
Design and Implementation of a Cyber Physical Testbed for Security Training
Paul Pfister, Mathew L. Wymore, Doug Jacobson, and Daji Qiao

Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA
{ppfister, mlwymore, dougj, daji}@iastate.edu

Abstract
This paper describes the work of introducing a CPS (Cyber

Physical System) extension to our Internet event simulator at
Iowa State University, known as ISEAGE, for Cyber Defense
Competitions (CDCs). The CPS extension consists of a vir-
tual control system to interface with CPS devices, a human
machine interface (HMI) to access and control the devices, a
virtual world to simulate the physical effects of the devices,
and a backend to support the use of the CPS component in
CDCs. These components communicate with each other using
the Open Platform Communications standard. A CPS-CDC
scenario is developed where participants are tasked with de-
fending two CPS networks representing water and power
utilities. To enhance the experience for participants, we also
3D-print a model of the virtual city served by these utilities.
The 3D city reflects the state of the competition via LEDs
that report the availability of services. The design of our CPS-
CDC is highly modular, supporting any number of different
CPS devices and systems, and can be adapted to a wide set of
possible CPS scenarios.

1 Introduction

Cyber defense competitions (CDCs) were first introduced as
a way to give participants key insights into the methods and
mindset used by attackers against networked systems. Follow-
ing the “know your enemy” form of thinking, a CDC educates
the participants about what network defense is like in the real
world. This gives them a more natural intuition for defensive
strategies when they are put to test in the field. It also helps
them to recognize and understand the vulnerabilities they en-
counter with the systems they are tasked to administrate, and
to develop skills to identify potential attacks.

Traditionally, CDCs focus on defending networks in “cy-
berspace,” and particularly on protecting the integrity, con-
fidentiality and availability of data. As the Internet evolves,
more and more physical systems in the real world become
connected and thus can be accessed and controlled from the
Internet. For example, the power that comes to our homes, the
water from our faucet, the traffic lights that coordinate our driv-
ing, and many more, are now directly controlled by computers,
and many are accessible from the Internet. These systems are
often referred to as Cyber Physical Systems (CPS).

The dangers posed to CPS are growing at alarming rates
due to the increasing rates at which they are being networked
into the Internet. The recent attack on the Ukrainian power

grid is likely to be the first of many examples, where hackers
managed to disable a number of substations, leaving 230,000
residents without power [1]. However, there has been a lack
of CDCs that simulate CPS systems and behaviors. This mo-
tivates us to design and implement a CPS testbed to comple-
ment our Internet event simulator at Iowa State University,
known as ISEAGE [2] (Internet-Scale Event and Attack Gen-
eration Environment), for CDC and security training purposes.

1.1 Internet Event Simulators and CDC
There are a few well-known Internet event simulators and
testbeds that have been used for CDCs, such as Emulab [3]:
“a configurable Internet emulator in a room;” DETER [4]: “an
evolving infrastructure—facilities, tools, and processes—to
provide a national resource for experimentation in cyber se-
curity;” and PlanetLab [5]: “a safe and secure environment
for testing and operating peer-to-peer algorithms and moni-
toring their activities.” To the best of our knowledge, none
of these has a CPS component and CPS-related security is-
sues and scenarios cannot be included in CDCs that use these
systems for security training. Our Internet event simulator
at Iowa State University is known as ISEAGE, which is a
controlled environment that allows real attacks to be played
out against the students’ networks and demonstrates to them
real world security concepts. Over the years, we have hosted
many CDCs on ISEAGE, but our traditional CDC framework
does not have a CPS component either.

1.2 Cyber Physical Systems (CPS)
Cyber physical systems (CPS) are networks of software-
managed devices that interface with mechanical components
and influence/monitor the physical world via sets of inputs
and outputs. This relationship between software and hardware
is often referred to as computation and process. Computation
controls the process and adapts to events reported from the
hardware [6]. Because these devices are not generally meant
for interfacing directly, they are most commonly controlled
by algorithms and supervised remotely by other systems.

In large facilities, workers need a way to monitor and con-
trol the activities of CPS. For this task, supervisory control
and data acquisition (SCADA) software is deployed. SCADA
is capable of communicating with the underlying control
systems while simultaneously providing an interface for the
workers to monitor and govern those systems. SCADA is a
means of management. Traditionally, the design of CPS has



not focused on security [7]. Instead, it is up to the adminis-
trators of the facilities to segment the networks to ensure the
systems are only accessible by authorized users. Convenience
or necessity, however, insists that many of the systems be
remotely accessible from the Internet, which further compli-
cates the goal of secure network segmentation.

