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Abstract
Recently, researchers have developed a wide range of dis-
tributed systems that rely on programmable data planes in
emerging switch hardware. Unlike traditional SDN switches,
these new switches can be reconfigured to support user-
defined protocols, customized packet processing, and sophisti-
cated state. However, despite their popularity, one aspect that
has received very little attention is their security implications.

This paper describes our ongoing investigation on a new
class of attacks to these systems, which we call sensitivity
attacks. We found that an attacker can generate malicious
traffic patterns to “flip” the expected behaviors of a data plane
system. We propose an approach to discovering attack vectors
in a given data plane system and generating patches, both in
an automated manner, and we present a set of preliminary
experiments to demonstrate the feasibility of this approach.

1 Introduction
Half a century has passed since the proposal of the first RFC.
Over the decades, networks have grown exponentially in size,
popularity, and sophistication. One of the “growing pains”,
however, is the multitude of attacks. As the network infras-
tructure becomes increasingly critical, it is more urgent than
ever to protect them from malicious attackers.

This paper looks at the security implications of one particu-
lar dimension of growth: programmability. We examine how
the rising paradigm of data plane programmability can lead
to new attacks that are easy to launch and quite damaging,
we propose algorithms to systematically discover attack vec-
tors, and, closing the loop, we develop ways to automatically
synthesize corresponding defenses.
Programmable data planes. The latest development in the
networking community is to make the switch data plane pro-
grammable. Unlike traditional SDNs, where the control plane
is programmable in software and the switch data plane re-
mains fixed in function, emerging switches have hardware
data planes that can be reconfigured in-the-field using high-
level languages (e.g., P4 [3]). Programmable data planes
can support customized header fields and protocol types, en-
abling new protocols to be deployed without hardware up-
grades. They can perform sophisticated operations (e.g., cus-
tom match/actions, arithmetics) over header fields at linespeed
(Tbps), enabling non-trivial computation to be offloaded to the
switches. Moreover, they can implement stateful data struc-
tures in hardware, making it possible for the network to adapt
its behavior based on past events.

Leveraging this trend, researchers have built a wide variety
of data plane systems. Owing to the specialized hardware
support and optimized packet processing pipeline, a common
feature of these systems is their unprecedented dynamicity.
For instance, the Hula [13] system generates probes that carry
network path performance information, and propagates them
across the network; programmable switches can then extract
path metrics from these special packets, and optimize their
routing tables on-the-fly. The data plane in the Blink [10] sys-
tem detects large-scale TCP retransmissions across flows, uses
it as a signal for remote link failure, and triggers re-routing
to backup paths. Compared to traditional solutions where in-
telligence resides on the software control plane, data plane
systems can respond to network dynamics much faster and
enact real-time change. Therefore, more data plane systems
will likely emerge in the future.

What about security? A looming concern that has been
largely ignored, however, is their security. By definition, data
plane systems respond to data plane signals, which are simply
network packets that can be spoofed and manipulated. The
probes in Hula, the retransmissions in Blink, and most other
forms of data plane signals, are unauthenticated in nature,
so injecting fake signals does not require special privilege.
Therefore, adapting the network behavior in response to unau-
thenticated stimuli seems potentially dangerous. Indeed, we
found that an attacker can generate malicious traffic patterns
to drive a data plane system from its normal behaviors, abus-
ing the sensitivity of data plane systems to the input traffic.
We call this new class of attacks sensitivity attacks.

One might wonder whether we can solve this by authenti-
cating data plane signals, e.g., perhaps such systems should al-
ways authenticate data plane signals before using them. How-
ever, this is not as easy as it might seem. In order to maintain
high speed, programmable data planes carefully limit the set
of supported operations to those required for packet process-
ing. Explicitly out of scope are loops, recursions, and many
other sophisticated primitives for cryptography—at least for
today’s switch hardware. This means that, if we want to per-
form authentication, such operations can only happen on the
switch control plane, which has general-purpose CPUs, there-
fore full software programmability. However, invoking this
option would effectively downgrade the data plane system
to a much slower system, as responses to network dynamics
must once again go through software processing. In other
words, there exists a tension between the level of dynamicity
of a system and the strength of authentication it can afford.



