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Abstract
Virtual testbeds are a core component of cyber experimenta-
tion as they allow for fast and relatively inexpensive modeling
of computer systems. Unlike simulations, virtual testbeds run
real software on virtual hardware which allows them to cap-
ture unknown or complex behaviors. However, virtualization
is known to increase latency and decrease throughput. Could
these and other artifacts from virtualization undermine the
experiments that we wish to run?

For the past three years, we have attempted to quantify
where and how virtual testbeds differ from their physical
counterparts to address this concern. While performance dif-
ferences have been widely studied, we aim to uncover behav-
ioral differences. We have run over 10,000 experiments and
processed over half a petabyte of data. Complete details of our
methodology and our experimental results from applying that
methodology are published in previous work. In this paper,
we describe our lessons learned in the process of construct-
ing and instrumenting both physical and virtual testbeds and
analyzing the results from each.

1 Introduction & Background

Cyber experimentation allows researchers to explore what-if
scenarios in a scientifically rigorous manner. Cyber experi-
mentation typically relies on virtual testbeds which run real
software on virtualized hardware, also known as emulation.
Since emulation runs the actual software it can capture un-
known or complex behaviors that would not be captured in
a simulation. In some cases, researchers may have access to
physical testbeds, but these are generally more expensive and
less-reconfigurable than their virtual counterparts. To date,
there has been limited research into where and how virtual
testbeds differ from physical testbeds.

Previous work has shown that virtualization, the basis for
virtual testbeds, increases network latency and lowers through-
put [11, 16, 20, 23]. Wang et al. [20] showed that for small
bursts, buffering can even cause virtual machines to receive

data at rates exceeding that of the underlying network. Dif-
ferences like these and other anomalies could undermine the
result of an experiment run on a virtual testbed. Furthermore,
variation in the construction of virtual testbeds and the under-
lying hardware compounds the uncertainty.

Three years ago, we set out to quantify the differences be-
tween virtual and physical testbeds. We proposed to run repre-
sentative workloads on both physical and virtual testbeds, col-
lect and compare metrics from each to understand where and
how they differ. For our workload, we used ApacheBench [8]
as an HTTP client to request fixed pages from an HTTP server.
We compared metrics from the application workload, how the
workload interacts with the operating system, and how the
traffic traverses the network. These different levels of abstrac-
tion allow us to understand where differences occur and can
inform experiments that may be sensitive to artifacts at dif-
ferent levels. In doing so, we aimed to create a handbook for
experimenters to provide recommendations and pitfalls when
building experiments. Complete details of our methodology
and our experimental results from applying that methodology
are published in previous work [4]. In this paper, we focus
on our lessons learned in the process of constructing and in-
strumenting both physical and virtual testbeds and analyzing
the results from each. This includes trial and error, and how
and why we ended up using the methods that we did, both of
which were out of scope for the previous paper.

In total, we ran over 10,000 experiments across three clus-
ters producing more than half a petabyte of data. We varied
the payload size, network drivers, and network bandwidth and
found notable differences in the system and network-level
interactions. We found that network driver offloading behav-
ior varied greatly between testbeds causing differences in the
number of read system calls and packetization. When we
compared the sequences of system calls using Markov chains,
we found near-identical structures across testbeds. In subse-
quent experiments, we found many system call sequences to
be identical once we collapsed read/polling loops.

We performed our experiments using the minimega [12]
toolset. The primary tool, minimega, is an orchestration tool



that allows users to create and manage containers, virtual
machines, and virtual networks using a scriptable API. It
leverages a custom container implementation, QEMU [1], and
Open vSwitch [7]. Auxiliary tools in the toolset include vm-
better, a tool to build VMs and containers, protonuke, a simple
traffic generation tool, and igor, a physical node scheduling
tool. All these tools are open-source and available on Github.

Several of our lessons learned overlap with the motiva-
tions for DEW (Distributed Experiment Workflows) [13]. It is
encouraging to see the overlap in challenges between differ-
ent experimenters using different tools. Several other papers
have enumerated lessons learned from creating or operating
testbeds [2,3,10,22]. These lessons include selecting physical
devices, creating software to instantiate the testbed, and man-
aging user interactions with the testbed. We were unable to
find lessons learned using these testbeds to run thousands of
experiments. For a description of related works on comparing
virtual and physical testbeds see our full paper [4].