1.3 Our Contributions
A CDC scenario that integrates a CPS element would benefit
students, both upcoming and current administrators, and the
general public at large. CDCs provide a simulated environ-
ment for participants to test their defensive strategies with
real-time feedback. Broadening the scope of a CDC to include
both cyberspace and cyber-physical elements would expand
the coverage to encompass a wider scope of threats facing the
modern world. A CPS-CDC needs to include physical-world
elements, since the dangers faced by these systems could have
tangible and potentially severe consequences.

We have designed and implemented a CPS component, as
an addition to our ISEAGE Internet event simulator and our
traditional CDC framework. Leveraging the Open Platform
Communications (OPC) standard, we design a generic virtual
control system (VCS) layer that can integrate any CPS device
or system into our CPS extension. To demonstrate our CPS
extension, we introduce two CPS scenarios, a water utility
and a power utility, into our CDC. We also use a 3D-printed
city model to display the status of CPS devices and enhance
the CPS-CDC experience for participants.

2 Cyber Defense Competition (CDC)

In our CDC, participants are divided into the following teams:

Blue Teams Blue teams are the competitors of the CDC. Dur-
ing the competition, their role is to defend their systems
and react to any unauthorized activities. They also must
ensure that their services are available at all times and
respond to any issues communicated by their users.

Red Team There is a single red team. The red team plays the
role of attacker during the competition, acting like a ma-
licious adversary. The red team members are volunteers,
generally from sponsoring businesses.

Green Team There is a single green team. The green team
acts as the user base for the blue team networks.

White Team There is a single white team. They are the ad-
ministrators of the competition, and are responsible for
coordinating activities, managing the testbed, and scor-
ing the blue teams.

For the remainder of this document, we refer to CDC networks
(enabled by the Internet event simulator) by the color of the
team that owns the network; e.g., a “blue network” refers to

a network owned and defended by a blue team, whereas a
“white network” refers to an administrative network that blue
teams cannot access.

Each CDC features a unique scenario. When the scenario is
distributed, the blue teams are given a set of virtual machines
(VMs) that they use to create their infrastructure. These VMs
generally come with pre-deployed services for the scenario.
Example services include Active Directory, remote desktop
capabilities, and a content management service. But these
VMs also come with security loopholes, which are represented
by the strategically-placed special files, called flags, in the
VMs. During the competition, the red team tries to obtain or
modify the flags as proof that they have compromised the blue
networks, while the blue teams try to fix security weaknesses
in order to protect their flags.

Throughout the competition, extraneous events called
anomalies are generated that the blue teams must also address.
Anomalies force blue teams to divide their attention, make
decisions in real-time, and adopt both reactive and proactive
security strategies. When the competition ends, the blue teams
are scored and ranked depending on anomalies solved, flags
defended, and service availability. In the next section, we dis-
cuss how we extend this basic CDC framework to support a
CPS component.

3 CPS-CDC: Design

As shown in Fig. 1, our design for a CPS extension to an Inter-
net event simulator consists of four main parts. Two of them,
CPS devices and the human-machine interface (HMI), are
implemented in the blue networks. The other two, the virtual
world and backend, are implemented in the white network,
outside the control of the blue teams.

CPS Extension

Real CPS 
Devices

Virtual 
World

Red Team Green Team

Internet Event Simulator

Aggregator
(Backend)

Display

Virtual CPS 
Devices

Servers

Blue Team

HMI

Figure 1: Overview of the CPS-CDC Design. The yellow
shaded background indicates the components of the CPS ex-
tension.



3.1 CPS Devices
In a CPS-CDC, each blue team should be assigned multiple
CPS devices to defend, but what will the devices represent,
and how will they be implemented? We want to design a
generic CPS device framework that can be applied to many
different CPS-CDC scenarios, but such a design is challenging.
There are many types of CPS devices, and from a networking
perspective, many different network stacks and protocols that
could be used. While some protocols are open standards,
many are proprietary and dependent on the hardware being
simulated. In addition, devices can operate at different layers
of the protocol stack, further complicating the definition of a
generic CPS device structure.