EC 1 EC 2

EC 1 EC 2

Probabilistic symbolic execution Synthesize monitors

Parse:
......

Control.ingress:
If (cond)

Simple_action()
Else

Expensive_action()

Control.egress:
......

If (cond)

Expensive_action()

Control.ingress:

Simple_action()

Else

Pr(EC1)=0.9 Pr(EC2)=0.1

Parse: 
......
Control.ingress:
If (cond)

Simple_action()
Counter[EC1] ++ 

Else
Expensive_action()
Counter[EC2] ++

If (stats(Counter) != expected)
Raise_alarm()

Control.egress:
......

Negate expected behaviors

Expected distribution

Malicious distribution

Input P4 program

100%

90% 10%

Figure 1: The workflow of our approach. Our engine a) takes in a data plane program written in P4, b) performs probabilistic
symbolic execution to analyze common-case behaviors, c) automatically generates input traces that would trigger corner-case
behaviors, and d) synthesizes a set of monitors to detect malicious patterns, and patch the original data plane system with them.

Example attacks. Consider a simple but critical data plane
feature: load balancing. One could develop a load balancer
in P4 in tens of LoC to split traffic evenly across available
paths [2]. A classic approach is to hash the packet header
and pick one of the available outgoing paths based on the
hash. Since switch hardware cannot support cryptographic
hash functions, this “hash” could be as simple as sport%N,
where sport is a packet’s source port and N is the number of
available paths. Though simple, this load balancer will work
well as long as incoming traffic is roughly evenly distributed
in terms of their source ports. However, consider an adversary
that can craft skewed traffic patterns where sport%N=n is
constant across the trace. The load balancer will simply shunt
all traffic along one of the N paths, while all other paths remain
under-utilized. Such concentration will cause normal flows
on the victim path to experience high congestion and loss,
creating a denial/degradation-of-service (DoS) attack.

A more sophisticated example is the Hula [13] load bal-
ancer, which detects the least-utilized path in the current
epoch, and moves traffic from other paths to this path in the
next epoch. Using the traffic pattern with constant sport%N=n,
the attacker is no longer able to cause much harm, since Hula
will detect that the n-th path has high load and divert traffic
to the idlest path (say, m) in the next epoch. However, a smart
attacker can craft a more advanced pattern. If she could keep
in sync with the Hula epochs, and make educated guesses on
which paths may be the idlest, she could then launch an attack
by concentrating her traffic to the predicted m for each epoch.
In other words, although Hula is resilient to one malicious
pattern, it is vulnerable to a different pattern.

Consider now Blink [10], which is meant to be deployed
inside an ISP to monitor retransmissions across TCP flows
destined to the same service (e.g., Google). If it detects simul-
taneous retransmissions in many concurrent flows, it treats
them as a signal that some link has failed, and re-routes traffic
to pre-configured, alternative paths in a matter of seconds
(as opposed to minutes in BGP). Here, a malicious traffic
pattern would be a large number of concurrent flows towards
the monitored destination that simulate TCP retransmissions,
which would create periodic or even persistent routing chaos.

Our goal. Our research question is as follows: Can we dis-
cover all malicious traffic patterns for a given data plane
system and synthesize defenses in an automated manner?

We aim to develop an system that accepts the source code of
a data plane system as input, analyzes its expected behaviors,
identifies malicious traffic patterns that would cause damage,
and generates traffic monitors as “patches” to the system.
The monitors would raise alarms when abnormal patterns
are detected. Upon an alarm, the system could take further
actions to examine, rate limit, or drop packets of a certain
kind. Figure 1 shows this workflow.

