
The DComp Testbed

Ryan Goodfellow, Stephen Schwab, Erik Kline, Lincoln Thurlow, and Geoff Lawler

Information Sciences Institute
{rgoodfel, schwab, kline, lincoln, glawler}@isi.edu

Abstract
The DComp Testbed effort has built a large-scale testbed,
combining customized nodes and commodity switches with
modular software to launch the Merge open source testbed
ecosystem. Adopting EVPN routing, DCompTB employs a
flexible and highly adaptable strategy to provision network
emulation and infrastructure services on a per-experiment ba-
sis. Leveraging a clean separation of the experiment creation
process into realization at the Merge portal and materializa-
tion on the DCompTB site, the testbed implementation em-
braces modularity throughout. This enables a well-defined
orchestration system and an array of reusable modular tools to
perform all essential functions of the DCompTB. Future work
will evaluate the robustness, performance and maintainability
of this testbed design as it becomes heavily used by research
teams to evaluate opportunistic edge computing prototypes.

1 Introduction

The Dispersed Computing Testbed (DCompTB) is a 1,440
node IoT/wireless-emulation testbed built from custom hard-
ware designed to support experimentation and evaluation of
Dispersed Computing research prototypes. These network
systems explore revolutionary approaches to opportunisti-
cally leveraging computing resources at the edge of the net-
work, e.g., by moving data over available wireless network
paths to nodes with excess processing capacity, avoiding long
backhauls to remote data centers. This testbed is designed to
address evaluation of prototypes incorporating wireless emu-
lation at layer 3, use of real rather than virtual nodes at scale,
x86 compatibility, and approximately 10 concurrent research
teams investigating solutions to elements of the overall prob-
lem. For space reasons, we do not explore our requirements
analysis in more depth.

Adapting an existing testbed and its software framework
was considered as an option. Systems such as Emulab [24],
Deter [4] or even GENI [5] could have served this purpose,
albeit with full recognition of the complexity of the devel-

opment effort required to modify the large software base un-
derlying these systems. Given the availability of a prototype
developed under the Cyber Experimentation of the Future
(CEF) effort [2] and the relatively long timeline of the ven-
dor acquisition process for custom manufactured IoT nodes
and chassis, we opted to implement an entire suite of testbed
software tailored to the DCompTB requirements and stretch
goals. A critical goal was the rapid reconfiguration of testbed
resources; e.g., reloading node images and configuring net-
work substrates in less than 3 minutes. This capability is
necessary to support a high tempo of operations with large
experiments that time share the testbed frequently.

The testbed supports a wide range of network topologies,
both physical and emulated, through a novel virtual network
overlay mechanism. DCompTB provides a flexible container-
based services model that plugs into the virtual network over-
lay system, providing a foundation for a general-purpose
testbed services provisioning framework. The testbed is de-
signed from the ground up to materialize experiments quickly
and have constant scaling properties with respect to experi-
ment size. DCompTB is partitioned into districts of nodes,
each having its own emulation server and fabric overlay
switch, with shared mass storage and imaging servers. Ex-
periments ranging from tens to hundreds of nodes currently
materialize to full readiness within a few minutes.

We decided up front to build DCompTB from a set of
modular orthogonal components. This decision was based
on two primary motivations, reuse of these components in
other testbeds, and cleanly breaking up the problem space
of the testbed for maintainability and operational tractability.
Some of these components already existed in the Merge [12]
ecosystem, and some were developed to meet DCompTB re-
quirements and contributed back to Merge. All are now are
freely available as open source software to the testbed com-
munity [16].

We group the contributions presented in this paper into two
categories. The first group, extensible network services, con-
tains the Gobble [9] EVPN routing and forwarding configu-
ration daemon that provides a programmable virtual network

mailto:rgoodfel@isi.edu
mailto:schwab@isi.edu
mailto:kline@isi.edu
mailto:lincoln@isi.edu
mailto:glawler@isi.edu


edge for testbed service integration, the Moa network emu-
lation engine, and the infrapod service provisioning model
that allows for on-demand containerized services over virtual
experiment infrastructure networks. The second group, mod-
ular testbed capabilities, consists of the Cogs [10] testbed or-
chestration system that manages the experiment materializa-
tion process while relying on a suite of lower-level modular
tools, and the partitioning of experiment creation into dis-
tinct realization and materialization processes. Throughout
the text, we provide insight on lessons learned while building
DCompTb. 1

While not designed specifically to support cybersecurity,
DCompTB is well suited to support a broad class of cyberse-
curity experiments that already run on the Deter [4] cyberse-
curity testbed. Types of experiment include DDoS attack / de-
fense, capture the flag, firewall system analysis and develop-
ment, kernel vulnerability, red/black network operations and
cryptosystem implementations just to name a few. In particu-
lar for experiments that involve OS kernel level development,
we have purposely built the testbed from not only open source
software, but also open source hardware. The Minnowboards
[17] which comprise the vast majority of the testbed nodes are
an open source hardware platform. This opens up the door to
low level kernel development, firmware development, or even
completely new OS development that would otherwise not be
possible on a closed platform without special vendor access.

2 DComp Testbed Overview

DCompTB hardware is organized around the concept of dis-
tricts. Each district contains 10 Minnow chassis units that
each contain 24 Minnowboard [17] embedded computers for
a total of 240 Minnows per district. These Minnowboards
were custom manufactured to be placed inside bespoke chas-
sis units that bring all ports to the front and provide Ethernet-
based hard and soft power control of each Minnow. Each
Minnow has a quad-core Intel Atom-E processor, 2 GB of
RAM and two 1-GbE network interfaces. Each district also
has 48 Rohu units [20]. Each Rohu has a quad-core Intel
Atom-C processor, 8 GB of RAM and six 1-GbE network in-
terfaces, three of which are used in the current design.