The remainder of this paper is organized as follows. In
Section 2, we discuss our lessons learned, grouped into four
topic areas: Tools Validation and Development (Section 2.1),
Instrumentation (Section 2.2), Data Collection & Aggregation
(Section 2.3), and Data Analysis (Section 2.4). In Section 3,
we conclude by discussing the applicability of our lessons
learned to other testbeds and future work.

2 Lessons Learned

To perform experiments at scale, we rely on several tools to
provide orchestration, instrumentation, data collection, and
analysis. We primarily used bash as the glue between our tools
and to define our experiments, instrumentation, and analysis.
We also used Python and SQL in our analysis. As noted by
others [13], an experiment definition language that would
enable specifying experiments, instrumentation, collection
and possibly even analysis would be very useful for such
efforts. That said, flexibility and extensibility are critical to
the success of any such language.

2.1 Tool Validation and Development
Lesson: Using a testbed toolset for experimentation re-
quires substantial effort and consideration to put tools
together in a workable and validated fashion.

Improving minimega. Running thousands of repetitions
of the same experiment seems simple, but we identified
several issues. We use tools from the minimega toolset
(minimega, protonuke, igor, and vmbetter), sysdig [9], par-
allel [19], SQLite [18], vmstat [21], and tcptrace [15]. We
found that we needed to add several features to the minimega
toolset before we could run our experiments. In addition to
many minor bug fixes and improvements, we discovered a
rare bug in the capture API that would crash minimega. This
API is used to record network packets for analysis. The crash

had not occurred during our previous experiments where we
might only run a small number of long-running captures. Ad-
ditionally, we added a snaplen feature to the capture API to
reduce the data size by only capturing packet headers. We also
found several examples where state was not entirely cleaned
up after an experiment finished. For example, there was a bug
which caused the container filesystem to not unmount. We
view these as a gap between how minimega is typically used
(to instantiate an environment a handful of times) and how
we wished to use it (to run many experiments with varying
parameters). To run thousands of experiments successfully,
toolsets must be well-tested, reset all state between tests, and
properly handle edge cases.

Stand-alone C2 server. In addition to improving our tools,
we also added a tool to the toolset for our physical testbed:
a stand-alone command-and-control server. When using the
command-and-control layer with VMs, minimega acts as the
server. We repurposed the command-and-control server from
minimega to control the physical nodes. This had the added
benefit that our scripts to run the experiment on the virtual
testbed are similar to the scripts to run the physical testbed.
In an ideal setting, the same experiment would run on either
testbed so that separate versions did not have to be updated
and maintained in parallel. This could be achieved, for exam-
ple, using DEW with different experiment realizations.

Parallelizing experiments. Another challenge was paral-
lelizing our experiments. To avoid one crash bringing down
many experiments, we created many three-node reservations
using the cluster provisioning tool, igor. Each reservation had
a head node and two nodes to run the VMs. We then used
parallel to distribute jobs across the reservations. During
reservation creation, igor partitions the experiment network
directly on the cluster switch using VLANs, so we did not
have to worry about leakage between reservations. To use
parallel in this manner, we exposed all parameters that we
wanted to test as arguments to our top-level script and ensured
that all the head nodes had all dependencies (achieved through
a custom automated prep script). Using these methods we ran
up to 16 experiments simultaneously (using 48 nodes total)
and dramatically reduced the runtime.

Robust snapshot feature. We used vmbetter to construct
our experiment images. This tool allowed us to create minimal
kernel and init ramdisks containing just the desired software.
To decrease the time to run experiments, we pre-installed
all needed software on the VMs so that we did not have to
include the install overhead in every test. In the future, a
more robust snapshot feature could alleviate the need for
customized images.

2.2 Instrumentation

Lesson: Instrumentation is invaluable but it is often man-
ually added, expensive, and experiment-specific. Integrat-
ing more forms of instrumentation into the toolset could



help researchers to more rapidly develop experiments.
We needed two forms of instrumentation in our experi-

ments: 1) to verify the functionality of the environment and
2) to understand and evaluate our experiments.

Verifying the environment can be as simple as checking that
the endpoints can ping each other but may be more elaborate,
depending on how the endpoints are customized after booting.
We found that the minimega toolset has some capabilities to
perform these verification checks but they must be created by
each experimenter. Integrating these checks into the toolset
could simplify the process for experimenters.

Instrumenting at multiple levels. To understand how the
workload behaves in both the virtual and physical testbeds,
we instrumented the systems at three levels: application, op-
erating system, and network. Using ApacheBench as our ap-
plication workload provided well-tested and detailed metrics
for the application level. These metrics made testbed compar-
isons at this level robust and insightful but we encountered
difficulties at the other levels.