SCADA

PLC

Distributed I/O

Field Devices/Physical Layer

VCS

Figure 2: An example CPS
stack. With VCS at the top,
any lower layers can be
supported in our CPS ex-
tension.

To solve this problem, we
define a layer of abstraction
that sits on top of CPS sys-
tems (either individual de-
vices or multiple devices in
a single system). This layer
of abstraction, which we call
the virtual control system
(VCS), provides a universal
interface to read and write
data from CPS systems. This
allows us to integrate any
type of CPS system, whether
virtual or physical hardware,
by simply implementing the
VCS layer for that system.
With VCS at the top, any un-
derlying systems and protocols can be supported. For refer-
ence, in Fig. 2, we present a typical CPS stack, composed of
the following layers:

Field Devices/Physical Layer Devices at this layer are sen-
sors or actuators that directly interact with the physical world.
Examples include pumps, relays, switches, motors, etc.

Distributed I/O Devices at this layer translate the analog
or digital signals of the field devices into protocols the PLCs
(discussed next) can understand [8]. For example, a device
may read in analog signals from a pump and translate those
signals to Ethernet frames to relay to the PLC.

PLC A PLC (Programmable Logic Controller) is a spe-
cial type of embedded system that coordinates and monitors
the activity of field devices or communicates with the dis-
tributed I/O. A PLC is different from a standard computer
in that it generally executes a single program and follows a
linear execution flow [9]. A PLC may also have an operating
system (typically a real-time operating system such as Vx-
Works). PLCs often run services like Telnet that make them
remotely accessible. Using an Internet device search engine

like Shodan, it is possible to discover PLCs directly connected
to the Internet [10].

SCADA SCADA (supervisory control and data acquisition)
systems are the traditional upper layer for CPS systems. In
SCADA terminology, the system being monitored and con-
trolled is the process. The SCADA system is an umbrella
system responsible for collecting and monitoring aggregate
data about the process and presenting that information to sys-
tem administrators via a human machine interface (HMI).
Operators can read data and make changes to the process
through the HMI. SCADA systems are also responsible for
alerting operators of any erroneous or critical conditions that
may occur in the lower levels of the network [11]. There are
numerous SCADA protocols, some of which are proprietary
and specific to a vendor and others which are open source.

VCS As previously discussed, the top layer of our stack is
our virtual control system, which provides a unified interface
to CPS systems. We define the VCS layer with the help of
an existing standard, Open Platform Communications (OPC,
previously OLE for Process Control). OPC’s purpose is to
provide a unifying abstraction for a variety of other protocols,
such as SCADA and PLC protocols. Thus, it aligns nicely
with our goal for VCS.

OPC defines a set of commands that can be translated
to the commands understood by specific systems, such as
a SCADA protocol. There are several published forms of
OPC, including OPC-DA, OPC-UA and OPC-XML. OPC-DA
(Data Access) is sometimes referred to as Classic OPC. It re-
lies on Microsoft’s COM interface and is, therefore, platform-
dependent. OPC-XML is platform-independent and uses a
published XML format to communicate over the network [12].
OPC-UA (unifying architecture) is the newest of the standards
and is also device-independent.

Since we desire to support a variety of devices, we select
OPC XML/UA as the foundation for our VCS. The XML
format provides the advantage of being human-readable. Ad-
ditionally, OPC-UA is generally represented as a tree, which
allows for easy generation of state machines. Finally, there
are open source libraries that implement OPC-XML/UA, pro-
viding a solid foundation for our VCS layer. We use PyOPC,
an open source library developed in the Python programming
language [13] and later Python OPC-UA [14].

We use OPC as the basis for communication between the
components of our CPS extension. OPC uses a client/server
communications model, and Fig. 3 shows how OPC clients
and servers are chained together in our framework to create
the infrastructure for a CPS-CDC. As shown in the figure, our
VCS layer is built around an OPC server and client pair. Both
an OPC server and an OPC client are used in the VCS layer
in order to connect each CPS system to both the HMI and the
virtual world host, described in the following sections.



Blue Team #1 
Virtual World

OPC Client

OPC Server
OPC Client

CPS Device #1

OPC Server
OPC Client

CPS Device #N

OPC Server

A
gg

re
ga

to
r 

O
P

C
 S

e
rv

e
r

H
M

I O
PC

 C
lie

n
t

Figure 3: The OPC client-server chain used to connect the
components of our CPS extension.