There are two types of network connected to each node, an
experiment network and an infrastructure network. The for-
mer supports experiment topologies and the latter supports
experiment orchestration, mass storage, imaging and a va-
riety of other testbed services. The switch composition on
both networks is identical. Top of rack (ToR) switches are
EdgeCore AS4610s, fabric switches are Mellanox SN2100s
and spine switches are Mellanox SN2700s. All switches run
Cumulus Linux. There are 5 dedicated emulation servers con-
nected at the fabric tier of the experiment network at 200
Gbps, 4 storage and imaging servers connected at the fab-

1Lessons learned are marked with the � symbol

Figure 1: The DComp Testbed: 1200 Minnows and 240 Rohus
(lower half of figure) are connected by 2 network switch substrates,
one for experimentation and one for infrastructure (control). The
network switch substrates are organized into ToR, fabric, and spine
switches, with both substrates connecting to the external Internet via
a gateway switch. Servers for emulation, testbed site services, and
storage complete the site. Console servers for all 1,440 nodes are
also included (not shown.)

ric tier of the infrastructure network at 100 Gbps, and two
service nodes. All servers are based on the AMD Epyc CPU.

The DComp testbed software is focused exclusively on
managing its underlying hardware resources by provisioning
them as experiment assets. By virtue of being a Merge testbed
site, DCompTB does not have to focus on how an experiment
network is embedded across its physical topology, manage
user accounts, or provide remote accessibility. The Merge
testbed portal [12] and site software provides all of these ca-
pabilities out of the box on behalf of DCompTB.

3 Building Experiment Networks with EVPN

Our application of Ethernet Virtual Private Network (EVPN)
[19] solves the problem of routable isolated experiment net-
works. In particular, we have built an experiment network
overlay system around EVPN that provides both core exper-
iment connectivity and access to experiment services. The
overlay mechanism provides connectivity within, and poten-
tially across multiple testbed sites as it can transit any routed
layer-3 underlay. The principal advantages of our system over
existing VLAN [13] based approaches include: a) the abil-
ity to transit a routed underlay while maintaining isolation
- thus providing great flexibility in where testbed services
and node enclaves may be reached, b) control at the edges
- isolation information only needs to be actively managed
at leaf gateways, EVPN handles trunking implicitly through
multiprotocol BGP [3], c) scalability beyond 4096 segments
which is a fundamental limitation of VLAN, d) full packet
encapsulation using VXLAN which allows for the transit of a
wider range of isolated network frame types, including nested
VXLAN.



A principal requirement for any mechanism that seeks to
provide isolated networks in a dynamic multi-tenant testbed
environment is programmability2 . As experiments materi-
alize3 and dematerialize, the network isolation mechanisms
must provide an interface to set up and tear down experiment
networks in a non-interfering way. The culmination of our
EVPN work is a programmable EVPN mechanism for use in
the network testbed setting. In DCompTB there are two logi-
cal points at which EVPN networks must be configured, fab-
ric switches and service nodes. Fabric switches are the EVPN
boundary of the core testbed network, typically connecting
to top of rack (ToR) switches that provide access to testbed
nodes, to spine switches. A service node is any node in the
testbed that provides services to experiment nodes, such as
dynamic host configuration protocol (DHCP), domain name
system (DNS) or network file systems. To program switches,
we have built a transactional virtual network controller called
Canopy [8] that can run on any Linux based whitebox switch
that honors the Linux netlink API. Canopy exposes an RPC
API so switches can be programmed from anywhere on the
testbed’s management network. To integrate service nodes
into an EVPN testbed network, we have built a Linux routing
and forwarding agent for GoBGP [23] called Gobble [9]. We
chose GoBGP because it is purpose built to be an application-
programmable BGP implementation. What GoBGP lacks is a
native routing and forwarding agent i.e., it implements a num-
ber of BGP protocols including EVPN, but does not update
the underlying forwarding and routing tables of the machine
it is running on. Taken together, GoBGP, Gobble and Canopy
provide a fully programmable virtual network substrate that
decouples nodes and services from the testbed’s transit un-
derlay network.

Figure 2: DCompTB EVPN Network: GoBGP, Gobble and Canopy
provide EVPN-based routing enabling testbed nodes and services
to update routing and forwarding tables. This seamlessly enables
isolated per-experiment communication over underlays provided by
the DCompTB infrastructure and experiment switch substrates.

2We write programmable rather than configurable to emphasize the use
of modular programmable components with sharply defined APIs.

3Materialization roughly corresponds to the action stage of an Emulab
or Deter experiment swap-in, in which networks are configured and node
images are written to disk.

The remainder of this section will focus on how our EVPN
testbed network system is actually put together. In DCompTB
there are three primary types of endpoints that need to par-
ticipate in experiment virtual networks: 1) testbed nodes, 2)
services and 3) network emulators. EVPN is in the multipro-
tocol BGP family [3] and thus, the means by which endpoints
are added to and removed from a network is through adver-
tisements and withdrawals. There are many types of EVPN
advertisements, DCompTB is primarily concerned with two:
MAC address advertisements (type-2) and multicast adver-
tisements (type-3).