2 Automated Attack Discovery
We take a three-step approach towards this goal. Given a data
plane program, we start by automatically deriving its intended
behaviors over normal traffic. Then, we generate traffic pat-
terns that would drive the program away from common-case
behavior as much as possible. Finally, we synthesize a set of
monitors to detect such malicious traffic patterns.

2.1 Establishing expected behaviors
The first question we need to answer is how to derive “ex-
pected behaviors” of a data plane system. One could ask the
programmer to supply a manual specification, but this would
be labor-intensive and error-prone. One could also feed the
system with random traffic traces and observe its outputs, but
this may not be comprehensive.

Our first observation is that, obtaining “all possible be-
haviors” of a system can be achieved by symbolic execu-
tion, which comprehensively enumerates program execu-
tion paths and the kind of inputs that would trigger each
path. Symbolic execution engines have already been cus-
tomized to data plane systems [16, 18]—they can enumer-
ate execution paths of P4 programs, and output constraints
on packet headers for a particular execution to be trig-
gered. For instance, they might find that packets that satisfy
(sport<1024)∧(dport==80)∨(sip==1.2.3.4) would be
forwarded to the the second outgoing port by a given program.



Challenge #1: Quantifying behavior probabilities. How-
ever, one thing is still missing: of all possible executions, how
do we know which ones are more “expected” than others? Our
solution is to borrow a technique developed by the program
analysis community, called probabilistic symbolic execution
[9]. This is an enhanced version of symbolic execution that
not only enumerates all execution paths, but also annotates
each execution with a probability to be triggered. Under the
hood, this is achieved by coupling symbolic execution with
model counting [5]: the latter technique takes in a set of con-
straints, and counts the number of satisfying assignments.
Suppose that the number of all possible input packets is K,
and that the number of packets that would trigger a particular
execution is k, then we can annotate this execution path with
a probability k/K, if all input packets are equally likely. If the
input packets follow a non-uniform distribution (e.g., TCP
traffic is more likely than UDP), one can also compute the
probabilities in a distribution-aware manner by encoding the
actual packet distribution using an input packet profile [8].

There are many model counters that we could leverage. For
instance, LattE [6] is specifically designed and optimized for
handling linear integer arithmetic (LIA) constraints; it works
by enumerating points inside a convex polytope as formed by
a set of LIA constraints. ApproxMC [5] is an approximate
model counter for SAT formulas. We could even use multiple
model counters for different kinds of constraints.
Challenge #2: Identifying equivalence classes. We then fur-
ther group the possible behaviors into equivalence classes
(ECs): packets in the same EC are processed in the same
way, whereas packets in different ECs are treated differently.
Equivalence could be simply defined by the forwarding be-
havior of packets, e.g., packets are considered to be in the
same EC if they are forwarded to the same outgoing port.
Or, we could define equivalence based on execution paths,
e.g., some packets may trigger link failure alarms, some may
be tagged with new headers, and others might simply be for-
warded as is. We can then distinguish common cases from
corner cases, by a) computing a set of ECs for a given sys-
tem, EC0–ECk, and b) quantifying the probability of every
EC: Pr[ECi] = ∑ j Pr[epi j], where Pr[epi j] is the probability of
the j-th execution path in ECi. Determining program equiv-
alence in the most general case is, of course, undecidable,
but restricting it to data plane systems makes the problem
solvable [7].

2.2 Negating the expected behaviors
Our second step is to obtain input traffic patterns that would
drive the system away from the expected behaviors. The statis-
tical distributions obtained above are already a good starting
point: an adversary wins if she can generate a trace where
the output distribution is distorted from that of the common
case as much as possible. In order to do this, she could pick
many inputs from low-probability ECs in hope that the corner
cases represent some network events that are expensive to

handle. For instance, if 0.0001% packets would trigger Blink
re-routing in the normal case, then the attack trace might in-
crease this to 1%. Or, she could aim to cause skew in an even
distribution: if a load balancer perfectly splits traffic 50% vs.
50%, then the attack trace might drive the distribution to 100%
vs. 0%.