The data provided by a CPS device is a collection of tags.
A tag is a SCADA version of a variable, meaning a value com-
ing from a PLC. The tags represent the state of the CPS device
and its interactions with the physical world. When other com-
ponents of the CPS extension query a CPS device using OPC,
the VCS responds with the appropriate tags. These tags can
be populated by either physical hardware, or by a simulated,
fully-virtual device.

The VCS, through virtue of its abstraction of the lower
layers, can be implemented in any environment. However,
we wish to keep the VCS as representative of an embed-
ded system as possible. Therefore, we implement VCS using
Buildroot [15], a framework to create tiny embedded Linux
systems. With Buildroot, we create system images with a
stripped set of userland tools and a minimal set of features.
This makes the environment difficult to change or upgrade,
as in a real embedded system, encouraging blue teams to use
more realistic defense strategies.

The use of Buildroot also reduces the resources the CPS
devices need to function, which is important due to the vol-
ume of virtual CPS devices distributed for a CPS-CDC. For
example, in a recent competition, we distributed 11 virtual
control devices per team, which can potentially be difficult to
scale to larger competitions. Using Buildroot, we were able to
limit the size of virtual CPS devices to about 150 megabytes.
In addition, these devices need only a single CPU core and
less than 512 megabytes of memory.

3.2 HMI

Each blue team in our CPS-CDC will be presented with a
human-machine interface (HMI) that allows them to monitor
their CPS devices and adjust the process those devices con-
trol. This HMI takes the place of the interface to the SCADA
system that an operator would normally have. Because we
use OPC in the VCS layer, we can easily design an abstracted,

virtual HMI based around an OPC client. This client con-
nects to the OPC server on the virtual control system for each
device, as shown in Fig. 3. This allows the HMI to display
information for each device, and to control those devices.

Because the HMI and VCS are both in scope for Red Team,
we also create a scenario where Red Team may be capable of
modifying values in the VCS while simultaneously reporting
erroneous values to the HMI. In this manner we can model
real world attacks where the system Administrators may not
be privy to an attack on the physical environment, forcing
students to take other measures to ensure the stability of their
CPS network.

3.3 Virtual World

A key difference between our CPS extension and the base
Internet event simulator is that our extension simulates in-
teractions with the physical world. To do this, we design a
virtual world, a simulated version of the physical world of the
CPS-CDC scenario.

We implement the virtual world as a standalone virtual
world host. A virtual world host tracks and represents the
state of a single blue team’s virtual world, with one virtual
world host for each blue team. As shown in Fig. 1, the virtual
world hosts reside in a white network, outside blue teams’
control. Each CPS device (discussed in Section 3.1) has a link
to the owning team’s virtual world host. The virtual world
host collects data from these CPS devices and computes how
the devices’ states influence the simulated virtual world. The
CPS devices also read data back from the virtual world host,
allowing them to adjust their state to reflect changes in the
virtual world. This allows, for instance, for cascading failures
among CPS devices.

The communication between the devices and the virtual
world host is done with OPC. As shown in Fig. 3, the virtual
world host acts as an OPC server, and the OPC clients in the
VCS layer of the devices talk to this server. We implement the
logic of the virtual world using service scanner scripts that
run on the virtual world host. These scripts monitor the state
of the CPS devices and maintain consistency in the virtual
world and among the CPS devices.

3.4 Backend

The final component of our CPS extension is the backend,
which monitors the virtual worlds of the blue teams, scores
the CPS component of the CDC, and displays the states of
the virtual worlds and the scores for each team. The backend
is divided into three main components:

Virtual World Aggregator The virtual world aggregator is
a single OPC client that reads the state of the virtual
worlds of all teams and stores the data in a database.



Scoring System The scoring system reads the data in the
virtual world monitor’s database and determines the team
scores for the CPS component.

Virtual World Display The virtual world display is used to
display virtual world data and/or team scores.

The virtual world display can be either a video monitor, a
physical representation of the virtual world, or a combination
of the two. The use of a display on the backend, instead of as
part of the virtual world, allows the same display to be shared
by multiple teams.