When an experiment network is materialized, DCompTB
breaks the network up into links. In DCompTB the notion of
a link is generalized to include multi-point links sometimes
referred to as LANs. How a link is implemented depends on
the type of endpoint.

Node endpoints are added to a virtual link by program-
ming their ToR entry point switch and upstream fabric switch.
How the ToR switch is programmed depends on the type
of node endpoint. Node endpoints can be either singular or
multi-degree. A multi-degree endpoint is a single physical
endpoint that is connected to multiple virtual links and a sin-
gular endpoint is a mapping of a physical endpoint to a single
virtual link. Singular endpoints attach to the network through
untagged VLAN access ports while multi-degree endpoints
attach through tagged VLAN trunk ports. All ToR switch
VLAN segments are trunked up to a fabric switch.

At the fabric level, tagged VLAN packets are bridged onto
corresponding VXLAN networks. This means that the 4096
VLAN scale limit is per-ToR in DCompTB. After bridging,
the associated VXLAN network identifiers (VNI) must be
routed. All testbed fabric switches run the Free Range Rout-
ing (FRR) BGP daemon (bgpd) which supports EVPN. FRR
provides an option to advertise all VNIs that are resident on a
network device. It does this by snooping on the Linux netlink
socket to see when VXLAN tunnel endpoints (VTEP) are cre-
ated. Thus when Canopy creates a VTEP on the device, FRR
will sense and automatically advertise a type-3 route, signi-
fying to the rest of the network that this switch must be in-
cluded in at least broadcast, multicast and unknown (BUM)
traffic for the specified VNI. When downstream packets flow
through the VTEP, the switch learns the associated MAC and
sends a type-2 advertisement out, signifying that the learned
MAC may be reached though the fabric switch.

Service endpoints are created by the testbed runtime when
a service needs to be integrated into an experiment. Every
DCompTB experiment gets a flat infrastructure network (in-
franet). This network accommodates experiment setup, or-
chestration and monitoring. Testbed services attach to this
infranet. There are 2 base services that are attached to ev-
ery experiment: a combined DHCP/DNS service and a node
configuration service. These services are hosted as contain-
ers, which will be discussed further in Section 5. The salient
point is that they interact with the infranet through virtual net-



work interfaces.
Each server providing testbed services runs GoBGP and

Gobble. When a new service is launched, a request is sent
from the DCompTB automation system (Section 6) to the
resident GoBGP daemon to send out a type-3 multicast ad-
vertisement for the server, and a type-2 advertisement con-
taining the MAC of the service’s virtual interface for the VNI
associated with the target infranet. This allows for communi-
cation from testbed nodes to the service over the experiment
specific infranet. For communication in the opposite direc-
tion, Gobble periodically polls GoBGP asking for all of the
type-2 and type-3 routes it knows about. Upon receiving this
list, Gobble uses Linux netlink to cross reference the list with
what is in the kernel’s routing and forwarding tables. Gobble
then calculates the set difference between the kernel’s view of
the network and BGP’s view for both routes and forwarding
entries, adding and removing entries from the kernel accord-
ingly.

Emulator endpoints provide transparent link and network
level emulation capabilities. In the simplest case, when a link
is parameterized with values such as latency and capacity lim-
its, an emulator is placed between the communicating nodes.
Consider the example illustrated in Figure 3, using the Moa
emulator we introduce in Section 4.

Figure 3: An EVPN routed emulated link: Moa emulation is trans-
parently interposed on communication between X and Z.

Node X with a MAC suffix of :11 is connected to Z with a
MAC suffix of :AA. To transparently route communications
between these two nodes through an emulator we do the fol-
lowing. First we break the single logical link into two links,
one link between X and the emulator and another between
Z and the emulator. Each leaf sends out a type-2 advertise-
ment for the node below it. The emulator sends out type-2
advertisements for X’s MAC on the VNI connected to Z and
for Z’s MAC on the VNI connected to X. This way when
X communicates with Z, the traffic gets routed through the
emulator. The emulation engine is aware of this scheme and
encapsulates egress packets accordingly.

The DCompTB EVPN mechanisms are capable of synthe-

sizing arbitrarily complex networks at layer 3. There are
some limitations however, when it comes to layer 2. As an
example, for some software stacks such as routing protocols,
it’s important to have accurate link-level neighbor informa-
tion. Currently, link level protocols such as LLDP and LACP
will show a testbed switch to be an experiment node’s neigh-
bor and not the node that is on the other side of the link. So
this is a limit on L2 network complexity/fidelity.

4 The Moa Network Emulator

Moa provides all network emulation capabilities for
DCompTB and is derived from extensible components devel-
oped for Deter [14]. Unlike previous emulation capabilities
available on many current testbeds, Moa moves beyond sim-
ple link emulation to provide emulation of complex network
structures. Example structures include the routing topology
of an AS, the switched infrastructure of a data center, or wire-
less LANs. This capability enables DCompTB to support a
high-fidelity emulation of multiple, different network struc-
tures without requiring an expensive investment in specific
custom hardware.

Moa accomplishes this by separating its functionality into
two principal components: Emulation Management and Em-
ulation Engines. Emulation management is responsible for
constructing new emulation configurations and managing the
execution of running engines. Emulation engines conduct
the actual emulation in question, and Moa can support mul-
tiple different emulation engines. Currently, Moa supports
two versions of Click [15], DPDK-enabled and DPDK-free,
as emulation engines with plans to potentially support others
such as NS3 [18] and CORE [1].