More formally, suppose that the expected behavior is that
ECi has a probability of Pr[ECi], then the attacker’s goal is to
create a sequence of packets that would lead to a maximally
different probability Pr[ECi]

∗. The attack strength can then
be quantified by ∆ = ∑i |Pr[ECi]−Pr[ECi]

∗|, i ∈ [0..k].
Challenge #3: Handling stateful behaviors. Dealing with
stateful data plane systems creates additional challenges, be-
cause in order to reach a certain EC, it may be necessary to
send a sequence of packets in a particular order. As a concrete
example, Blink responds to a sequence of retransmitted pack-
ets. One brute-force approach would be to feed the symbolic
execution engine with N symbolic packets, ask the engine
explore all possible execution paths, and pick the sequence
that causes the maximum ∆. However, the limitation of this
approach is scalability. One common issue in symbolic exe-
cution engines is state explosion: it may not be possible to
explore all paths in useful time [4]. Exploring paths for a long
sequence of packets would further amplify this concern.

Algorithm 1: Pseudocode for handling stateful systems
input :Num. of packets (N); Equivalence classes (EC)
output :A sequence of attack packets (S)
S← /0;
while |S| < N do

foreach ECi ∈ EC do
pi← directed_symbex(ECi);
si← S||pi;
∆i← compute_delta(si);

(∆i,si)← max_delta(∆,s);
S← si;

We propose an algorithm that generates attack sequences to
maximize ∆ greedily. Algorithm 1 takes N as input, and out-
puts S, which is an attack sequence with (roughly) N packets.
In each iteration, the algorithm picks a target EC in a greedy
manner, by trying all ECs and picking the one that causes
the maximum ∆. To trigger a certain EC, our algorithm uses
directed symbolic execution [14], which performs a heuristic-
based search to explore the shortest path towards a particular
line, and prioritizes execution state that is closest to the target.
Each step would output a sequence of packets si. Then, the
algorithm computes the ∆i for each si, and picks the sequence
that would cause the most deviation. It then continues the
loop until N packets (or more) are generated.
Challenge #4: Handling hash tables. A second challenge in
this step is handling hash tables, which are common building
blocks in data plane systems. For instance, a hash table may



map TCP connections to TCP state variables. Upon collision,
a new entry might replace an existing entry, but hits would
directly query from the table. Similar as before, keys to a hash
table are typically obtained by performing a checksum-like
function over packet headers (e.g., CRC16(flowid)). Given
that hash tables could be large, and that hash functions con-
sist of complex arithmetic operations, symbolically executing
hash tables in a brute-force manner would be time-consuming.

Our approach is to treat such data structures as “greyboxes”.
We do not assume any knowledge about the content of the
data structures, and we do not encode the hash functions as
part of the path constraints. Rather, we model hash tables
as opaque program components with pre-determined colli-
sion rates when fed with packets from a certain header space.
Symbolically executing a hash table would only produce two
execution paths: one for hash collisions and one for the rest,
each annotated by its respective probability. We can then
derive per-EC probabilities without having to know the state.

2.3 Synthesizing runtime monitors
This final step synthesizes a list of monitors to detect in real
time whether the current traffic pattern falls into the common
case. For each common-case EC (as defined by the value of
Pr[ECi]), our engine outputs a monitor implemented in P4 to
specifically look for this pattern. A monitor consists of a set of
counters, one for each EC, and conditional statements inserted
in the original program to update the counters per packet. Our
engine then patches the original data plane system with these
monitors, and inserts a statistical check that is triggered either
per packet or periodically. This check compares the current
counter values and a set of pre-defined counter values to detect
whether the current traffic pattern is roughly within the range
of normal behavior. Upon significant deviation, it raises an
alarm to the network operator.