At the operating system-level, we found that we could not
capture system call traces for containers in the same was as
we did for VMs and physical machines. Because containers
have limited access to the system resources, we were unable
to run sysdig to capture the traces from within the container.
Instead, we had to capture system call traces system-wide and
then filter the captures based on process namespace. When
we did so, we found that sysdig had dropped events when
there were many containers running, corrupting the results.

At the network-level, we had a discrepancy in packet-
capture locations. For VMs and containers, we performed
the captures on the physical hosts whereas for the physical
testbed, we captured the traffic on the host running the work-
load. This minor variation causes changes introduced by the
virtual NIC to be masked from view.

In an ideal world, we would have instrumentation to un-
derstand the provenance of all events in the operating system
and underlying network resulting from the application under
test. However, there were numerous constraints on capturing
the level of data necessary to perform these traces. There
are substantial resource costs associated with capturing the
instrumentation data at this fine of a granularity. When we
disabled the instrumentation, the experiments were able to
run 5-13% faster, and we were still not capturing nearly the
fidelity necessary to comprehensively trace the experiment.
The generated data sets themselves were also enormous, with
the packet captures being on the order of several gigabytes
worth of data for a single run. Sampling might mitigate some
of these costs, but tuning the sampling to avoid missing low
probability events can be difficult.

Level of effort. Another substantial cost associated with
instrumentation is the effort required to enable the level of
instrumentation. With the exception of packet capture which
was easily configurable in minimega, all of our instrumenta-
tion needed to be built or integrated by hand. More detailed

tracing of the execution could also be done using tools like
bpftrace [17] to track events through the Linux kernel level.
However, doing so accurately would require substantial effort
to handcraft the tracing. Little of this level of instrumentation
has been provided in the orchestration frameworks. Most tools
provide instrumentation to enable functional or performance
debugging, not to capture and model application behavior.

Nevertheless, our instrumentation was invaluable to track
down anomalous behaviors. For example, in analyzing the
ApacheBench results for the e1000 driver, we found that a
small subset of results significantly deviated from the rest.
From tcptrace, we discovered that there were stalls (typi-
cally 13 seconds) where the server behaved as if it had never
received a data ACK even though it was sent by the client.
Further investigation of our kernel instrumentation showed
that these stalls coincided with driver lockups and resets.

2.3 Data Collection & Aggregation

Lesson: Testbeds can provide a wealth of data to re-
searchers but should do more to streamline the process
of collecting and aggregating it into a usable form.

One challenge with our instrumentation was collecting it
all for further processing. We had two forms of data: data col-
lected within the VM and data collected from the host running
the VM. Collecting data from the host running the VM went
smoothly using the minimega file transport APIs. Collecting
the data that the VM generates was more challenging.

Data collection. We explored several options to col-
lect data from the VMs. First, we tried using minimega’s
command-and-control APIs to retrieve the files but that has
limits on the file size. Instead, we created a qcow2 disk where
the VM would write all of its data. After the experiment, we
would then process the qcow2s to extract the instrumentation
data. However, in cases where the VM did not cleanly shut-
down we occasionally had corrupted the filesystem. This was
often repairable but did lead to some data loss. We recently
implemented a capability to mount the guest filesystem on
the host in the minimega toolset which could simplify this
process going forward.

Data aggregation. Once we extracted data from the qcow2
disks and from the other hosts in the experiment, we then pro-
cessed it (using sysdig and tcptrace) to create results for the
individual iterations of the experiment. We stored these results
in an SQLite database. Once the iteration had been processed,
we archived it to a storage cluster before continuing to the
next iteration as the hosts have insufficient storage to keep
hundreds of iterations. Once all iterations and parameters
were complete, we aggregated the results from all of the indi-
vidual iterations into a single database to use for our analysis.
Processing and aggregating the results in this way allowed us
to avoid reading all the instrumentation data from the storage
cluster – we only needed to read the much smaller databases.

Storage reduction. We used tcptrace to process the



PCAPs that we collected. This tool reassembles TCP flows
and computes statistics for each flow in the PCAP such as
the number of bytes, packets, and ACKs. Our small-payload
experiments, where we completed up to 500,000 requests,
resulted in 500,000 flows, each with 78 flow statistics (39 for
each direction). Storing the full results for later aggregation
vastly increased the size of the database with little benefit;
thus, we decided to compute summary statistics for the flow
statistics (e.g. quantiles, mean, and standard deviation) in the
database. When we then computed statistics over all iterations,
we looked at the mean of means for these statistics. This re-
duces storage issues, but introduces issues with aggregation.