Emulation management is the component responsible for
managing the interaction between the testbed facility and the
emulation engines. Moa utilizes gRPC to receive emulation
objects from the testbed and translates them into an internal
common structure which can be later used by the emulation
engines. Example emulation objects include a single con-
strained link, an emulated switch, or a wireless LAN. Moa
constructs a directed acyclic graph (DAG) that represents the
packet processing pipeline from packet reception to packet
transmission. The nodes of this graph signify each emula-
tion object to be utilized and the edges are the connections
between emulation objects. Some objects may have multiple
ingress or egress edges, where forwarding is determined by
the emulation objects themselves.

When an experiment is materialized, as described in Sec-
tion 8, any associated emulation will be launched. Moa will
undertake three tasks to launch and manage an emulation.
First, Moa will translate its internal DAG representation into
the relevant configuration for the specified emulation and pass
this configuration to the emulation engine. Second, the emu-
lation engine will be started and the emulation will be ready
for operation; utilizing any enhanced emulation capabilities



we have developed. For example, we have implemented sev-
eral emulation capabilities for wireless networks within our
Click-based engines. Finally, Moa will provide support for
dynamic modification of a running emulation through gRPC
instructions that are translated into the available engine con-
trol capabilities. This enables modifying the currently en-
forced constraints, adding or removing emulation elements,
or terminating an emulation. Interesting and realistic experi-
ments rely on this dynamic capability.

Network constraints in DComp are expressed explicitly by
the user, so one measure of fidelity is how precisely such
constraints on links, networks and emulated wireless sub-
strates are implemented. Understanding and clearly convey-
ing known artifacts and making impairment emulations as de-
terministic as possible for repeatability is critical. A second
notion of fidelity is how precisely the user can express the
emulated network component or substrate of interest.

The former notion of fidelity is an exclusive concern of
DComp in both how the hardware for emulation was selected
and in the design of the software stack used to implement
emulations. DCompTb has one high-performance emulation
node per district. This node contains a 2x100 Gbps Mel-
lanox NIC, and a 100 Gbps Netronome Smart NIC. Em-
ulation servers each have dual 16 core processors and 512
GB of ram. Combined with the DPDK software framework,
this makes for a very powerful emulation platform. What this
means specifically for fidelity is that the high core count al-
lows us to pin cores to dedicated emulation jobs to avoid con-
text switching and cache trashing. The high memory capac-
ity means that lengthy delays and impairments that require
buffering can be accommodated in memory. To the extent
possible we have tried to over-provision the emulation ma-
chines relative to what we believe will be the performance
requirements of the initial group of users we have on the
testbed. By doing this we hope to eliminate artifacts asso-
ciated with hitting saturation points in emulation resources.

The latter notion of fidelity is a shared concern with Merge.
Experiments for DCompTB are expressed using Merge pro-
gramming frameworks, but must be capable of expressing the
sorts of networks DCompTB was designed to accommodate.
The way that this is achieved is through the Merge constraint
system. DCompTB exports a set of constraints to Merge that
are then made available through its experiment programming
frameworks. In this way, when wireless network constraints
are specified by a Merge user, the DComp testbed is consid-
ered as a target platform to realize those constraints.

5 Infrapod Services Model

Nodes and networks are just the start of a testbed. Useful
testbeds provide services and capabilities that make experi-
mentation an efficient and effective process. In DCompTB we
have designed a service provisioning system that allows both
testbed builders and testbed users to rapidly design and de-

ploy infrastructure services and attach them to experiment in-
frastructure networks. The design is based around the idea of
an infrastructure pod (infrapod). An infrapod derives from the
Kubernetes [21] concept of a Pod, multiple containerized ser-
vices that share a network namespace. Every experiment gets
its own dedicated infrapod attached to its infranet. A minimal
infrapod carries containers for DHPC, DNS, and node config-
uration. When nodes boot on an infranet, they get names and
addresses from the infrapod as well as a base OS configura-
tion containing user accounts, SSH keys and the like.

Infrapods also provide a few notable network capabilities.
In DCompTB, infranets are not shared. Each experiment gets
its own totally isolated network space, this is typically a de-
fault /16. Thus materializations across the testbed have over-
lapping IP spaces. In order to access the outside world each
potentially overlapping IP space must go through a NAT. In-
frapods are equipped with two interfaces and IP addresses.
One acts as a gateway for the experiment and the other serves
the dual purpose of a source-NAT interface and a service con-
trol endpoint as explained below. We will refer to the former
as the gateway interface and the latter as the service interface.
The service interface has a unique IP across all infrapods (e.g.
in the init namespace), thus it can act as a NAT bridge onto
a common network without worry of overlap. Once packets
arrive in the init namespace via the service interface, there is
a second layer NAT to carry traffic to the Internet. Thus the
infrapod solves the overlapping IP space to Internet address
translation problem.

The second purpose served by the infrapod service inter-
face is providing a control endpoint for services inside the in-
frapod namespace from the init namespace. The DCompTB
testbed automation system runs in the init namespace and
must be able to communicate with infrapod services over a
common network. The service interface provides such an
endpoint that is shared by all services in the pod. For exam-
ple, this interface is used to provision DHCP/DNS when an
experiment is materialized. The same base container is used
for every DHCP/DNS instance. When the container comes
online, the DCompTB automation system uses the RPC in-
terface of the DHCP/DNS service to configure addressing and
naming for the particular experiment the instance serves.

The infrapod system is made possible by the EVPN net-
work machinery described in Section 3. The interaction
model between infrapods and EVPN is depicted in Figure 4.