4 CPS-CDC: Case Study

Recently, we hosted a CPS-CDC using our design from the
previous section. This section describes the specific scenario
we developed for the competition, including details about the
CPS devices and the virtual world.

4.1 Cyber-Physical Scenario
Our CPS extension supports essentially all types of CPS de-
vices, so the possible CPS-CDC scenarios are many. As a
virtual world, we choose to simulate a city. For the physi-
cal services simulated, we choose the city’s power and water
grids, since modern life depends on these services. The power
grid is heavily cited in the news as an example of the cyber-
dangers facing our nation’s infrastructure. In addition, power
can be intuitively represented in the physical world through
the use of LEDs, providing a nice virtual world display mech-
anism. We choose to also simulate water because it is another
critical element of a city’s infrastructure.

To create a virtual CPS service for a scenario, three of
the four main components discussed in Section 3 must be
customized to fit the service. A service needs CPS devices, an
HMI for the blue teams to interact with their CPS devices, and
a virtual world implementation that defines how the devices
interact with each other and the virtual world. The following
sections describe how we customize these components for the
water and power services of our virtual city.

4.2 CPS Service: Water
4.2.1 Water CPS Devices

As shown in Fig. 4, our virtual water system, which divides the
city into quadrants, is comprised of six pumping stations and
a water treatment center. The pumping stations are dependent
on one another according to the flow shown in the figure; for
example, bringing down pumping station 4 only affects that
station (and thus water for that quadrant of the city), whereas
bringing down pumping station 1 also brings down stations
2–5 (and shuts off water for all quadrants of the city).

Treatment 
Center

Pumping 
Station 0

Pumping 
Station 1

Pumping 
Station 2

Pumping 
Station 3

Pumping 
Station 4

Pumping 
Station 5

Figure 4: Overview of the water treatment network.

Each node shown in Fig. 4 is composed of multiple de-
vices, with each device represented by one tag. Each pumping
station has two pumps, two valves, and a chlorine tank. The
treatment center is more complex, composed of nine auto-
mated valves, three pumps, seven chemical tanks, an ozone
contractor, and three UV chambers.

The pumps and valves affect the flow of water. The remain-
ing components (sanitation units) affect the water quality and
are modeled after the water treatment process of the Winnipeg
Water Treatment facilities [16].

Some of the devices in both the pumping stations and the
treatment center are redundant, increasing the challenge for
the attackers, who generally do not have access to the HMI
or know the topology of the process represented by the tags.
Attackers may simply try to write to all tags in order to cause
more disruption, but this strategy is also more likely to alert
the blue team to the intrusion before a disruption occurs.

In the CPS-CDC, all the modifiable tags in the water net-
work are Boolean values representing whether the device is
operational or not. An additional tag (with a floating point
value) represents the water quality, and is automatically cal-
culated as the percentage of water sanitation units that are
operational at the current time.

4.2.2 Water HMI

The water HMI serves as the front end to the virtual water
service. The HMI is intended to be as simple as possible,
while still capturing the core concepts of SCADA for the water
service. The HMI application is designed with the following
requirements:

Control The application must provide an interface allowing
operators to manipulate the state of tags for the con-
nected process.

Error Reporting The application should promptly notify
the operator of errors in the network.

Logging The application should provide logging functional-
ity so that operators can review recent events.

Simplicity The application should be intuitive to use. Fur-
thermore, operators should be able to accurately infer
the state of the process though the display.



Industrial-style User Interface The application should
mimic the look and feel of an authentic SCADA soft-
ware, in order to provide an extra level of depth to the
CPS-CDC environment.

When users first launch the water HMI, they are presented
with an overview panel of the water treatment network. From
there, they can control the water service and monitor for any
anomalous behavior. The HMI is implemented using wx-
Python for the GUI and PyOPC for the communication with
the CPS devices. Fig. 5 shows a screen-shot of one of the
interactive HMI panels.

Figure 5: Example of one of the interactive HMI panels.

4.2.3 Water Virtual World Implementation

The set of rules that govern the virtual water service is imple-
mented on the virtual world host of each team. As previously
discussed, the failure of some nodes in the water service net-
work also causes the failure of dependent nodes. This cas-
cading failure effect should be gradual, simulating the time it
would take for these systems to influence one another in the
real world.