Information loss. With any level of aggregation, one loses
information content. For example, in calculating a mean, we
inherently lose information about the underlying statistical
distribution. If the original distribution is parameterized solely
by its mean, this aggregation is acceptable. However, the orig-
inal distribution may also require a standard deviation to be
adequately described. Thus, aggregation may hurt statistical
robustness. With this in mind, we retained the original source
in case we needed a closer look at the distribution.

2.4 Data Analysis

Lesson: Testbeds allow for many repetitions but care
should be used when analyzing the data, especially in con-
flating statistical significance with practical importance.

As our dataset is large, we have the benefit of most mea-
sures being statistically significant. When performing statisti-
cal tests of significance, standard practice is to calculate some
test statistic (e.g., t-test) and associated p-values based on said
test statistic [14]. Standard test statistics (and thus p-values)
are proportional to sample size; i.e., a larger sample size tends
to force p-values lower. Thus, with many observations (as
is the case in our work), most tests are likely to be highly
significant if the null hypothesis is false. This can be seen as
a positive outcome; researchers have a statistically robust ar-
gument towards validity of their stated hypotheses. However,
this can be an issue when arguing practical importance.

For example, a researcher may wish to see if a given system
configuration is associated with lower latency as compared to
a baseline. They perform experiments and find this is indeed
the case with a statistically significant p-value. However, this
new configuration only decreases packet latency by 0.1%.
Though this difference is statistically significant, the question
remains: is a 0.1% decrease in packet latency of practical
importance? This depends heavily on the application. Thus,
statistical significance should not be the only issue in deter-
mining importance; effect sizes should also be considered.

Multiple comparisons. Related to the issue of p-values
is that of multiple comparisons [5, 6]. One may wish to per-
form an analysis over all collected metrics in order to identify
which are important for an outcome of interest. As is the case
in our work, most metrics were not of importance a priori, and

we wished to identify those which were a posteriori. In this
situation, one may be tempted to compare each metric to the
other and identify statistically significant differences. Though
this process can be helpful in identifying important (and hith-
erto unknown) aspects, this can be dangerous if one does not
adjust resulting p-values to account for multiple comparison.
In essence, when comparing a large number of metrics against
each other, there is a non-zero probability that a comparison
will be statistically significant due to chance alone; this risk
increases as the number of comparisons increase. This can
lead to spurious significant results.

Small variance. During experimentation we found that
variance within a given configuration for most metrics was
extremely small. In most cases, standard deviation was so
small it was almost numerically 0, and in some cases was
numerically 0. Though standard practice suggests running
as many iterations of an experiment as possible, this result
suggests it may not be necessary for this type of work.

3 Conclusion & Future Work

We have presented our lessons learned from conducting over
10,000 experiments to compare virtual and physical testbeds.
We have described the improvements we made to our tools,
the challenges of instrumenting our experiments to under-
stand performance and behaviors, aggregating and processing
over half a petabyte of data, and analyzing it to produce mean-
ingful results. We hope these lessons are useful to the cyber
experimentation community.

While some of our lessons learned are testbed-specific (i.e.
specific to the minimega toolset), we believe that many of
them are applicable across testbeds. Specifically, our lessons
learned around instrumentation, data collection & aggregation,
and data analysis should be relevant to most general-purpose
testbeds. Other, more specialized testbeds may not benefit
from our lessons learned because they have been designed to
instrument and analyze specific events.

The lessons learned around instrumentation, data collection
& aggregation, and data analysis are also more fundamental.
Creating a testbed toolset that is ready to use as an experimen-
tation platform can likely be solved with more engineering.
But creating more generalized ways to instrument and analyze
the data from these experiments will require further research.

There are many more experiments to run to understand
the differences between testbeds. Recently, we have begun
experiments to understand the effects of contention. Specifi-
cally, instead of running a single HTTP client and server on
their own dedicated physical machines, we measure effects
when we run an increasing number of isolated pairs, up to
80 pairs. Preliminary results show that contention degrades
the workload performance sooner than we expect. However,
we have seen instances with two or four pairs where each
ApacheBench instance has better throughput than a single pair.
Through these experiments, we hope to understand how to



calibrate a cluster to the amount of workload it can support
without, with some, and with prohibitive amounts of artifacts
from contention. These experiments have further honed our
toolset and techniques.
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