When an infrapod is materialized the DCompTB automa-
tion system, which is composed of units called Cogs, first
creates a network enclave for the infrapod including the net-
work namespace, service and gateway interfaces as VETHs,
and performs the plumbing to the init namespace. Next the
MAC address of the gateway interface within the infrapod is
advertised via the local GoBGP daemon. Finally the Gobble
daemon polls the GoBGP daemon for virtual network seg-
ments, performing any additions and withdraws on the host
kernel through netlink.



Figure 4: Infrapod plumbing: Per-experiment services are automat-
ically connected to an experiment’s isolated infrastructure network.

The infrapod system allows testbed operators to provision
new types of experiment services simply as containers. As an
example we are in the process of creating an optional exper-
iment node monitoring service for DCompTB users. When
this service is ready, all we have to do is package up the con-
tainer and write a new cog automation plugin to detect when a
user has requested this service and make sure it is part of the
experiments infrapod. Along these same lines, we are also
in the process of letting users specify their own containers
through public registry URIs. This will allow them to attach
any services they desire to their experiment using well de-
fined and widely used container development workflows. Fi-
nally, all of the containers that are deployed in the base infra-
pod have a well defined gRPC interface that power-users can
leverage to customize their testbed environment. For example
the DNS and DHCP settings can be changed from within the
experiment itself.

6 Orchestrating Experiment Materialization

Materializing an experiment is a distributed orchestration
process. Networks need to be synthesized across switches,
servers and nodes, experiment services must be provisioned,
nodes need to be stamped with OS images and then con-
figured, ancillary services such as mass storage and console
server access must be provisioned. All of this must take place
concurrently for many experiments, over common infras-
tructure without causing interference between experiments.
Moreover, tight coordination is required across tasks within a
single materialization to ensure proper initialization. To ac-
complish this we built the Cogs system [10] for DCompTB.

Before describing the Cogs system, it is necessary to de-
fine the relationship between DCompTB and Merge [12].
DCompTB does not have to deal directly with user accounts,
resource allocation, experiment realization (network embed-
ding) or experiment management. The Merge portal han-
dles all of these tasks. The Merge portal is a centralized hub
for testbed sites. DCompTB plays the role of one such site.
When a researcher defines an experiment and allocates re-

sources for that experiment, they do so through Merge. When
it comes time to actually materialize that experiment, Merge
sends a materialization request to DCompTB containing a de-
tailed model of all the nodes, links and services that are re-
quired for the experiment. It is at this point where the Cogs
system comes into play.

The DCompTB implements a Merge driver4 to handle re-
quests from the Merge portal. The driver translates each ma-
terialization request into a set of tasks, storing them in the
DCompTB database for processing. The Cogs system defines
a task as a three-tiered structure. Each task contains a se-
quence of stages, which in turn contain a set of actions. Stage
executions are guaranteed to be serialized in order, while ac-
tions are executed concurrently. At the top-level, tasks are
executed concurrently using a multi-worker queue draining
model. The Cogs runtime defines a replicated worker, the
eponymous cog. Cog replicas monitor the task database, se-
lecting and executing tasks asynchronously.

While executing a task, cogs are also capable of generating
follow-on tasks and creating a DAG dependency model. Each
top level task has an id and a list of dependencies that are the
ids of other tasks. A task is not eligible for execution until
all of its dependencies have executed successfully. If a task
fails, the error is recorded in the task structure and the cogs
will ignore this task until the error has cleared. This allows
an administrator to ascertain what caused the error, remedy
the situation and then clear the task error, allowing the task
pipeline to continue where it left off.

Coordination within tasks is very important. For example,
in DCompTB the imaging of nodes takes place on a differ-
ent virtual network than the materialization infrastructure net-
work the nodes will ultimately wind up on. Thus the moment
an imaging run completes for a specific node, that node must
be placed on its target network before rebooting so it will
DHCP within the proper infrastructure network. The Cogs
system handles this and similar situations through sequences
of stages that create ordered serialization boundaries across a
set of tasks implemented on components distributed through-
out the testbed.

7 Model Driven Tool Base

The Cogs orchestration system is responsible for driving the
materialization process. However, there are a whole host
of tools underneath the cogs that actually provision the var-
ious components of the testbed. All of these tools have
been designed as generic components with well-defined in-
terfaces that can be used in any testbed context, not only
DCompTB. The interaction between the tools and the cogs
is that the cogs are responsible for ingesting testbed model
data in the form of XIR (the JSON-based Merge network

4Each testbed site in the Merge ecosystem must implement a driver con-
forming to the testbed site interface.



Nex An automation friendly DCHP/DNS server
Canopy A virtual network synthesis framework
Sled A node imaging system [22]
Foundry A boot-time node configuration system
Cogs A testbed automation system
Moa A network emulation engine
Rally A mass storage system for testbeds
Beluga An extensible power controller
WGD A Wireguard [7] automation daemon
Gobble A GoBGP lower half

Table 1: DComp Software Components

model format). The cogs then translate that model data into
the data structures required for each tool’s API. If the testbed
configuration changes, all that needs to be done is update
the testbed model which resides at the well-known location
/etc/cogs/tbxir.json and restart the cogs (recall that cogs
drain a task queue asynchronously so this restart is not dis-
ruptive). The list of tools developed in support of the DComp
testbed are shown in Table 1. 5

These tools solve many of the problems associated with
building a new testbed. Our objective is to continue to ex-
pand this tool base, allowing the collection to act as a catalyst
for rapidly building new testbeds to meet the needs of the re-
search community.