To achieve this, a service scanner script runs on the virtual
world host of each team and constantly monitors the status of
the tags in the water network. The script uses custom service
scanner objects, where each object monitors its own pumping
station or treatment center in the overall network. Each scan-
ner object has a linked list of objects that represent the tags in
the process being scanned. These tag objects together form a
graph of the water flow in the pumping station or treatment
center. Each tag object stores the tag’s name, its fail value, the
comparison operator for the fail value, its previous neighbors,
and the next node or nodes in its path.

The scanner script runs at a periodic interval. It first polls
for updates to the tags it is monitoring. When it finds an
update, it stores the new value in its corresponding tag object.
If the value causes the device to change to a failure state, the
object notifies its forward neighbors. Each forward neighbor
then enumerates its upstream nodes to determine whether
there is at least one active path from the source to itself. If it
finds such a path, it remains in its current state; otherwise, it:
(1) updates its own internal state to “disabled,” (2) updates
its state in the virtual world, and (3) notifies its own forward
neighbors. This process continues until the end of the graph

is reached. At the end, there is a special tag that is invisible
from the competition network. If this tag is enabled (receiving
water flow), it means this segment of the water service network
is operational; otherwise, it signals to the other segments of
the water service network that it is down.

To communicate changes in the virtual world (e.g. cascad-
ing failures) back to the CPS devices, the OPC server in the
virtual world host is continually polled by the VCS layer of
the devices. Any updates will then eventually propagate to
the HMI, which polls the VCS layer of the devices.

An interesting property of the water treatment service scan-
ner script is that it implicitly enforces a specific start se-
quence for the water treatment network. The network can-
not be brought up in any arbitrary order, because for a node
to become active, there must be at least one active path that
reaches the node. Any attempt to start devices where there is
no active flow will result in those devices being disabled after
a pass from the service scanner. Note that sanitation units,
while requiring an active flow to be enabled, do not them-
selves influence the flow when disabled, but instead weaken
the status of the overall water quality.

4.3 CPS Service: Power
4.3.1 Power CPS Devices

We model the power grid for the virtual city in two halves,
each with a generator and a load. Each half has four tags: the
generated power value, the generator breaker value, the load’s
power value, and the load’s breaker value. One additional,
invisible tag is used to indicate the status of the virtual power
system. When either half of the power grid loses power, this
tag is disabled to signify a power outage.

4.3.2 Power HMI

The power HMI is divided into two interfaces that depict
the two halves of the power system. Each user interface has
three gauges representing generation, load, and power flow.
Input fields allow the operators to increase or decrease the
power generation supplied by the generator. In addition to
the generator input fields, there are two breaker buttons that
correspond to the breaker attached to the generator and the
breaker attached to the load. Operators can trigger either of
these breakers to remotely disable the flow of power to that
portion of the grid.

4.3.3 Power Virtual World Implementation

Similar to the virtual water service, the virtual power service
has a service scanner script that checks the values of the break-
ers, as well as the current load on the network, to determine
if power is flowing or not. The script first verifies whether
the generator breaker or load breaker has been tripped. If
so, power has been disrupted for that half of the power grid.



Otherwise, the script compares the values of the generator
power and the load power. If the generator power is less than
the load power, power has been disrupted for that half of the
power grid. Disruption to power has an instantaneous effect
on the network. If the scanner finds power has been disrupted
to either half of the city for any reason, it sets the invisible
status tag to zero.

4.4 Virtual City Display and Anomalies
A major goal of a CPS-CDC is to incorporate physical ele-
ments into the testbed and competition. Physical elements
include the use of actual control systems, embedded systems
or equipment, and situations that are acted out in the physical
world rather than a virtualized environment. In our CPS-CDC,
we accomplished this goal through the use of physical dis-
plays for our virtual city, and through the use of anomalies.

Our two physical displays are a physical model of the city,
shown in Fig. 6, and a demonstration water pump. The physi-
cal model of the city was designed by Prof. Leslie Forehand of
College of Design at Iowa State University, and her students.
The demonstration pump consists of a water pump attached
to a microcomputer and a miniature water tower. We connect
this system to the HMI of a demonstration blue network in
order to show competition participants how the virtual world
interacts with the physical hardware.

Figure 6: The 3D-printed city that represents the state of the
world for each team.