Challenge #5: Compressing monitors. The main challenge
here lies in optimizing resource usage of these monitors. For
a complex data plane system, there could potentially be many
ECs. Simply creating a monitor for each common-case EC
may incur a high overhead in terms of switch memory. This is
because programmable data planes are extremely constrained
in resources: their memory is on the order of 10MB and this
resource needs to be shared by the original program and the
monitors. Our tentative approach here is to use sketching to
approximate the counts for all ECs in a single data structure.
Count-min sketches [19], for instance, have low memory over-
head and can provide strong theoretical guarantees in terms of
approximation. Approximate counts can be stored in a single
sketch and queried out later only with small accuracy loss.

3 Preliminary Experiments
Setup. We have performed an initial experiment to demon-
strate the feasibility of our idea, using a load balancer program
written in P4 [2], which splits traffic to two outgoing ports
based on the hash function sport%2. Our experiments was

conducted in Mininet v2.3.0 with one P4 switch connected
with three hosts, one as sender and the other two as receivers.
We have used p4pktgen [16] as the symbolic execution engine.
Since this tool does not support probabilistic symbolic execu-
tion, we have written a simple program that acts as a “mini
model counter”, based on the Python constraint library [1]. It
takes the path constraints found by p4pktgen, and counts the
number of satisfying assignments.

Attack discovery. The symbolic execution engine has found
two ECs in this program: the constraint over packet headers
for EC0 is sport%2==0, and that for EC1 is sport%2==1. The
model counting program further shows that Pr[EC0] = 0.5
and Pr[EC1] = 0.5: that is, assuming the source ports of input
packets are evenly distributed, then the expected behavior of
the load balancer system should be an even traffic split.

Our attack discovery engine has generated two classes of
attacks. (a) The attacker can generate a trace where all packets
have sport%2==0, resulting in a malicious distribution of
Pr[EC0] = 1 and Pr[EC1] = 0. (b) She could also generate
a trace where sport%2==1, and the malicious distribution
becomes Pr[EC0] = 0 and Pr[EC1] = 1.

Attack feasibility. To demonstrate the feasibility of the at-
tack, we have chosen the attack strategy (a), and injected a
crafted traffic trace from the sender to the load balancer. Fig-
ure 2 shows the traffic rate of each outgoing path. Initially,
the sender uses normal traffic: we can see that the load bal-
ancer distributes the load roughly evenly across the two paths.
At time t = 15s, the sender changes to the malicious traffic
pattern. We can see that the traffic rate on port 1 has doubled,
whereas port 0 is highly under-utilized.

Monitoring. Currently, we have manually written a monitor
and integrated it as part of the load balancer program. The
monitor maintains one counter for each EC, two counters
overall, and counts the number of packets that trigger the cor-
responding EC. We then run a control plane program that
performs KS-test periodically to check whether the distribu-
tion of EC counters conforms to the expected (i.e., uniform)
distribution. It raises an alarm if highly skewed distributions
are detected. Our experiments show that the monitor can suc-
cessfully detect the skew, and raise an alarm.
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Figure 2: The load balancer splits traffic roughly evenly over
normal traces. However, an attacker can generate malicious
traffic patterns to drive the system away from its expected
behavior. (X-axis unit: seconds; Y-axis unit: KB/s)



Summary. Our preliminary experiments show that our attack
generation methodology is able to discover malicious traffic
patterns for a simple data plane system, and that the resulting
monitors can effectively detect attacks. As ongoing work,
we are working on validating our methodology using a more
diverse set of data plane systems.

4 Related Work
Automated attack generation. Researchers have developed
automated attack discovery techniques for many systems, such
as the TCP congestion control protocol [12], OpenFlow-based
SDN [11], and software network functions [17]. Our work
shares a similar motivation with existing work, but focuses
on a different class of targets—data plane systems.
Data plane systems. Programmable data planes in recent
switch hardware have enabled a wide variety of data plane
systems, such as those for link failure detection [10], transport-
layer load balancing [15], and load-sensitive routing [13]. Our
work addresses a under-explored aspect: the security risks of
data plane systems.
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