8 Defining the Realization-Materialization
Boundary

DCompTB is designed as a Merge site. Merge handles many
experimenter centric tasks such as realization (virtual net-
work embedding + resource allocation), user, project and ex-
periment management, experiment APIs, user interfaces and
the like. This means that DCompTB only needs to focus on
3 resource centric tasks: 1) providing a detailed resource net-
work model to Merge, 2) commissioning and decommission-
ing resources and 3) executing materializations. One crucial
effect this has, is new testbeds can be developed rapidly, dy-
namically used in concert with other testbeds with different
capabilities, and easily re-purposed across research program
funding cycles.

The challenge in decoupling the experimenter facing part
of the testbed from the resource provisioning systems, is de-
signing an interface that allows for inter-operation between
the realization and materialization systems, but does not leak
complexity. The basic question that arises, is how should re-
alization information be presented to materialization subsys-
tems, and vice versa? A concrete example comes from multi-
point link (MPL) information flow. From the experimenter’s
perspective an MPL is simply a link with more than 2 end-
points. When submitted as a part of a network topology for
realization, the realizer must find a set of testbed paths suf-

5All software available at https://gitlab.com/mergetb/tech

ficient to satisfy the link. We say path here, as two testbed
nodes are rarely connected directly, they almost always go
through one or more switch hops which introduce additional
constraints along the path. Thus to calculate a viable real-
ization for MPLs, the realizer breaks the MPL up into a fully
connected P2P network and calculates a mapping of each link
onto a testbed path. This results in a link mapping that sat-
isfies the realization problem. However, when coming back
to materialization, the broken out set of links has lost infor-
mation from the experiment. If passed to a testbed site to
materialize without any additional information, the fully con-
nected P2P mesh would be materialized instead of a simple
broadcast domain segment.

The principle in play here is conservation of topological in-
formation. � Realization systems must never destroy or hide
information that makes it impossible for the materialization
systems to do their job as the user expects. Note that for the
particular example presented, a fully connected P2P network
and a single broadcast segment containing the same nodes are
both valid experiment topology fragments, but very different
topology fragments.

Another principle we have identified in interactions be-
tween realization and materialization is propagation of
choice. Consider an experiment in which a node is connected
to two other nodes over unique links e.g., has degree 2. The
realization engine finds a node that has only a single interface
but is capable of supporting multiple virtual interfaces on that
single interface, so it maps both experiment interfaces onto
the single resource interface. This means that the path from
the node to the switch is now carrying multiple lanes of exper-
iment traffic and will likely need to be treated differently than
the single degree case. � The lesson learned from this exam-
ple, is that choices made by the realization engine can have
an implicit impact on how an experiment needs to be materi-
alized. The realization engine could decide not to track this
information explicitly, and simply pass the topology embed-
ding down to the site as a set of link mappings, and an intel-
ligent materialization engine could pre-process the full com-
plement of links to determine what is going on. However, this
is a complexity leak. The realization engine is leaking com-
plexity associated with the ramifications of its choices onto
the materializer. A concrete instance of the propagation of
choice principle is that the number of experiment lanes that
transit a testbed segment is a function of realization choice,
and the data that codifies the outcome of that choice must be
propagated.

As a third and final principle we present topologically-
informed technologically-agnostic. This principle deals with
information flow in the opposite direction as the previous two.
Here we are concerned with what model information about a
site is important to the realizer and what information is not.
Consider again the example of the multi-degree link. In order
for the realizer to decide to map two logical interfaces to a

https://gitlab.com/mergetb/tech


single resource 6 interface, it must understand that this is pos-
sible in the first place. In some cases it does not matter how
the multiplexing is done, only that it can be done. In some
cases it does matter how the multiplexing is done. In the for-
mer case, a user may have simply requested a topology that
has multi-degree nodes and there are no actual nodes avail-
able with sufficient degree. In this case the technology that
can achieve an appropriate multiplexing is not important. It
could be a VLAN trunk, the use of multiple VTEPs, etc.

Now consider a case where the experimenter specifies with
more fidelity the split they require, perhaps one degree of
the split connects to a conventional network and the other
to a high-fidelity wireless emulation that requires sender-side
queuing behavior. In this case it is very important what the
technical aspects of the resource interface in question are, and
the testbed site model must include these details. So what we
see here is a sort of ambivalent behavior when it comes to
technical detail, sometimes it matters sometimes it does not.
� However, what is important is that the realization engine
not play a part directly in the technology details. What this
means is that site models and experiment models must meet
in the middle, and the realization engine is capable of deter-
mining when they meet, but not independently making such a
determination. Otherwise the inherent complexity of site and
experiment design has leaked into the realization algorithm.

Note that these issues do not arise in a single purpose built
testbed. The monolithic testbed understands its own experi-
ment and resource models by design. The implementation of
DCompTB as a Merge site has helped to ground the Merge
modular testbed design goals, by presenting a complex real
testbed use case, and allowing for concrete reasoning about
where the complexity boundaries belong. As we move for-
ward to build new and different testbeds for future programs
that leverage the Merge architecture, we will undoubtedly un-
cover more principles that guide the design of testbed mod-
els, realization algorithms, materialization systems, experi-
ment models and the information that flows between.