Our physical model of the city is 3D-printed, with each util-
ity given its own building that represents its services. We wire
the 3D city with color-coded LEDs to indicate the state of the
services. Blue LEDs represent water services and white LEDs
represent power. The LEDs are connected to a Raspberry Pi
microcomputer that queries the virtual world aggregator about
the state of the world for each team. During the competition,
the city cycles through each team, displaying the current state
of services in that team’s virtual world.

During the competition, we generate anomalies that ask
teams to send team members to the 3D city to visually inspect
the state of their services. The purpose of this exercise is to
simulate utility employees making on-site calls. For example,

employees of an electric utility may have to travel to find the
source of disruption to the power grid, such as downed power
lines or blown transformers.

Additionally, depending on the depth of Red Teams pene-
tration in the CPS network it may be required for Blue team
members to physically inspect the physical 3D model to en-
sure that the HMI is accurately reporting what is occurring in
the environment. This provides a way for Blue team to take
defensive actions in case Red team spoofs network traffic.

The 3D city also helps to make the CPS-CDC a better
spectator sport. In a traditional CDC, spectators generally only
have the scoring system to monitor and use to infer the state
of events in the competition. Using the 3D model of the city
and other display mediums, we can enhance the experience
for spectators by creating exciting, visible representations of
real-time events.

5 Observations and Experiences

In this section, we summarize a few observations and experi-
ences from the competition.

Overall, the addition of the CPS component was very bene-
ficial in reinforcing skills such as network segmentation to the
competitors. Blue teams got a chance to learn about CPS sys-
tems, SCADA, HMIs, and OPC. They needed to understand
how the CPS systems work in order to defend against attacks.
The red team was able to successfully shut down different
portions of the water system and power grid for most teams.
However, as red team members mainly interacted with the
CPS devices, blue teams were able to quickly notice, via the
HMI, when services were taken down. A CPS-CDC would
provide a more realistic experience to participants if an attack-
ing tool is available to the red team that can adjust the HMI to
produce erroneous observations about what is happening on
the CPS devices. This is part of our future work. Another les-
son learned from this project is that we may want to introduce
more anomalies to the CPS systems to make the competition
more realistic. In our CDC, blue teams were able to spend
most of their time in network defense, while only casually
checking on the CPS components to make sure everything
was running correctly.

To simplify the deployment of the CPS-CDC, we focused
on services delivered to large partitions of the city. This in-
cluded two power grids and four quadrants for the water sup-
ply. For future competitions, the service areas could be further
refined to include individuals blocks and even homes. This
would allow us to represent a wider variety of failures, such
as damage to power lines or water issues caused by flooding.
This could allow us to use natural disasters as part of anoma-
lies. When coordinated with attacks from the red team, such
an anomaly would put considerable pressure on blue teams,
as well as expand the range of their responses.

We plan to release the developed CPS component, together
with the Internet event simulator, to the cyber security re-



search and education community. The package will include
(1) a detailed specification of the required hardware to set
up the testbed; (2) a downloadable software package that in-
cludes our Internet event simulator and the CPS component,
with detailed documentation, a user manual, and installation
instructions; and (3) a tutorial on how to set up the CPS-CDC.

6 Conclusion

In this paper, we describe the design and implementation of
a cyber-physical system (CPS) extension to complement our
Internet event simulator at Iowa State University, known as
ISEAGE, which has been used for cyber defense competitions
(CDCs). In the future, we plan to introduce other types of CPS
into ISEAGE and CDC, such as ITS (Intelligent Transporta-
tion Systems) and IoT (Internet of Things). Also, we plan to
work on a generic solution for creating the HMI interface and
the state machines and scanner scripts of the virtual world.
While the implementation proposed in our current CPS-CDC
is quite scalable, steps could be taken to make the introduction
of new CPS scenarios easier.

Acknowledgement

This work is funded in part by the U.S. National Science
Foundation under Grant No. 1730275. We thank Dr. Julie
Rursch for her valuable advice and suggestions to this work.

References

[1] K. Zetter, “Inside the cunning, unprecedented hack of
ukraine’s power grid,” Wired, 2016.

[2] J. A. Rursch and D. Jacobson, “When a testbed does
more than testing: The internet-scale event attack and
generation environment (iseage)-providing learning and
synthesizing experiences for cyber security students.” in
2013 IEEE Frontiers in Education Conference (FIE).
IEEE, 2013, pp. 1267–1272.

