computer Programming,
74(1-2):13–22, 2008.

[6] Lothar Thiele and Reinhard Wilhelm. Design for tim-
ing predictability. Real-Time Systems, 28(2-3):157–177,
2004.

[7] Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and
Zhiqiang Lin. Binary stirring: Self-randomizing instruc-
tion addresses of legacy x86 binary code. In Proceedings
of the 2012 ACM conference on Computer and communi-
cations security, pages 157–168. ACM, 2012.

[8] Christian Wenzel-Benner and Jens Gräf. Xbx: external
benchmarking extension for the supercop crypto bench-
marking framework. In International Workshop on Cryp-
tographic Hardware and Embedded Systems, pages 294–

305. Springer, 2010.

5


	Introduction
	Related Work
	Implementation
	Recording Signals
	Replaying Signals
	Behavior Model
	Built-in Tests
	Clock Frequency Range
	Duty Cycle Test
	Maximum Drift Test
	Maximum Glitch Duration


	Usage
	Assumptions
	The User Interface
	Defining a Test Routine
	Defining a Behavior Model

	Example
	Minimum Button Duration
	Device Operation
	Test Routine and Behavior Model
	Results


	Conclusions