9 Raven Testbed Development Environment

A critical piece of technology that made DCompTB possible
is a tool called Raven [11]. Raven is essentially a local net-
work testbed in a box. It allows a user to define a network
topology composed of VMs with specific characteristics such
as CPU, memory, OS image etc. What sets Raven apart from
seemingly similar VM tools such as Vagrant, is that Raven
is specifically designed to support complex network topolo-
gies. Most VM tools have topologies as an afterthought. With
Raven one can carefully and efficiently describe the exact net-
work topology required. This is extremely useful for build-
ing network testbeds. The following are key capabilities that

6we explicitly do not use the term physical interface here, as the resource
itself may be virtual

Raven provides for testbed development.
Topology dependent model validation: Many of the com-

ponents in DCompTB are topologically dependent. For ex-
ample the automation system that implements link provision-
ing from materialization specs handed down by Merge, does
so by using an internal topological model of the testbed. Eval-
uating how well this tool works in response to the model
e.g. uncovering hidden assumptions about the environment,
is done easily with Raven. Simply code up a different vir-
tual topology with a different model fed to the link provi-
sioning system and run validation tests. Thus, for developing
tools designed to work over a range of testbeds or topologies,
Raven can provide the topology variation.

Network Debugging: DCompTB like many other testbeds
has a network composed of high-performance switches.
While these switches provide excellent performance, when
issues arise they do not always provide the best debugging
capabilities. For example, one can typically not tcpdump
a switch port. However, in the Raven environment we rou-
tinely deploy the whitebox switch OS Cumulus Linux as a
part of our topologies. We also run Cumulus in our produc-
tion testbeds. The virtual Cumulus appliance we run in Raven
exposes the same control plane as the production version, but
provides significant debugging advantages. For example, we
can tcpdump any port. We can also try risky configuration
changes that may cause instability on the production system.

Testing and Continuous Integration: Finally, and possi-
bly the most important point is that the Raven tool gives us
an end-to-end testing substrate for Merge and DCompTB that
can be deployed as a part of a continuous integration strategy.
Every git merge request for the DcompTB software is gated
by a set of end-to-end tests that validate a large chunk of func-
tionality. The vast majority of problems we’ve experienced
in testbed development thus far have been reproducible in the
Raven environment.

10 Future Work and Conclusion

In the near future, we expect to build several additional
testbed sites, each addressing the experimental requirements
of a different research program. These testbed sites will lever-
age the Merge portal and DCompTB software components,
introducing new hardware types, software components and
testbed abstractions as necessary. � One lesson learned from
building the DCompTB hardware is that all the equipment
in the testbed site should be considered to have potential
use as an experiment node, and therefore should be provi-
sioned with experimentation and infrastructure networks and
a capability to reset or reload the equipment with a well-
known image or configuration. For example, the emulation
servers in DCompTB may be reconfigured within an experi-
ment as large, high-capacity x86 servers. Software and model
changes to support such re-purposing requires minimal effort.



Experimental domains for future study may include: multi-
tenant data center networks; tailored QoS for specific appli-
cations and groups in Enterprise or WAN environments; se-
cure and resilient SDN controllers in WAN deployments; and
software and binary analysis of at-scale, complex embedded
software systems. Building, operating, and supporting re-
search groups experimenting with and evaluating prototype
technologies across a broader set of domains will help mature
the Merge ecosystem and architecture. Evaluation of the hab-
itability7 of testbed architectures is a long-term activity, and
while we engage in the immediate work of supporting near-
term traditional research, we will simultaneously study our
research testbed users, patterns of experimentation, and the
match between experimental requirements and our testbeds
with a goal of understanding and rigorously evaluating the
strengths and weakness of the next generation of cybersecu-
rity and networking testbeds.

DCompTB is now entering a phase of initial operations.
The extensible network services (EVPN-based interoperabil-
ity of testbed services and emulators with a programmable
virtual network edge) enable robust, flexible use of, and mod-
ification to, services provisioned on a per-experiment basis.
The modular testbed capabilities (Cogs, modular tools) en-
abled rapid development and deployment of DCompTB, and
are anticipated to reduce maintenance and enhancement ef-
forts while providing re-usable components for building other
testbeds. Merge (mergetb) and DCompTB (dcomptb) are cur-
rently available as open source software.

Availability

Merge and DCompTB are currently available on Gitlab.
• https://gitlab.com/mergetb
• https://gitlab.com/dcomptb

Acknowledgements

This material is based upon work supported by Defense Ad-
vanced Research Projects Agency (DARPA) under Contract
No. HR001117C0053. The views, opinions, and/or findings
expressed are those of the author(s) and should not be inter-
preted as representing the official views or policies of the De-
partment of Defense or the U.S. Government.

The authors would also like to thank our CSET shepherd
Eric Eide for feedback and guidance that improved the quality
of this paper.

References
[1] AHRENHOLZ, J. Comparison of CORE network emulation platforms.

In Military Communications Conference, 2010 - MILCOM 2010 (Oct.
2010), pp. 166–171.

7Suitability of an architecture for its intended purpose over the long-term
is referred to as habitability, per Dr. Christopher Ramming. [6]

[2] BALENSON, D., TINNEL, L., AND BENZEL, T. Cybersecurity Ex-
perimentation of the Future (CEF): Catalyzing a New Generation of
Experimental Cybersecurity Research. Tech. rep., NSF, 2015.

[3] BATES, T., CHANDRA, R., KATZ, D., AND REKHTER, Y. Multipro-
tocol Extensions for BGP-4. https://tools.ietf.org/html/rfc4760.
[May, 2019].