[3] J. Lepreau. Emulab.net: An emulation testbed for net-
works and distrubed systems. [Online]. Available: www.
cs.utah.edu/flux/testbed-docs/testbed-intel-jun01.ppt

[4] T. Benzel, “The science of cyber security experimen-
tation: The deter project,” in Proceedings of the 27th
Annual Computer Security Applications Conference.
ACM, 2011.

[5] E. Jaffe and J. Albrecht, “Planetlab-p2p testing in the
wild,” in 2009 IEEE Ninth International Conference on
Peer-to-Peer Computing. IEEE, 2009, pp. 83–84.

[6] E. A. Lee, “Cps foundations,” in Design Automation
Conference. IEEE, 2010, pp. 737–742.

[7] C. W. Axelrod, “Managing the risks of cyber-physical
systems,” in Systems, applications and technology con-
ference (LISAT), 2013 IEEE Long Island, vol. 6, 2013,
pp. 3–3.

[8] Y. Peng, T. Lu, J. Liu, Y. Gao, X. Guo, and F. Xie,
“Cyber-physical system risk assessment,” in 2013 Ninth
International Conference on Intelligent Information Hid-
ing and Multimedia Signal Processing. IEEE, 2013,
pp. 442–447.

[9] W. Yang and Q. Zhao, “Cyber security issues of critical
components for industrial control system,” in Proceed-
ings of 2014 IEEE Chinese Guidance, Navigation and
Control Conference. IEEE, 2014, pp. 2698–2703.

[10] “Industrial control systems.” [Online].
Available: https://www.shodan.io/explore/category/
industrial-control-systems

[11] C. Wang, L. Fang, and Y. Dai, “A simulation environ-
ment for scada security analysis and assessment,” in
2010 International Conference on Measuring Technol-
ogy and Mechatronics Automation, vol. 1. IEEE, 2010,
pp. 342–347.

[12] Siemens, “Data exchange via opc xml.” [Online].
Available: https://cache.industry.siemens.com/dl/
files/938/27097938/att_78439/v1/faq_opc_xml_da_
datenaustausch_v10_en.pdf

[13] H. Himmelbaur, “Pyopc.” [Online]. Available: https:
//sourceforge.net/projects/pyopc/

[14] FreeOpcUa, “python-opcua.” [Online]. Available: https:
//github.com/FreeOpcUa/python-opcua

[15] “Build root.” [Online]. Available: https://buildroot.org/
download.html

[16] “Drinking water treatment plant.” [Online]. Available:
https://www.youtube.com/watch?v=20VvpASC2sU

www.cs.utah.edu/flux/testbed-docs/testbed-intel-jun01.ppt
www.cs.utah.edu/flux/testbed-docs/testbed-intel-jun01.ppt
https://www.shodan.io/explore/category/industrial-control-systems
https://www.shodan.io/explore/category/industrial-control-systems
https://cache.industry.siemens.com/dl/files/938/27097938/att_78439/v1/faq_opc_xml_da_datenaustausch_v10_en.pdf
https://cache.industry.siemens.com/dl/files/938/27097938/att_78439/v1/faq_opc_xml_da_datenaustausch_v10_en.pdf
https://cache.industry.siemens.com/dl/files/938/27097938/att_78439/v1/faq_opc_xml_da_datenaustausch_v10_en.pdf
https://sourceforge.net/projects/pyopc/
https://sourceforge.net/projects/pyopc/
https://github.com/FreeOpcUa/python-opcua
https://github.com/FreeOpcUa/python-opcua
https://buildroot.org/download.html
https://buildroot.org/download.html
https://www.youtube.com/watch?v=20VvpASC2sU

	Introduction
	Internet Event Simulators and CDC
	Cyber Physical Systems (CPS)
	Our Contributions

	Cyber Defense Competition (CDC)
	CPS-CDC: Design
	CPS Devices
	HMI
	Virtual World
	Backend

	CPS-CDC: Case Study
	Cyber-Physical Scenario
	CPS Service: Water
	Water CPS Devices
	Water HMI
	Water Virtual World Implementation

	CPS Service: Power
	Power CPS Devices
	Power HMI
	Power Virtual World Implementation

	Virtual City Display and Anomalies

	Observations and Experiences
	Conclusion