[4] BENZEL, T. The science of cyber security experimentation: the deter
project. In Proceedings of the 27th Annual Computer Security Appli-
cations Conference (2011), ACM, pp. 137–148.

[5] BERMAN, M., CHASE, J. S., LANDWEBER, L., NAKAO, A., OTT,
M., RAYCHAUDHURI, D., RICCI, R., AND SESKAR, I. Geni: A fed-
erated testbed for innovative network experiments. Computer Networks
61 (2014), 5–23.

[6] DARPA STRATEGIC TECHNOLOGY OFFICE. BAA 07-32, Intrinsi-
cally Assurable Mobile Ad-hoc Networks. April 2006, Arlington, VA.

[7] DONENFELD, J. A. WireGuard: Next Generation Kernel Network
Tunnel. In NDSS (2017).

[8] GOODFELLOW, R. Canopy. https://gitlab.com/mergetb/tech/
canopy. [May, 2019].

[9] GOODFELLOW, R. Gobble. https://gitlab.com/mergetb/tech/
gobble. [May, 2019].

[10] GOODFELLOW, R., THURLOW, L., AND LAWLER, G. Cogs. https:
//gitlab.com/mergetb/tech/cogs. [May, 2019].

[11] GOODFELLOW, R., THURLOW, L., AND LAWLER, G. Raven. https:
//gitlab.com/rygoo/raven. [May, 2019].

[12] GOODFELLOW, R., THURLOW, L., AND RAVI, S. Merge: An Archi-
tecture for Interconnected Testbed Ecosystems. CoRR abs/1810.08260
(2018).

[13] IEEE C/LM - LAN/MAN STANDARDS COMMITTEE. IEEE 802.1Q-
2018. https://standards.ieee.org/standard/802_1Q-2018.
html. [May, 2018].

[14] KLINE, E., BARTLETT, G., LAWLER, G., STORY, R., AND ELKINS,
M. Capturing Domain Knowledge Through Extensible Components.
In Testbeds and Research Infrastructures for the Development of Net-
works and Communications - 13th EAI International Conference, Tri-
dentCom 2018, Shanghai, China (December 2018), pp. 141–156.

[15] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The click modular router. ACM Transactions on
Computer Systems 18, 3 (Aug. 2000), 263–297.

[16] MERGETB. MergeTB. https://gitlab.com/mergetb. [May, 2019].
[17] MINNOWBOARD.ORG FOUNDATION . Homepage. https://

minnowboard.org. [May, 2019].
[18] NSNAM. Network Simulator 3. http://www.nsnam.org/. [May,

2019].
[19] SAJASSI, A., AGGARWAL, R., UTTARO, J., BITAR, N., HEN-

DRICKX, W., AND ISAAC, A. Requirements for Ethernet VPN
(EVPN). https://tools.ietf.org/html/rfc7209. [May, 2019].

[20] SILICOM LTD. RCC-VE CPE Desktop Appli-
ance Intel Atom Based. https://www.silicom-usa.
com/pr/edge-networking-solutions/edge-cpes/
rcc-ve-desktop-appliance/. [May, 2019].

[21] THE KUBERNETES AUTHORS. Production-Grade Container Orches-
tration. https://kubernetes.io. [May, 2019].

[22] THURLOW, L., GOODFELLOW, R., AND SCHWAB, S. Sled: System-
Loader for Ephemeral Devices. In INFOCOM 2019 WKSHPS - CNERT
2019 (Apr. 2019).

[23] TOMONORI, F., YUSUKE, I., YOKOI, H., HANAUE, N., AND FUJI-
MOTO, S. GoBGP. https://github.com/osrg/gobgp. [May, 2019].

[24] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GURUPRASAD,
S., NEWBOLD, M., HIBLER, M., BARB, C., AND JOGLEKAR, A.
An Integrated Experimental Environment for Distributed Systems and
Networks. ACM SIGOPS Operating Systems Review 36, SI (2002),
255–270.

https://gitlab.com/mergetb
https://gitlab.com/dcomptb
https://tools.ietf.org/html/rfc4760
https://gitlab.com/mergetb/tech/canopy
https://gitlab.com/mergetb/tech/canopy
https://gitlab.com/mergetb/tech/gobble
https://gitlab.com/mergetb/tech/gobble
https://gitlab.com/mergetb/tech/cogs
https://gitlab.com/mergetb/tech/cogs
https://gitlab.com/rygoo/raven
https://gitlab.com/rygoo/raven
https://standards.ieee.org/standard/802_1Q-2018.html
https://standards.ieee.org/standard/802_1Q-2018.html
https://gitlab.com/mergetb
https://minnowboard.org
https://minnowboard.org
http://www.nsnam.org/
https://tools.ietf.org/html/rfc7209
https://www.silicom-usa.com/pr/edge-networking-solutions/edge-cpes/rcc-ve-desktop-appliance/
https://www.silicom-usa.com/pr/edge-networking-solutions/edge-cpes/rcc-ve-desktop-appliance/
https://www.silicom-usa.com/pr/edge-networking-solutions/edge-cpes/rcc-ve-desktop-appliance/
https://kubernetes.io
https://github.com/osrg/gobgp

	Introduction
	DComp Testbed Overview
	Building Experiment Networks with EVPN
	The Moa Network Emulator
	Infrapod Services Model
	Orchestrating Experiment Materialization
	Model Driven Tool Base
	Defining the Realization-Materialization Boundary
	Raven Testbed Development Environment
	Future Work and Conclusion

